

Problem 1. Prove that the set of all functions $f: \mathbb{N} \rightarrow\{0,1\}$ is not countable. (This set of functions is denoted by $\{0,1\}^{\mathbb{N}}$.)

Problem 2. (a) Prove that the set \mathbb{N} is not bounded.
(b) Let a an b be real numbers such that $a<b$. Prove that there exist $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that

$$
a<\frac{m}{n}<b
$$

Problem 3. Prove that there exists a positive real number α such that $\alpha^{2}=2$.
Problem 4. (a) Let $\left\{s_{n}\right\}$ be a non-decreasing sequence which is bounded above. Prove that the sequence $\left\{s_{n}\right\}$ converges.
(b) Let A be a nonempty and bounded above subset of \mathbb{R}. Set $a=\sup A$. Prove that there exists a sequence $\left\{x_{n}\right\}$ with the following properties:

- $x_{n} \in A$ for all $n \in \mathbb{N}$.
- $\lim _{n \rightarrow \infty} x_{n}=a$.
(1) Set $\mathcal{F}^{0}=\{0,1\}^{\text {KN }}$.

Let $\Phi: \mathbb{N} \rightarrow \mathcal{F}$ be an arbitrary function. We will prove that \& is not a surjection by constructing $f \in \mathcal{F}$ such that $f \neq \Phi_{n} \quad \forall n \in \mathbb{N}$.

$$
\begin{aligned}
& f \in \mathcal{F} \text { simply set } \\
& f(n)=1-\Phi_{n}(n), \quad t_{n} \in N \text {. } \\
& \text { Since } \Phi_{n}(n) \in\{0,1\}, 1-\Phi_{n}(n) \in\{0,1\} \text {. } \\
& l \in \mathcal{F}_{0} \text {. Since }
\end{aligned}
$$ Hence $f \in \mathcal{F}$. Since

we have $f^{f} \neq \Phi_{n}$, and this holds tor all $n \in \mathbb{W}$. Hence f is not in the range of ϕ '. So ϕ is not a surjection. Consequently f is not commtatle.

2(a) A direct proof.
First a lemma.
Lemma. Let A be a nonempty set which does not have a maximum. The following implication holds:

Proof. Assume A is bold above. Since $A \neq 0 \quad \sup A=a$ exists. Since A din. have max $a \notin A$. By Ex... $\forall \varepsilon>0 \exists x \in A$ such that $a-\varepsilon<x<a$. Here $x<a$ since $x \in A$ and $a \notin A$ and $x \leq a$. Since $a-x>0$, by the jame exercise $\exists y \in A$ such that

Thus

$$
\begin{aligned}
& \underbrace{0 .(a-x)}_{=x}<y<a \text {. } \\
& \qquad x<y<a
\end{aligned}
$$

$$
\begin{aligned}
& =x \\
& a-\varepsilon<x<y<a
\end{aligned}
$$

Therefore $y-x<a-(a-\varepsilon)=\varepsilon$.
This proves (8).
The CP of ${ }^{(6)}$
$\exists \varepsilon>0$ s.t.
$\forall x, y \in A$ sit. $x<y$ we have $y-x \geqslant \varepsilon$ $\begin{aligned} \exists \varepsilon & >0 \text { s.t. } \forall x, y \in A \text { sit. above. } \\ & \Rightarrow A \text { not bid abr er }\end{aligned}$

Since we proved that $n, m \in \mathbb{N}$ and $n>m \Rightarrow n-m \geqslant 1$ (must be somewhere in the notes) The contrapositive of the (eumuna yields that N is not bold above.
(b) Let $n \in \mathbb{N}$ be such that

$$
\frac{1}{n}<b-a
$$

(such n exists since $b-a>0$). Then $n a+1<n b$. We aril use the following propertige of $\lceil u\rceil: \quad u \leqslant\lceil u\rceil<u+1$
Thus $\quad\lceil n a\rceil<n a+1<n b$
Also $\quad n a \leqslant\lceil n a\rceil<\lceil n a\rceil+1$.
Thus $n a<\lceil n a\rceil+1<n b$
and $a<\frac{\operatorname{[n} a\rangle+1}{n}<b$.
Since $\mid n a T+1 \in \mathbb{Z}$ and $n \in \mathbb{Z}$,
(b) is proved.

The end of the proof of Problem 2(b) is wrong. Here is a correct proof.
Since \mathbb{N} is not bounded above there exists $n \in \mathbb{N}$ such that $\frac{1}{b-a}<n$. Since $b-a>0$ we then have $1<n b-n a$. That is $n a<n b-1$. We will use the following property of the ceiling function:

$$
u \leq\lceil u\rceil<u+1 \quad \text { for all } \quad x \in \mathbb{R}
$$

Applied to $u=n b$ we get

$$
n b \leq\lceil n b\rceil<n b+1
$$

or

$$
n b-1 \leq\lceil n b\rceil-1<n b .
$$

Since $n a<n b-1$, we have

$$
n a<n b-1 \leq\lceil n b\rceil-1<n b
$$

and consequently

$$
a<\frac{\lceil n b\rceil-1}{n}<b .
$$

Since $\lceil n b\rceil-1 \in \mathbb{Z}$ and $n \in \mathbb{N}$ the proof is complete.
(3) Set

$$
\begin{aligned}
& A=\left\{x \in \mathbb{R}: x>0 \text { and } x^{2}<2\right\} \\
& B=\left\{y \in \mathbb{R}: y>0, \text { and } y^{2}>2\right\} .
\end{aligned}
$$

Since $1 \in A$ and $2 \in B, A \neq \phi$ and $B A$. $\forall x \in A \quad \forall y \in B$ we have $x^{2}<y^{2}$ and thu $x<y$. By $C A \exists \alpha \in \mathbb{R}$ such that

$$
\begin{aligned}
& x \leqslant \alpha \leqslant y \quad \forall x \in A \quad \forall y \in B \\
& \forall x \in A \text { we }
\end{aligned}
$$

Since $x>0 \quad \forall x \in A$ we have $\alpha>0$. We will prove later that A has no max and B has no min. Heaves truce α is a lower band for $\dot{B}, x \notin \beta$ and Since α^{\prime} is an upper bound for $A, \alpha \notin A$. Thus, $\begin{aligned} \alpha^{2} & \geqslant 2(\text { since } \alpha \notin B) \text { and } \alpha \notin A . \\ \alpha^{2} & \leqslant \alpha(\text { since } \alpha \notin A) \text { Note that }\end{aligned}$ Hence $\alpha^{2}=2$. Proof of $A=2$.
Let $y \in B$ Let $y \in B$. Then $\frac{y}{2}+\frac{1}{y} \in B \times$ and $y>\frac{y}{2}+\frac{1}{y}$ since Note that
$(s+t)^{2}>4 s t$
 $\left(\frac{s}{2}+\frac{1}{s}\right)^{2}>2$ $y^{2}>2 \Rightarrow$
$y>1$
4.(a) Consider the set

$$
A=\left\{S_{n}: n \in \mathbb{N} \mathbb{T}\right\}
$$

$A \neq \phi_{p}$ since $s_{n} \in A$ and A is boddatrove therefore $a=\sup A$ exists. We will prove that $\lim _{n \rightarrow \infty} s_{n}=a$. Let $\varepsilon>0$ be arbitrary. "Then by Ex... $\exists x_{\varepsilon} \in A$ such that

$$
\begin{aligned}
& \text { such that } \\
& a-\varepsilon<x_{\varepsilon} \leqslant a_{n} \\
& n \in \mathbb{N} \mid \zeta \text {. Hence }
\end{aligned}
$$

But $x_{\varepsilon} \in\left\{s_{n}=n \in \mathbb{N}\right\}$. Hence $\exists n_{\varepsilon} \in \mathbb{N}$ such that $x_{\varepsilon}=s_{n_{\varepsilon}}$. But $\left\{s_{n}\right\}$ is noudecreasing, so

$$
\begin{aligned}
& \text { creasing, so for all } n \in N \\
& S_{n_{2}} \leqslant S_{n} \text { for } \\
& n \geqslant n_{\varepsilon} .
\end{aligned}
$$

Therfore
$\forall n \in \mathbb{N}, n \geqslant n_{2} \Rightarrow\left|s_{n}-a\right|=a-s_{n} \leqslant a-s_{n_{2}}=$

$$
\begin{aligned}
& \left.=u-x_{n}\right\rangle-n_{\varepsilon} \\
& =a-x_{\varepsilon}<a-(a-\varepsilon)=\varepsilon
\end{aligned}
$$

This proves that $\lim _{n \rightarrow \infty} S_{n}=a$.

4, (b) By Ex...
ter

$$
\begin{aligned}
& y(\varepsilon) \in A \text { sit. } \\
& a-\varepsilon<y_{(\varepsilon)} \leq a .
\end{aligned}
$$

Let $n \in N$ and set

$$
x_{n}=y(1 / n) \text {. }
$$

Then $x_{n} \in A \quad \forall n \in \mathbb{N}_{0}$. Let $\varepsilon>0$. Set $N(\varepsilon)=1 / \varepsilon$. Let $n \in \mathbb{N}, n>1 / \varepsilon$. Then $\frac{1}{n}<\varepsilon$ and

$$
\begin{aligned}
& \text { nd ares } \left.a-x_{n}=a-y(1) n\right)<\frac{1}{n}<\varepsilon . \\
& \left|x_{n}-a\right|=a \text {. }
\end{aligned}
$$

This proves that $\lim _{n \rightarrow \infty} x_{n}=a_{\text {. }}$.

