Axiom 17 (New Completeness Axiom). Let $A$ and $B$ be nonempty subsets of $\mathbb{R}$. If $x \leq y$ for all $x \in A$ and all $y \in B$, then there exists $c \in \mathbb{R}$ such that $x \leq c \leq y$ for all $x \in A$ and all $y \in B$.

Exercise 1. Let $n \in \mathbb{N}$ and let $a$ be a positive real number. Prove that there exists a positive real number $\alpha$ such that $\alpha^{n}=a$.

Solution. Notice that the statement is trivial for $a=1$. Then, clearly $\alpha=1$. Therefore, in the rest of the proof we assume that $a>0$ and $a \neq 1$.

Next we define the sets $A$ and $B$ :

$$
A=\left\{x \in \mathbb{R}: x>0 \text { and } x^{n} \leq a\right\}
$$

and

$$
B=\left\{y \in \mathbb{R}: y>0 \text { and } y^{n} \geq a\right\}
$$

These sets have the following three properties.

1. $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$. (This property is clear.)
2. The sets $A$ and $B$ are nonempty sets.

To prove this property we consider two cases for $a$ :
Case 1. Assume $a<1$. Then it can be proved by induction that $a^{n}>0$ and $a^{n} \leq a$. Therefore, $a \in A$. Also, by induction $a<1^{n}$. Therefore $1 \in B$.
CASE 2. Assume $a>1$. Then, by induction, $a^{n} \geq a>0$. Therefore, $a \in B$. Also $1^{n}<a$. Thus $1 \in A$.
3. For all $x \in A$ and for all $y \in B, x \leq y$.

To prove this property assume $x \in A$ and $y \in B$. Then, $x>0$ and $y>0$ and $x^{n} \leq a \leq y^{n}$. Therefore, $x^{n} \leq y^{n}$. By Exercise 2.7.3, this implies $x \leq y$.

Now we can apply the New Completeness Axiom to the sets $A$ and $B$ and conclude that there exists $c \in \mathbb{R}$ such that

$$
\begin{equation*}
x \leq c \leq y \quad \text { for all } \quad x \in A \quad \text { and } \quad \text { for all } \quad y \in B \tag{1}
\end{equation*}
$$

Notice that (1) and the definition of $A$ imply $c>0$.
Next we will prove two implications:

$$
\begin{equation*}
x \leq c \text { for all } x \in A \quad \Rightarrow \quad c^{n} \geq a \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
c \leq y \text { for all } y \in B \quad \Rightarrow \quad c^{n} \leq a \tag{3}
\end{equation*}
$$

Relation (1) and implications (2) and (3) yield $c^{n}=a$.
Proof of implication (2). We will prove the contrapositive. Assume $s>0$. Then

$$
s^{n}<a \Rightarrow \exists u \in A \quad \text { such that } u>s
$$

So, assume $s^{n}<a$. Notice that $s^{n}+(n-1) a>0$ and set

$$
u=\frac{s a n}{s^{n}+(n-1) a}
$$

Since $s>0$ and $s^{n}<a$ we have $0<s^{n}+(n-1) a<a+(n-1) a=n a$. Therefore

$$
u=\frac{s a n}{s^{n}+(n-\underset{1}{1}) a}>\frac{s a n}{n a}=s
$$

Hence $u>s$. The question now is whether $u \in A$. Since $u>0$ to prove $u \in A$ we need to prove $u^{n} \leq a$. To prove this inequality we will use Bernoulli's inequality: If $x>-1$ and $n \in \mathbb{N}$, then

$$
(1+x)^{n} \geq 1+n x
$$

Since

$$
0>\left(\frac{s^{n}}{a}-1\right) \frac{1}{n}>-\frac{1}{n}>-1
$$

Bernoulli's inequality implies

$$
\left(1+\left(\frac{s^{n}}{a}-1\right) \frac{1}{n}\right)^{n} \geq 1+n\left(\frac{s^{n}}{a}-1\right) \frac{1}{n}=\frac{s^{n}}{a} .
$$

We are now ready to prove that $u^{n} \leq a$ :

$$
u^{n}=\left(\frac{s a n}{s^{n}+(n-1) a}\right)^{n}=\frac{s^{n}}{\left(\frac{s^{n}}{n a}+1-\frac{1}{n}\right)^{n}}=\frac{s^{n}}{\left(1+\left(\frac{s^{n}}{a}-1\right) \frac{1}{n}\right)^{n}} \leq \frac{s^{n}}{\frac{s^{n}}{a}}=a
$$

Thus we proved that $u \in A$ and $s<u$. This completes the proof of the contrapositive of implication (2).

Proof of implication (3). We will prove the contrapositive. Assume $t>0$. Then

$$
t^{n}>a \Rightarrow \exists v \in B \quad \text { such that } v<t .
$$

So, assume $t^{n}>a$. Set

$$
v=\frac{n-1}{n} t+\frac{a}{n t^{n-1}} .
$$

Since $t^{n}>a, a /\left(t^{n}\right)<1$. Therefore,

$$
v=\frac{n-1}{n} t+\frac{a}{n t^{n-1}}=t\left(1-\frac{1}{n}+\frac{1}{n} \frac{a}{t^{n}}\right)<t\left(1-\frac{1}{n}+\frac{1}{n}\right)=t .
$$

Hence $v<t$. Clearly $v>0$. Next we prove $v^{n} \geq a$. Since

$$
0>\left(\frac{a}{t^{n}}-1\right) \frac{1}{n}>-\frac{1}{n}>-1
$$

we can use Bernoulli's inequality again:

$$
\begin{aligned}
v^{n} & =\left(\frac{n-1}{n} t+\frac{a}{n t^{n-1}}\right)^{n} \\
& =t^{n}\left(1-\frac{1}{n}+\frac{a}{n t^{n}}\right)^{n} \\
& =t^{n}\left(1+\left(\frac{a}{t^{n}}-1\right) \frac{1}{n}\right)^{n} \\
& \geq t^{n}\left(1+n\left(\frac{a}{t^{n}}-1\right) \frac{1}{n}\right) \\
& =t^{n}\left(1+\frac{a}{t^{n}}-1\right) \\
& =a
\end{aligned}
$$

Thus $v \in B$. Since we already proved $v<t$, the contrapositive of implication (3) is proved.

This completes the solution of the exercise.

