
Axiom 17 (New Completeness Axiom). Let A and B be nonempty subsets of R.
If x ≤ y for all x ∈ A and all y ∈ B, then there exists c ∈ R such that x ≤ c ≤ y
for all x ∈ A and all y ∈ B.

Exercise 1. Let n ∈ N and let a be a positive real number. Prove that there exists
a positive real number α such that αn = a.

Solution. Notice that the statement is trivial for a = 1. Then, clearly α = 1.
Therefore, in the rest of the proof we assume that a > 0 and a 6= 1.

Next we define the sets A and B:

A = {x ∈ R : x > 0 and xn ≤ a}
and

B = {y ∈ R : y > 0 and yn ≥ a}.
These sets have the following three properties.

1. A ⊂ R and B ⊂ R. (This property is clear.)

2. The sets A and B are nonempty sets.
To prove this property we consider two cases for a:

Case 1. Assume a < 1. Then it can be proved by induction that an > 0 and
an ≤ a. Therefore, a ∈ A. Also, by induction a < 1n. Therefore 1 ∈ B.
Case 2. Assume a > 1. Then, by induction, an ≥ a > 0. Therefore, a ∈ B. Also
1n < a. Thus 1 ∈ A.

3. For all x ∈ A and for all y ∈ B, x ≤ y.
To prove this property assume x ∈ A and y ∈ B. Then, x > 0 and y > 0 and

xn ≤ a ≤ yn. Therefore, xn ≤ yn. By Exercise 2.7.3, this implies x ≤ y.

Now we can apply the New Completeness Axiom to the sets A and B and
conclude that there exists c ∈ R such that

(1) x ≤ c ≤ y for all x ∈ A and for all y ∈ B.

Notice that (1) and the definition of A imply c > 0.
Next we will prove two implications:

x ≤ c for all x ∈ A ⇒ cn ≥ a,(2)

and

c ≤ y for all y ∈ B ⇒ cn ≤ a.(3)

Relation (1) and implications (2) and (3) yield cn = a.

Proof of implication (2). We will prove the contrapositive. Assume s > 0.
Then

sn < a ⇒ ∃ u ∈ A such that u > s.

So, assume sn < a. Notice that sn + (n− 1)a > 0 and set

u =
s a n

sn + (n− 1)a
.

Since s > 0 and sn < a we have 0 < sn + (n− 1)a < a + (n− 1)a = n a. Therefore

u =
s a n

sn + (n− 1)a
>

s a n

n a
= s.
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Hence u > s. The question now is whether u ∈ A. Since u > 0 to prove u ∈ A we
need to prove un ≤ a. To prove this inequality we will use Bernoulli’s inequality:
If x > −1 and n ∈ N, then

(1 + x)n ≥ 1 + n x.

Since
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Bernoulli’s inequality implies(
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We are now ready to prove that un ≤ a:

un =
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)n
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Thus we proved that u ∈ A and s < u. This completes the proof of the contrapos-
itive of implication (2).

Proof of implication (3). We will prove the contrapositive. Assume t > 0.
Then

tn > a ⇒ ∃ v ∈ B such that v < t.

So, assume tn > a. Set

v =
n− 1

n
t +

a

n tn−1
.

Since tn > a, a/(tn) < 1. Therefore,
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Hence v < t. Clearly v > 0. Next we prove vn ≥ a. Since
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we can use Bernoulli’s inequality again:

vn =
(

n− 1
n

t +
a

n tn−1

)n

= tn
(

1− 1
n

+
a

n tn

)n

= tn
(

1 +
( a

tn
− 1

) 1
n

)n

≥ tn
(

1 + n
( a

tn
− 1

) 1
n

)
= tn

(
1 +

a

tn
− 1

)
= a

Thus v ∈ B. Since we already proved v < t, the contrapositive of implication (3)
is proved.

This completes the solution of the exercise. �


