An almost magic proposition about infinite subsets of \mathbb{R}

The proposition below is an implication of the form: $P \Rightarrow Q \lor R$. This implication is equivalent to the implication $P \land \neg Q \Rightarrow R$. One way to see this is to consider the negations of these implications. The negation of $P \Rightarrow Q \lor R$ is $P \land (\neg Q \land \neg R)$, while the negation of $P \land \neg Q \Rightarrow R$ is $(P \land \neg Q) \land \neg R$. Since the negations are clearly equivalent, the implications are also equivalent.

Proposition. Let $A \subset \mathbb{R}$. If A is infinite, then there exists a nonempty subset B of A such that B does not have a minimum or there exists a nonempty subset C of A such that C does not have a maximum.

Proof. We will prove the equivalent implication: If A is an infinite subset of \mathbb{R} and each nonempty subset of A has a minimum, then there exist a nonempty subset C of A such that C does not have a maximum.

So, assume that A is an infinite subset of \mathbb{R} and each nonempty subset of A has a minimum. Then, in particular, min A exists. Let W be the set of all minimums of infinite subsets of A. Formally,

$$W = \Big\{ x \in A : x = \min E \text{ where } E \subset A \text{ and } E \text{ is infinite } \Big\}.$$

Clearly min A is an element in W. Hence $W \neq \emptyset$.

Next we will prove that W does not have a maximum. Let $y \in W$ be arbitrary. Then there exists an infinite subset F of A such that $y = \min F$. Since F is infinite, the set $F \setminus \{y\}$ is also infinite. Since $F \setminus \{y\} \subset A$, by the assumption $z = \min(F \setminus \{y\})$ exists. Therefore, $z \in W$. Since $z \in F \setminus \{y\}$, we have $z \neq y$. Since $z \in F$ and $y = \min F$, we have $z \geq y$. Hence z > y. Thus, for each $y \in W$ there exists $z \in W$ such that z > y. This proves that W is a nonempty subset of A which does not have a maximum.