An almost magic proposition about infinite subsets of \mathbb{R}

The proposition below is an implication of the form: $P \Rightarrow Q \vee R$. This implication is equivalent to the implication $P \wedge \neg Q \Rightarrow R$. One way to see this is to consider the negations of these implications. The negation of $P \Rightarrow Q \vee R$ is $P \wedge(\neg Q \wedge \neg R)$, while the negation of $P \wedge \neg Q \Rightarrow R$ is $(P \wedge \neg Q) \wedge \neg R$. Since the negations are clearly equivalent, the implications are also equivalent.

Proposition. Let $A \subset \mathbb{R}$. If A is infinite, then there exists a nonempty subset B of A such that B does not have a minimum or there exists a nonempty subset C of A such that C does not have a maximum.

Proof. We will prove the equivalent implication: If A is an infinite subset of \mathbb{R} and each nonempty subset of A has a minimum, then there exist a nonempty subset C of A such that C does not have a maximum.

So, assume that A is an infinite subset of \mathbb{R} and each nonempty subset of A has a minimum. Then, in particular, $\min A$ exists. Let W be the set of all minimums of infinite subsets of A. Formally,

$$
W=\{x \in A: x=\min E \text { where } E \subset A \text { and } E \text { is infinite }\}
$$

Clearly $\min A$ is an element in W. Hence $W \neq \emptyset$.
Next we will prove that W does not have a maximum. Let $y \in W$ be arbitrary. Then there exists an infinite subset F of A such that $y=\min F$. Since F is infinite, the set $F \backslash\{y\}$ is also infinite. Since $F \backslash\{y\} \subset A$, by the assumption $z=\min (F \backslash\{y\})$ exists. Therefore, $z \in W$. Since $z \in F \backslash\{y\}$, we have $z \neq y$. Since $z \in F$ and $y=\min F$, we have $z \geq y$. Hence $z>y$. Thus, for each $y \in W$ there exists $z \in W$ such that $z>y$. This proves that W is a nonempty subset of A which does not have a maximum.

