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CHAPTER 1

Introductory Material

1.1. Goals

• To provide a systematic foundation of some basic concepts encountered
in calculus, particularly those associated with the structure of the real
numbers and notions of limit and continuity for real-valued functions.

• To introduce students to the nature and role of proofs in mathematics.
Specifically we assert that the only way to understand proofs is to con-
struct proofs on your own.

• To develop ability to critically read and judge the correctness and the
completeness of mathematical reasoning.

• To develop a skill in the clear and precise presentation of mathematical
reasoning.

1.2. Strategies

How to get started towards a solution of a problem?

(1) Illustrate the problem with several examples.
(2) Make sure that you understand the terminology used in the problem.

Review all relevant definitions.
(3) Can you restate the problem as an implication? (Clearly identify the

assumptions and the conclusion of the implication.)
(4) Identify problems done in class that are in some sense related to the

problem that you are working on. Review proofs of those problems.
(5) Try to identify tools that can be used in the solution of the problem.
(6) If you can not solve the given problem, try to formulate a related simpler

problem that you can solve. For example, try to solve a special case.
(7) Be flexible. Have in mind that there are many ways to approach each

problem.
(8) Keep a detailed written record of your work.

How to avoid mistakes?

(1) Write your solution out carefully. Include justifications for all arguments
that you use.

(2) Read your solution critically after a day or two. Is everything that you
use in your proof justified.

(3) Imagine that a skeptic is reading your proof. Can you answer all sceptic’s
question?

5



6 1. INTRODUCTORY MATERIAL

1.3. Mathematics and logic

Proofs in mathematics are logical arguments. The purpose of this section is to
remind you briefly of some of the common strategies of proof, and of the facts of
logical equivalence of certain kinds of statements on which these strategies depend.

1.3.1. Implications. Most theorems in mathematics can be stated as impli-

cations (or conditional statements). An implication is a statement of the form “If
P , then Q.” Here P an Q are simple statements that can be either true or false.
The statement “If P , then Q.” is symbolically written as P ⇒ Q.

The implication P ⇒ Q is false when P is true and
Q is false, and true otherwise. This is summarized in
the truth table on the right.

In the implication P ⇒ Q, P is called the hypoth-

esis (or premise) and Q is called the conclusion (or
consequence).

P Q P ⇒ Q
F F T
F T T
T F F
T T T

To make mathematical language more colorful we use a great variety of different
ways of saying: “If P , then Q.” Here are some of the most common:

Q when P . Q follows from P . P is sufficient for Q.

Q if P . Q whenever P . Q is necessary for P .

Q by P . P only if Q. A sufficient condition for Q is P .

When P , Q. P implies Q. A necessary condition for P is Q.

If P , Q. By P , Q. Q provided that P .

Try constructing different ways of saying “If P , then Q.” using some everyday
statements P and Q, and some mathematical statements P and Q suggested below.

P Q

It rains. WWU’s Red Square is wet.

You get 100% on the final. You will get an A.

It is sunny today. We will go to the beach.

I get to the camp first. I will raise the flag.

n is a positive integer. 2 n2 is not a square number.

An integer n is divisible by 9. The sum of the digits in n is divisible by 9.

n is a positive integer. n(n + 1) is even.

x2 < x x > 0 and x < 1.

Starting with an implication “If P , then Q.” it is possible to produce three more
implications by shuffling the order and possibly introducing some “nots”. These
are

(a) The contrapositive of the statement: If not Q, then not P .
(b) The converse of the statement: If Q, then P .
(c) The inverse of the statement: If not P , then not Q.
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1.3. MATHEMATICS AND LOGIC 7

The contrapositive of a statement is logically equivalent to it,
that is, the contrapositive is true if and only if the original impli-
cation is true. This is a useful fact in constructing proofs. (See an example
below.)

The truth of the converse and inverse, on the other hand, is not related to that
of the original statement, though they are equivalent to one another. (Why?)

Exercise 1.3.1. Write the contrapositive, converse, and inverse of each of the
following true statements. Do you agree that the contrapositive is true in each
case? What about the converse and inverse?

(a) If 2n is an odd integer, then n is not an integer.
(b) If m > 0, then m2 > 0.

1.3.2. If and only if. In mathematics we often encounter situations that both
P ⇒ Q and Q ⇒ P are true. Then we write P ⇔ Q and say that P and Q are
equivalent. As before, there are several different ways of saying this in English.
A popular one is to say: “P if and only if Q” or “P is necessary and sufficient
condition for Q.”

1.3.3. Quantifiers. Mathematical statements usually involve quantifiers, al-
though they are not always made explicit. We write things like: “For every integer
n, n(n + 1) is even.” or “n(n + 1) is even whenever n is an integer.”

Some statements may involve several nested quantifiers: “For every cubic poly-
nomial p with real coefficients there exists a real number x such that p(x) = 0.”

Notice that the order of quantifiers is important.

Exercise 1.3.2. Explain the difference in meaning between the statement just
given and this one: “There exists a real number x such that for every cubic poly-
nomial f , f(x) = 0.”

There are a number of different ways to express in English both the universal

quantifier (for every, for each, for all...) and the existential quantifier (there exists,
there is at least one...). We will regard each of these phrases as having exactly
the same meaning as each of the others in its category. The logical symbol for the
universal quantifier is ∀ and for the existential quantifier ∃.

1.3.4. Negations. It is often necessary to form the negation of a given state-
ment. This is the statement that is true if and only if the original statement is false.
(Thus the negation of the negation is the original statement.) Forming the negation
is straightforward, but can demand careful attention if the original statement has
many parts. Here are some examples.

Statement: If today is Tuesday, then the Western Front is published today.
Negation: Today is Tuesday, and the Western Front is not published today.

Recall that an implication is false only when the “if part” is true and the “then
part” is false. Thus the negation must be true exactly under those conditions.

Statement: Bob and Bill are Western students.
Negation: Bob is not a Western student or Bill is not a Western student.

Notice that the original statement becomes false as soon as one man fails to
be a Western student. Notice also that the second statement is still true if neither
Bob nor Bill is a Western student. “Or” is always used in this way in mathematics.
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8 1. INTRODUCTORY MATERIAL

Statement: Bob or Bill is a Western student.
Negation: Bob and Bill are not Western students.

In the same way, “for every” and “there exists” are interchanged when forming
a negation.

Statement: For every x in A, f(x) > 5.
Negation: There exists an x in A such that f(x) ≤ 5.

Statement: There is a rational number r such that r2 = 2.
Negation: For every rational number r, r2 6= 2.

Here are some more complicated examples.

Statement: For every cubic polynomial f , there exists a real number x such
that f(x) = 0.

Negation: There exists a cubic polynomial f such that for every real number
x, f(x) 6= 0.

Statement: There exists a real number x such that for every cubic polynomial
f , f(x) = 0.

Negation: For every real number x there exists a cubic polynomial f such
that f(x) 6= 0.

Statement: For every n ≥ N and every x in E, |fn(x) − f(x)| < 1.
Negation: There exists an n ≥ N and an x in E such that |fn(x)− f(x)| ≥ 1.

Think carefully about what each statement means before deciding that you
agree that the negations are correct.

Exercise 1.3.3. Form the negation of each statement. Express the negation
so that the word “not” or “no” does not occur.

(a) For every x > 1, there exists a real number y such that 1 < y < x.
(b) For every x > 0 there exists y > 0 such that xy < 1.
(c) For every x > 0 there exists y > 0 such that xy > 1.
(d) There exists y > 0 such that for every x > 0 we have xy > 1.
(e) There exists x > 0 such that for all y > 0 we have xy ≤ 1.
(f) For every y > 0 there exists x > 0 such that xy ≤ 1.

1.4. Proofs

Most of the time in this class we will be constructing proofs. Here are some
simple examples illustrating different styles of proof.

The first is a direct proof. Here one simply begins with the hypotheses and any
other usable facts and reasons until one reaches the conclusion.

Theorem 1.4.1. The square of an odd integer has the form 8k + 1 for some

integer k.

Remark 1.4.2. Note that this is really an implication and could be rephrased:
If n is an odd integer, then there is an integer k such that n2 = 8k + 1.

Proof. First we need to rewrite the hypothesis in a more useful form. “n is
odd” means that n is not divisible by 2, that is, if we try to do the division we’ll
get a quotient q and a remainder of 1. Equivalently, n = 2q + 1. Thus

n2 = (2q + 1)2 = 4q2 + 4q + 1 = 4q(q + 1) + 1.
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1.4. PROOFS 9

Now either q is even, q = 2r for some integer r, or q is odd, q = 2s+1 for some
integer s. In the first case,

n2 = 8r(q + 1) + 1.

In the second case q + 1 = 2s + 2 = 2(s + 1) so that

n2 = 8q(s + 1) + 1.

Thus, we do have n2 = 8k + 1 in either case; k = r(q + 1) or k = q(s + 1) as
appropriate. �

The second very useful strategy to prove the implication P ⇒ Q (P implies
Q) is to prove its contrapositive ¬Q ⇒ ¬P (not Q implies not P ). As we noted
earlier:

The contrapositive of a statement is logically equivalent to it,
that is, the contrapositive is true if and only if the original implica-
tion is true. (This can be shown using truth tables.)

Remark 1.4.3. Whenever you work with an implication it is very useful to state
its contrapositive as well. In fact, you should always write both direct implication
and its contrapositive and then decide which one is easier to prove.

Theorem 1.4.4. If n2 is even, then n is even.

Proof. The contrapositive of this statement is (using the fact that every in-
teger is either even or odd): if n is odd, then n2 is odd. This has just been proved,
since an integer of the form 8k + 1 is certainly odd. �

The third strategy to prove an implication is a proof by contradiction. In a
proof of P ⇒ Q by contradiction one assumes both P and ¬Q (not Q) and derives
a contradiction. This establishes that P ⇒ Q is true because the only way for this
implication to be false is for P to be true and Q to be false.

Theorem 1.4.5.
√

2 is irrational.

Proof. We can rephrase the theorem as the following implication: If x2 = 2,
then x is irrational.

Suppose that x is rational. Then x = a/b for some integers a and b. We may
assume that this fraction is in lowest terms, that is, that a and b have no common
factor. Then 2 = x2 = (a/b)2 or 2b2 = a2. Thus a2 is even. By the previous
theorem, a is even, i.e., a = 2c for some integer c. But then

2b2 = (2c)2 = 4c2 or b2 = 2c2.

Thus b is also even. But this contradicts our choice of a and b as having no
common factor. Thus assuming that x is rational has led to a contradiction and we
can conclude that x must be irrational. �

The proof above is an example of a proof by contradiction. Very often proofs
by contradiction are in fact direct proofs of the contrapositive in disguise.

The direct proof of the contrapositive. We will prove the following
implication: If x is rational, then x2 6= 2.
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10 1. INTRODUCTORY MATERIAL

Let x be a rational number. Then there exist integers p and q which are not both

even, such that x = p/q. Now we need to prove that
(
p/q
)2 6= 2, or equivalently

p2 6= 2q2.
Consider two cases: Case 1: p is not even, and Case 2: q is not even.

Case 1. Assume that p is not even. Then p is odd. By Theorem 1.4.4, p2 is odd.
Therefore p2 6= 2a for all integers a. Therefore p2 6= 2q2.
Case 2. Assume that q is not even. Then q2 is odd. Therefore there exists an
integer k such that q2 = 2k + 1. Consequently 2q2 = 4k + 2. This implies that
2q2 is not a square. (To see this prove: If an integer is an even square, then it is
divisible by 4.) Therefore 2q2 6= p2. �

Very often proofs by contradiction are disguised proofs of the
contrapositive. Before you do a proof by contradiction you should
try to prove the contrapositive first.

1.5. Sets

By a set A we mean a well-defined collection of objects such that it can be
determined whether or not any particular object is an element of A. If a is an
object in the set A we say that a is an element of A and write a ∈ A. The negation
of x ∈ A is x /∈ A.

The empty set is the unique set which contains no elements. The empty set is
denoted by the symbol ∅.

Generally, capital letters will be used to denote sets of objects and lower case
letters to denote objects themselves. However, watch for deviations of this rule. We
will be concerned mainly with sets of real numbers. The specially designed letters
N, Z, Q, and R denote the following important sets of real numbers:

N denotes the set of all natural numbers (or positive integers),
Z denotes the set of all integers,
Q denotes the set of all rational numbers,
R denotes the set of all real numbers.

A set can be described by:

• a statement such as “Let A be the set of real solutions of the equation
x2 − x = 0.”

• a listing of all the elements; for example A = {0, 1}.
• notation such as A =

{
x ∈ R : x2 = x

}
.

Notice the usage of the braces (or curly brackets) { and } in the above exam-
ples. They are used to delimit the sets. The number 0 is an important real number.
However, {0} is the set whose only element is 0.

The expression
{
x ∈ R : x2 = x

}
is read as “the set of all real numbers x such

that x2 = x”. Here the colon (:) is used as an abbreviation for the phrase “such
that”.

Definition 1.5.1. A set B is a subset of a set A if every element of B is also
an element of A. In this case we write B ⊆ A or A ⊇ B. Formally, B ⊆ A if and
only if x ∈ B implies x ∈ A.

Since the implication x ∈ ∅ ⇒ x ∈ A is always true, the empty set is a subset
of each set. Below is the set of all subsets of the set {−1, 0, 1}.

{
∅, {−1}, {0}, {1}, {−1, 0}, {−1, 1}, {0, 1}, {−1, 0, 1}

}
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1.5. SETS 11

Definition 1.5.2. Two sets A and B are equal, denoted A = B, if they contain
precisely the same elements, that is, if A ⊆ B and B ⊆ A.

Notice that the elements are not repeated in a set; for example {0, 1, 0} = {0, 1}.
Also, the order in which elements are listed is not important: {3, 2, 1} = {1, 2, 3}.

Remark 1.5.3. Equality is allowed in the definition of a subset, that is, a set is
a subset of itself. If we wish to exclude this possibility we say B is a proper subset

of A and we write B ( A or B ⊂ A. Formally, B ( A if and only if x ∈ B implies
x ∈ A and there exists a ∈ A such that a /∈ B.

The negation of B ⊆ A is denoted by B 6⊆ A. Formally, B 6⊆ A if and only if
there exists b ∈ B such that b /∈ A.

Definition 1.5.4. The union of A and B is the set of all x such that x is an
element of A or x is an element of B. It is denoted A ∪ B. Thus

A ∪ B =
{
x : x ∈ A or x ∈ B

}
.

Remark 1.5.5. The conjunction “or” in mathematics is always in an inclusive
sense, that is, it is allowed in the definition that x belong to both A and B. For
example, {0, 1, 2, 3} ∪ {2, 3, 4, 5} = {0, 1, 2, 3, 4, 5}.

Definition 1.5.6. The intersection of A and B is the set of all x such that x
is an element of A and x is an element of B. It is denoted A ∩ B. Thus

A ∩ B =
{
x : x ∈ A and x ∈ B

}
.

Two sets A and B are said to be disjoint if their intersection is the empty set, i.e.
if A ∩ B = ∅.

Definition 1.5.7. The difference between the sets A and B is the set of all x
such that x is an element of A and x is not an element of B. It is denoted A \ B.
Thus

A\B =
{
x : x ∈ A and x /∈ B

}
.

Definition 1.5.8. An ordered pair is a collection of two not necessarily distinct
elements, one of which is distinguished as the first coordinate (or first entry) and
the other as the second coordinate (second entry). The common notation for an
ordered pair with first coordinate a and second coordinate b is (a, b).

Remark 1.5.9. The ordered pairs (0, 1) and (1, 0) are different since their first
entries are different. The ordered pairs (0, 0) and (0, 1) are different since their
second entries are different. In general, (a, b) = (x, y) if and only if a = x and
b = y.

Notice the usage of the round brackets ( and ) in the definition of an ordered
pair. Please distinguish between {0, 1} and (0, 1): {0, 1} is a set with two elements,
(0, 1) is an ordered pair, an object defined by Definition 1.5.8.

Definition 1.5.10. The Cartesian product (or direct product) of two sets A
and B, denoted A×B, is the set of all possible ordered pairs whose first entry is a
member of A and whose second entry is a member of B:

A × B =
{
(a, b) : a ∈ A and b ∈ B

}
.

The main example of a Cartesian product is R×R which provides a coordinate
system for the plane.
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12 1. INTRODUCTORY MATERIAL

Example 1.5.11. Let A = {1, 2, 3, 4} and let C = {R, G, B} be the set of primary
colors where R stands for red, G for green, and B for blue. Then

A × C =
{
(1, R), (1, G), (1, B), (2, R), (2, G), (2, B),

(3, R), (3, G), (3, B), (4, R), (4, G), (4, B)
}
.

Ideally, mathematical terminology and notation should be com-
pletely free of ambiguities. We strive for the absolute certainty.
However, very soon we will introduce the concept of an open inter-
val and for this concept we will use the same notation as for an
ordered pair. It should be clear from the context what is meant.
Whenever you are uncertain look for the resolution of the uncer-
tainty.

We conclude this section with a remark about families of sets. In this class we
mostly talk about sets of real numbers. Sometimes we will talk about sets whose
elements are also sets. It is customary to use the word “family” instead of “set”
when we talk about sets of sets; see examples in Section 2.3.

For any nonempty family of sets we can define the concepts of union and in-
tersection. Let A be a nonempty family of sets. We define the intersection of the
family A to be

⋂{
A : A ∈ A

}
:=
{
x : x ∈ A (∀A ∈ A)

}
.

We define the union of the family A to be
⋃{

A : A ∈ A
}

:=
{
x : ∃A ∈ A such that x ∈ A

}

1.6. Functions

Let A and B be nonempty sets. A function from A to B is a rule f which
assigns a unique element of B to each element of A.

The set A is called the domain of the function. We denote by f(x) the element
of B which is assigned to a particular x ∈ A. This element is called a value of f at
x, or image of x under f .

As a simple example we can define the identity function on a set A, idA : A → A,
by idA(x) = x for all x ∈ A.

A weakness of the above definition of a function is that it relies on the undefined
concept of a “rule”. It is not clear what constitutes a valid rule defining a function.
To overcome this weakness we identify a function f with its graph Gf which is a
subset of the cartesian product A × B:

Gf =
{(

x, f(x)
)

: x ∈ A
}
.

and we require that for each x in A there is at most one pair (x, y) in this subset.
The formal definition of a function from A to B is given in terms of subsets of
A × B.

Definition 1.6.1. A function from A into B is a subset Gf of the Cartesian
product A × B such that

(i) for every x ∈ A there exists y ∈ B such that (x, y) ∈ Gf ;
(ii) if (x, y), (x, z) ∈ Gf , then y = z.
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1.6. FUNCTIONS 13

Consider the sets A and C given in Example 1.5.11. The subset
{
(1, G), (2, R), (3, G), (4, B)

}
.

of A × C is a function in the sense of Definition 1.6.1. In the traditional notation
this function is given by f(1) = G, f(2) = R, f(3) = G, f(4) = B. In contrast, the
subset

{
(1, B), (2, G), (2, R), (3, R), (4, G)

}

is not a function since (2, G), (2, R) are in the set and G 6= R. Hence (ii) in Defini-
tion 1.6.1 does not hold for this set.

For small sets A and B we can list all the functions from A to B.

Example 1.6.2. Let A = {0, 1} and let C = {R, G, B}. The following is the list
of all functions from A to C.
{
(0, R), (1, R)

}
,
{
(0, R), (1, G)

}
,
{
(0, R), (1, B)

}
,
{
(0, G), (1, R)

}
,
{
(0, G), (1, G)

}

{
(0, G), (1, B)

}
,
{
(0, B), (1, R)

}
,
{
(0, B), (1, G)

}
,
{
(0, B), (1, B)

}
.

In the rest of these notes we will use the informal definition of a function. The
symbol f : A → B stands for a function from A to B. If we want to emphasize the
rule that defines f we write f : x 7→ f(x), x ∈ A. For example, x 7→ x2, x ∈ R,
denotes the square function defined on R without giving this function a specific
name.

The set
{
f(x) : x ∈ A

}
is the range of f . Formally, y is in the range of f if

and only if there exists x ∈ A such that y = f(x).

A function f : A → B is one-to-one (or injection) if distinct elements of A have
distinct images in B, i.e., if for all x, y ∈ A, x 6= y implies f(x) 6= f(y). Notice
that the contrapositive of the last implication is: for all x, y ∈ A, f(x) = f(y)
implies x = y. To prove that a function f : A → B is not one-to-one we have to
find x1, x2 ∈ A such that x1 6= x2 and f(x1) = f(x2).

There are only three functions listed in Example 1.6.2 which are not one-to-one.
Find them!

The function x 7→ x2, x ∈ R, is not one-to-one since −1 and 1 are in the domain
of this function and −1 6= 1 and 1 = (−1)2 = 12. However, with A = {x ∈ R :
x ≥ 0}, the function x 7→ x2, x ∈ A, is one-to-one. This will be proved in the next
chapter.

A function f : A → B is onto (or surjection) if for every point y ∈ B there is at
least one point x ∈ A such that f(x) = y. Another way of saying that f : A → B
is onto B is to say that the range of f is whole B. To prove that f : A → B is
not onto we have to prove that there exists b ∈ B such that for all x ∈ A we have
f(x) 6= b.

Let A = {x ∈ R : x ≥ 0} and s(x) = x2, x ∈ R. Then s : R → A is a surjection.
To prove this we have to prove that for every a ≥ 0 there exists x ∈ R such that
x2 = a. The case a = 0 is easy; we can take x = 0. The case a > 0 will be discussed
at the end of the next section.

It is interesting to note that with B = {x ∈ Q : x ≥ 0} the function s : Q → B
is not a surjection. This was essentially proved in Theorem 1.4.5. In the direct
proof of the contrapositive of this theorem we proved that x2 6= 2 for every x ∈ Q.
Since 2 ∈ B, this proves that s : Q → B is not a surjection.
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14 1. INTRODUCTORY MATERIAL

A function f : A → B which is both one-to-one and onto is called bijection.

Let f : A → B and g : C → D be given functions. Assume that the range of f
is contained in the domain of g. Then we can define the function h : A → D by

h(x) = g
(
f(x)

)
, x ∈ A.

The function h is called a composition of f and g and it is denoted by g ◦ f .

Exercise 1.6.3. Let A and B be nonempty sets. Let f : A → B be a given
function. Prove f is a bijection if and only if there exists a function h : B → A
such that h ◦ f = idA and f ◦ h = idB.

Solution. Assume that f : A → B is a bijection. Then for every b ∈ B there
exists unique a ∈ A such that f(a) = b. Define the function h : B → A by h(y) = x.
Let x ∈ A be arbitrary and let y = f(x). Then, by the definition of h, h(y) = x and
h(f(x)) = x. Since x ∈ A was arbitrary we proved that h ◦ f = idA. Let v ∈ B be
arbitrary and let v = f(u). Then, by the definition of h, h(v) = u and f(h(v)) = v.
Since v ∈ B was arbitrary we proved that f ◦ h = idB.

To prove the converse, assume that there exists a function h : B → A such that
h ◦ f = idA and f ◦h = idB . To prove that f is a surjection, let b ∈ B be arbitrary.
Set a = h(b). Than f(a) = f(h(b)) = idB(b) = b. Hence f is a surjection. To prove
that f is an injection let a1, a2 ∈ A and f(a1) = f(a2). Since f(a1) = f(a2) ∈ B
and since h : B → A is a function, we have h(f(a1)) = h(f(a2)). Since h ◦ f = idA

we have h(f(a1)) = idA(a1) = a1 and h(f(a2)) = idA(a2) = a2. Thus a1 = a2.
This proves that f is an injection. �

The function f−1 is called the inverse function of f . Clearly f ◦ f−1 = idB and
f−1 ◦ f = idA.

Exercise 1.6.4. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be injections. Prove that g ◦ f : A → C is an injection.

Exercise 1.6.5. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be surjections. Prove that g ◦ f : A → C is a surjection.

Solution. To prove that g ◦ f : A → C is a surjection we have to prove that
for each c ∈ C there exists a ∈ A such that g(f(a)) = c. Let c ∈ C be arbitrary.
Then, since g : B → C is a surjection, there exists b ∈ B such that g(b) = c. Since
b ∈ B and since f : A → B is a surjection, there exists a ∈ A such that f(a) = b.
Now it is easy to show that g(f(a)) = g(b) = c. �

Exercise 1.6.6. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be bijections. Prove that g ◦ f : A → C is a bijection. Prove that
(g ◦ f)−1 = f−1 ◦ g−1.

We conclude this section with a negation exercise.

Exercise 1.6.7. Formulate the negation of the following statement.

Statement. Let A and B be nonempty sets. There exists a surjection f : A →
B.

Solution. The negation is: For an arbitrary function g : A → B, g is not
a surjection. But the statement “g is not a surjection” is itself a negation which
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1.6. FUNCTIONS 15

means: There exists b ∈ B such that for all x ∈ A we have g(x) 6= b. Hence the
negation of the given claim is:

For an arbitrary function g : A → B there exists b ∈ B such that for all x ∈ A
we have g(x) 6= b. Symbolically this can be written as

∀ g : A → B ∃ b ∈ B such that ∀ x ∈ A g(x) 6= b.

Sometimes the set of all functions defined on A with the values in B is denoted by
BA. With this notation the last statement can be written nicer as

∀ g ∈ BA ∃ b ∈ B such that ∀ x ∈ A g(x) 6= b.

It is important to note that b in this statement depends on g. In a proof the last
statement one would start from an arbitrary g and then try to construct b ∈ B
with the desired property. �
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16 1. INTRODUCTORY MATERIAL

1.7. Four basic ingredients of a Proof

Since in this course you will be writing your own proofs and studying proofs of
others, we conclude this chapter with four basic ingredients of a Proof.

A proof should contain ingredients which answer the fol-

lowing four questions:

• What is being assumed?

• What is being proved?

• What are the tools that are being used?

• Why is it legitimate to use those tools?

Sometimes the presence of these ingredients in a proof

is implicit. But, it should always be easy to identify them.

These four questions are a good starting point when you critically evaluate your
own proofs or when you comment on the proofs of others.
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CHAPTER 2

The Set R of real numbers

All concepts that we will study in this course have their roots in the set of real
numbers. We assume that you are familiar with some basic properties of the real
numbers R and of the subsets N, Z, and Q of R. However, in order to clarify exactly
what we need to know about R, we set down its basic properties (called axioms)
and some of their consequences.

2.1. Axioms of a field

The following are the basic properties (axioms) of R that relate to addition and
multiplication in R:

Axiom 1 (A0). If a, b ∈ R, then the sum a + b is uniquely defined element in
R. That is, there exists a function + (called “plus”) defined on R×R and with the
values in R.

Axiom 2 (A1). a + (b + c) = (a + b) + c for all a, b, c ∈ R.

Axiom 3 (A2). a + b = b + a for all a, b ∈ R.

Axiom 4 (A3). There exists an element 0 in R such that 0 + a = a + 0 = a for
all a ∈ R.

Axiom 5 (A4). If a ∈ R, then the equation a + x = 0 has a solution −a ∈ R.

Axiom 6 (M0). If a, b ∈ R, then the product a · b (usually denoted by ab) is
uniquely defined number in R. That is, there exists a function · (called “times”)
defined on R × R and with the values in R.

Axiom 7 (M1). a(bc) = (ab)c for all a, b, c ∈ R.

Axiom 8 (M2). ab = ba for all a, b ∈ R.

Axiom 9 (M3). There exists an element 1 in R such that 1 6= 0 and 1 · a =
a · 1 = a for all a ∈ R.

Axiom 10 (M4). If a ∈ R and a 6= 0, then the equation a ·x = 1 has a solution

a−1 =
1

a
in R.

Axiom 11 (DL). a(b + c) = ab + ac for all a, b, c ∈ R.

Remark 2.1.1. Notice that the only specific real numbers mentioned in the
axioms are 0 and 1. You can verify that the set {0, 1} with the functions + and ·
defined by

0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1 and 0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

satisfies all Axioms 1 through 11. Hence, we need more axioms to describe the set
of real numbers.

17



18 2. THE SET R OF REAL NUMBERS

Axioms A1 and M1 are called associative laws and Axioms A2 and M2 are com-

mutative laws. Axiom DL is the distributive law; this law justifies “factorization”
and “multiplying out” in algebra. A triple of a set, “plus” and “times” functions
which satisfies Axioms 1 through 11 is called a field. The basic algebraic properties
of R can be proved solely on the basis of the field axioms. We illustrate this claim
by the following exercise.

Exercise 2.1.2. Let a, b, c ∈ R. Prove the following statements.

(a) If a + c = b + c, then a = b.
(b) a · 0 = 0 for all a ∈ R.
(c) −a = a if and only if a = 0.
(d) −(−a) = a for all a ∈ R.
(e) (−a)b = −(ab) for all a, b ∈ R.
(f) (−a)(−b) = ab for all a, b ∈ R.

(g) If a 6= 0, then
(
a−1

)−1
= a.

(h) If ac = bc and c 6= 0, then a = b.
(i) ab = 0 if and only if a = 0 or b = 0.
(j) If a 6= 0 and b 6= 0, then (ab)−1 = a−1b−1.

Remark 2.1.3. We will prove (a), (e) and a part of (i) below. Others you
can do as exercise. One of the statements in Exercise 2.1.2 cannot be proved using
Axioms 2 through 11. To prove that particular property we will need results from
Section 2.2.

Solution. (a) Assume that a+c = b+c. By Axiom 1 adding any number x to
both sides of the equality, leads to (a+ c)+x = (b+ c)+x. It follows from Axiom 2
that a+(c+x) = b+(c+x). By Axiom 5 there exists an element −c ∈ R such that
c + (−c) = 0. Choose x = −c. Then a = a + 0 = a + (c + (−c)) = b + (c + (−c)) =
b + 0 = b.

(e) Let a, b ∈ R. Then, by Axiom 5 there exists −a ∈ R such that a+(−a) = 0.
By Axiom 6 it follows that

(
a + (−a)

)
b = 0 · b. By Axiom 11 and part (b) of

this exercise, it follows that ab + (−a)b = 0. Since ab ∈ R, by Axiom 5 there
exists −(ab) ∈ R such that ab + (−(ab)) = 0. Using Axiom 3 we conclude that
(−a)b+ab = −(ab)+ab. By part (a) of this proof we conclude that (−a)b = −(ab).

We prove “only if” part of (i). That is, we prove the implication:

(2.1.1) ab = 0 implies a = 0 or b = 0.

Assume that ab = 0. Consider two cases: Case 1: a = 0 and Case 2: a 6= 0.
Case 1. In this case the implication (2.1.1) is true and there is nothing to prove.
Case 2. Since in this case we assume that a 6= 0, by Axiom 10 there exists an
element a−1 ∈ R such that aa−1 = 1. multiplying both sides of ab = 0 by a−1 we get
(ab)a−1 = 0 · a−1. Therefore b = b · 1 = b(aa−1) = (ba)a−1 = (ab)a−1 = 0 · a−1 = 0.

�

Remark 2.1.4. Let a, b ∈ R. Instead of a + (−b) we write a − b and we write
a

b
or a/b instead of ab−1.

2.2. Axioms of order in a field

The set R also has an order structure < satisfying the following axioms.
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2.2. AXIOMS OF ORDER IN A FIELD 19

Axiom 12 (O1). Given any a, b ∈ R, exactly one of the following three state-
ments is true: a < b, a = b, or b < a.

Axiom 13 (O2). Given any a, b, c ∈ R, if a < b and b < c, then a < c.

Axiom 14 (O3). Given any a, b, c ∈ R, if a < b then a + c < b + c.

Axiom 15 (O4). Given any a, b, c ∈ R, if a < b and 0 < c, then ac < bc.

Axiom O2 is called the transitive law. A field with an order satisfying Ax-
ioms O1 through O4 is called an ordered field.

The notation a ≤ b stands for the statement: a < b or a = b.

Definition 2.2.1. A number x ∈ R is positive if x > 0. A number x ∈ R is
negative if x < 0.

Exercise 2.2.2. Prove the following statements for a, b, c ∈ R.

(a) If a < b then −b < −a.
(b) If a < b and c < 0, then b c < a c.
(c) Assume a > 0 and b 6= 0. Prove that b > 0 if and only if ab > 0.
(d) If a 6= 0, then 0 < aa.
(e) 0 < 1.

(f) If a > 0, then
1

a
> 0.

(g) If 0 < a < b, then 0 <
1

b
<

1

a
.

Solution. (a) Assume a < b. By Axiom 14 we have a+(−b) < b+(−b). Thus
(−b)+a < 0. Using Axiom 14 again, we conclude that

(
(−b)+a

)
+(−a) < 0+(−a),

and consequently −b < −a.
Do (b) as an exercise.
Now we prove (c). Assume a > 0 and b 6= 0. This assumption is used through-

out this part of the proof. Since a 6= 0 and b 6= 0, by Exercise 2.1.2 (i) it follows that
ab 6= 0. The implication: “If b > 0, then ab > 0.” is a special case of Axiom 15.
Next we deal with the implication “If ab > 0, then b > 0.” It turns out that the
contrapositive is easier to prove. The negation of b > 0 is b ≤ 0. But, it is assumed
that b 6= 0. Thus, with this assumption, the negation of b > 0 is b < 0. Similarly,
the negation of ab > 0 is ab < 0. Hence the contrapositive of “If ab > 0, then
b > 0.” is “If b < 0, then ab < 0.” The last implication follows directly from part
(b). This completes the proof of (c).

(d) Consider two different cases: a > 0 and a < 0. If a > 0, then (c) implies
that a2 >. If a < 0, then, by (a), −0 < −a, and since −0 = 0 we have −a > 0.
By the first part of this proof, we conclude that (−a)(−a) > 0. By part (f) of
Exercise 2.1.2 we have (−a)(−a) = a a. Therefore aa > 0 for all a 6= 0.

Do (e) as an exercise.

To prove (f) we assume a > 0. By Axiom 10, a
1

a
= 1. By Axiom 9, 1 6= 0.

Hence, a
1

a
6= 0. By Exercise 2.1.2 (i)

1

a
6= 0 and by (e) 1 > 0. Now we can apply

the “if” part of (c). (Take b = 1/a in (c).) We conclude that a
1

a
= 1 > 0 implies

1

a
> 0. This proves (f).

Do (g) as an exercise. �
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20 2. THE SET R OF REAL NUMBERS

Exercise 2.2.3. Let a, b ∈ R. If a < b, then there exists c ∈ R such that
a < c < b.

Definition 2.2.4. We define the following eight numbers

2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1, 5 = 4 + 1,

6 = 5 + 1, 7 = 6 + 1, 8 = 7 + 1, 9 = 8 + 1.

The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are called digits.

In the preceding definition we implied that the digits are distinct numbers. The
next exercise justifies this claim.

Exercise 2.2.5. Prove the inequalities:

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

The following three exercises deal with squares of real numbers. As usual, for
a ∈ R, a product aa is called a square and it is denoted by a2.

Exercise 2.2.6. Let a ∈ R. Prove that the equation x2 = a, has at most two
solutions in R.

Solution. Consider the set

S =
{
x ∈ R : x2 = a

}
.

If S = ∅, then the statement is true. Now assume that S 6= ∅ and let b ∈ S. From
b ∈ S, we deduce that b ∈ R and b2 = a. Since b ∈ R, −b ∈ R. Next we will prove

(2.2.1) S =
{
b,−b

}
.

Let c ∈ S. Then c2 = a, and therefore c2 = b2. Consequently, c2 − b2 = 0.
Using Axioms 2 through 11 and properties in Exercise 2.1.2 we can prove that
(c − b)(c + b) = c2 − b2. Therefore (c − b)(c + b) = c2 − b2 = 0. Exercise 2.1.2 (i)
implies that c − b = 0 or c + b = 0. Thus c = b or c = −b. This proves

(2.2.2) S ⊆ {b,−b}.
Next we prove {b,−b} ⊆ S. By assumption b ∈ S. Since (−b)2 = b2, we have
(−b)2 = a. Hence −b ∈ S. Therefore

(2.2.3) {b,−b} ⊆ S.

Relations (2.2.2) and (2.2.3) imply equality (2.2.1). Since the set {b,−b} has at
most two elements the statement is proved. �

Exercise 2.2.7. Let 0 ≤ x, y. Prove that x < y if and only if x2 < y2.

Exercise 2.2.8. If α > 1 and α > x2, then α > x.

Exercise 2.2.9. If s 6= t, then (s + t)2 > 4st.

Exercise 2.2.10. Let a, b, c, d ∈ R.

(i) Prove or disprove the statement: If a < b and c < d, then a − c < b − d.
(ii) If you disproved the statement in (i), change the assumptions about c and d

to make a correct statement. Prove your new statement.
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2.3. INTERVALS 21

The properties of real numbers proved in this and the previous
section are essential. Many of them are truly elementary (although
sometimes hard to prove) and you can (and I will) use such proper-
ties in proofs without any justification. But, when you are using
more subtle properties (like ones in Exercises 2.2.7, 2.2.8, or 2.2.10)
you should state explicitly which property you are using and explain
informally why it is true.

2.3. Intervals

Exercise 2.3.1. Let a and b be real numbers such that a < b. Prove that there
exists c ∈ R such that a < c < b.

The preceding exercise justifies the following definition.

Definition 2.3.2. Let a and b be real numbers such that a < b. We will use
the following notation and terminology:

[a, b] :=
{
x ∈ R : a ≤ x ≤ b

}
is called a closed interval,

(a, b) :=
{
x ∈ R : a < x < b

}
is called an open interval,

[a, b) :=
{
x ∈ R : a ≤ x < b

}
is called a half-open interval,

(a, b] :=
{
x ∈ R : a < x ≤ b

}
is called a half-open interval.

We also define four types of unbounded intervals:

[a, +∞) :=
{
x ∈ R : a ≤ x

}
is called a closed unbounded interval,

(a, +∞) :=
{
x ∈ R : a < x

}
is called an open unbounded interval

(−∞, b] :=
{
x ∈ R : x ≤ b

}
is called an unbounded closed interval,

(−∞, b) :=
{
x ∈ R : x < b

}
is called an unbounded open interval,

Geometric illustrations of these intervals are given below.

a b
Figure 1. A closed interval

a b
Figure 2. An open interval

a b
Figure 3. A half-open interval

a b
Figure 4. A half-open interval

a
Figure 5. A closed infinite interval

a
Figure 6. An open infinite interval

b
Figure 7. An infinite closed interval

b
Figure 8. An infinite open interval
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22 2. THE SET R OF REAL NUMBERS

Remark 2.3.3. The infinity symbols −∞ and +∞ are used to indicate that
the set is unbounded in the negative (−∞) or positive (+∞) direction of the real
number line. The symbols −∞ and +∞ are just symbols; they are not real numbers.
Therefore we always exclude them as endpoints by using parentheses.

We conclude this section with few exercises about families of intervals.

Exercise 2.3.4. Let a ∈ R. Prove that
⋂{

(a − u, a + u) : u > 0
}

= {a}.
Exercise 2.3.5. Let a, b ∈ R and a < b. Prove that

⋂{
(a, b + u) : u > 0

}
= (a, b].

Exercise 2.3.6. Let a, b ∈ R and a < b. Prove that
⋂{

(a − u, b + u) : u > 0
}

= [a, b].

Solution. Denote by A the intersection in the equality and assume x ∈ A.
Then, by the definition of intersection, x ∈ (a − u, b + u) for all u > 0. By the
definition of an open interval, a−u < x and x < b+u for all u > 0. Hence, a−x < u
and x − b < u for all u > 0. Consequently, a − x /∈ (0, +∞) and x − b /∈ (0, +∞).
Therefore, a − x ∈ (−∞, 0] and x − b ∈ (−∞, 0], that is, a ≤ x and x ≤ b. By the
definition of a closed interval x ∈ [a, b]. This proves A ⊆ [a, b].

Now assume that x ∈ [a, b]. Then, a − x ≤ 0 and x − b ≤ 0. Let u > 0 be
arbitrary. By the transitivity of the order in R, a − x ≤ u and x − b ≤ u for all
u > 0. Hence, a−u ≤ x and x ≤ b+u for all u > 0. Consequently, x ∈ (a−u, b+u)
for all u > 0. Therefore, x ∈ A. This proves [a, b] ⊆ A.

Since we proved both A ⊆ [a, b] and [a, b] ⊆ A, the equality A = [a, b] is
proved. �

Exercise 2.3.7. Let a, b ∈ R and a < b. Prove that
⋃{

[a + u, b) : 0 < u < b − a
}

= (a, b).

Exercise 2.3.8. Let a, b ∈ R and a < b. Prove that
⋃{

[a + u, b − u] : 0 < u <
b − a

2

}

= (a, b).

2.4. Bounded sets. Minimum and Maximum

Definition 2.4.1. Let A be a nonempty subset of R. If there exists b ∈ R such
that

(2.4.1) x ≤ b for all x ∈ A,

then A is said to be bounded above. A number b satisfying (2.4.1) is called an upper

bound of A.

Similarly we define:

Definition 2.4.2. Let A be a nonempty subset of R. If there exists a ∈ R

such that

(2.4.2) a ≤ x for all x ∈ A,

then A is said to be bounded below. A number a satisfying (2.4.2) is called a lower

bound of A.
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2.4. BOUNDED SETS. MINIMUM AND MAXIMUM 23

Definition 2.4.3. A nonempty subset of R which is both bounded above and
bounded below is said to be bounded.

Exercise 2.4.4. Let A be a nonempty subset of R. Prove that A is bounded
if and only if there exists K > 0 such that |x| ≤ K for all x ∈ A.

Exercise 2.4.5. Let A be a nonempty subset of R. Prove that A is bounded
if and only if there exist a, b ∈ R, such that a < b and A ⊆ [a, b].

Exercise 2.4.6. Prove that
{
x ∈ R : x2 < 2

}
is a bounded set.

Exercise 2.4.7. Prove that

{
n(−1)n

n + 1
: n ∈ N

}

is a bounded set.

Exercise 2.4.8. Let A and B be bounded above subsets of R. Prove that
A ∪ B is bounded above.

Next we introduce the definitions of the minimum and the maximum.

Definition 2.4.9. Let A be a nonempty subset of R. A number a ∈ R is a
minimum of A if it has the following two properties:

(i) a ≤ x for all x ∈ A; (ii) a ∈ A.

The minimum of A (if it exists) is denoted by min A.

Definition 2.4.10. Let A be a nonempty subset of R. A number b ∈ A is a
maximum of A if it has the following two properties:

(i) x ≤ b for all x ∈ A; (ii) b ∈ A.

The maximum of A (if it exists) is denoted by maxA.

Exercise 2.4.11. Let x, y ∈ R. Prove that the set A = {x, y} has a minimum
and a maximum.

Remark 2.4.12. What does it mean for a nonempty subset of R not to have
a minimum? To answer this question we first restate Definition 2.4.9 as follows. A
nonempty set A has a minimum if

(2.4.3) ∃ a ∈ A such that ∀x ∈ A we have x ≥ a.

Next we formulate the negation of the statement (2.4.3):

(2.4.4) ∀ a ∈ A ∃x ∈ A such that x < a.

Notice that the number x in (2.4.4) depends on a. Sometimes it is useful to em-
phasize this dependence by writing x(a). A more precise version of the negation
is:

∀ a ∈ A ∃x(a) ∈ A such that x(a) < a.

Exercise 2.4.13. Prove that the set of all positive numbers does not have a
minimum.

Exercise 2.4.14. Give examples of subsets A, B, C of R such that:

(a) A does not have neither a minimum nor a maximum.

(b) B has a minimum but not a maximum.

(c) C has a minimum and a maximum.
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24 2. THE SET R OF REAL NUMBERS

2.5. Three functions: the unit step, the sign and the absolute value

There are only two specific numbers mentioned in Axioms 2 through 15. These
are 0 and 1. The number −1 is implicitly mentioned in Axiom 4. Therefore the
following two functions are of interest.

Definition 2.5.1. We define the following two functions:

us(x) :=

{

0 if x < 0,

1 if x ≥ 0,
and sgn(x) :=







−1 if x < 0,

0 if x = 0,

1 if x > 0.

-2 -1 1 2

-1

1

0

Figure 9. The unit step function

-2 -1 1 2

1

-1

0

Figure 10. The sign function

Definition 2.5.2. The absolute

value function is defined as

abs(x) = x sgn(x)
(
∀x ∈ R

)
.

We will also use the standard no-
tation abs(x) = |x|. The number
|x| is called the absolute value of
the number x.

-2 -1 1 2

1

2

0

Figure 11. The absolute value function

The first function is called the unit step (or the Heaviside step) function. The
second one is called the sign function. The definition and the notation for the
sign function are standard. However, some authors define the value of the unit
step function at 0 to be 1/2. Also, the notation for the unit step function is not
standardized; H is often used instead of us. I decided to use two letter notation
since it is more in the spirit of sgn and other familiar functions sin, cos, ln, exp, . . ..
Although these two functions are not part of the standard calculus course, I hope
that you will agree that they are very simple.

Exercise 2.5.3. Prove the identity: sgn(x) = us(x) − us(−x).

Exercise 2.5.4. Prove the identity: us(x) = 1 −
(
sgn(x) − 1

)(
sgn(x)

)
/2.

Exercise 2.5.5. Let x, y ∈ R. Prove the following equalities:

max{x, y} = x + (y − x) us(y − x),

min{x, y} = y + (x − y) us(y − x).
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2.5. THREE FUNCTIONS: THE UNIT STEP, THE SIGN AND THE ABSOLUTE VALUE 25

In the plots above we used a geometric representation of real numbers as points
on a straight line. Such representation is obtained by choosing a point on a line to
represent 0 and another point to represent 1. Then, every real number corresponds
to a point on the line (called the number line), and every point on the number line
corresponds to a real number. This geometric representation is often very useful in
doing the problems.

Geometrically, the absolute value of a represents the distance between 0 and a,
or, generally |a − b| is the distance between a and b on the number line.

The basic properties of the absolute value are given in the exercises below. All
of the exercises can be proved by considering all possible cases for the numbers
involved. This is not difficult when an exercise involves only one number. It gets
harder when an exercise involves two or more numbers. Proofs that avoid cases
are more elegant and easier to comprehend. Therefore you should always seek such
proofs; see Exercise 2.5.9.

Exercise 2.5.6. Prove the following identities.

(a) |x| = max
{
x,−x

} (
∀x ∈ R

)
.

(b) |x| = x
(
2 us(x) − 1

) (
∀x ∈ R

)
.

Exercise 2.5.7. Prove the following statements.

(i) |a| ≥ 0 for all a ∈ R.
(ii) | − a| = |a| for all a ∈ R.
(iii) |ab| = |a||b| for all a, b ∈ R.

Exercise 2.5.8. Let x, a ∈ R and a ≥ 0. Prove the following equivalences.

(a) |x| ≤ a if and only if −a ≤ x and x ≤ a .
(b) |x| ≥ a if and only if x ≤ −a or x ≥ a.

Exercise 2.5.9. For all a, b ∈ R we have

|a + b| ≤ |a| + |b|.
Solution. By Exercise 2.5.6 (a), a ≤ |a| and b ≤ |b|. Therefore, a + b ≤

|a| + |b|. Similarly, −a ≤ |a| and −b ≤ |b|. Therefore, −a − b ≤ |a| + |b|. Since
−a−b = −(a+b), we have −(a+b) ≤ |a|+|b|. Hence, we proved both a+b ≤ |a|+|b|
and −(a + b) ≤ |a| + |b|. Therefore,

max{a + b,−(a + b)} ≤ |a| + |b|. �

Exercise 2.5.10. Find specific a, b ∈ R such that |a + b| = |a| + |b|. Next,
formulate a general statement by completing the following equivalence

|a + b| = |a| + |b| if and only if .

Prove your statement.

Exercise 2.5.11. Formulate a general statement by completing the following
equivalence

|a + b| < |a| + |b| if and only if .

Prove your statement.

Exercise 2.5.12. Let x, y, z ∈ R. Interpret the numbers |x − y|, |y − z| and
|x − z| as distances and discover an inequality that they must satisfy. (It might
help to think of x, y and z as towns on I-5.) Prove your inequality.
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Exercise 2.5.13. For all a, b ∈ R we have
∣
∣|a| − |b|

∣
∣ ≤ |a − b|.

The inequalities in Exercises 2.5.9, 2.5.12 and 2.5.13 are often called with one
name, the triangle inequality.

Exercise 2.5.14. Let x, a ∈ R. If |x − a| ≤ 1, then |x| ≤ 1 + |a|.
Exercise 2.5.15. Let x, a ∈ R. If |x − a| ≤ 1, then |x + a| ≤ 1 + 2|a|.
Exercise 2.5.16. Let x, a, u ∈ R and let u > 0. If |x− a| < u and |x− a| ≤ 1,

then
∣
∣x2 − a2

∣
∣ < u(1 + 2|a|).

Exercise 2.5.17. Let x, a ∈ R and let a 6= 0. If |x−a| <
|a|
2

, then |x| >
|a|
2

.

Exercise 2.5.18. Let a ∈ R and ǫ > 0. Then
{
x ∈ R : |x − a| < ǫ

}
= (a − ǫ, a + ǫ).

2.6. The set N

We mentioned natural numbers and integers informally in the course of our
discussion of the fundamental properties of R. Notice again that the only numbers
that are specifically mentioned in Axioms 1 through 15 are 0 and 1. But, in Sec-
tion 2.2 Exercise 2.2.5 we proved that there are other numbers in R, and we defined
the numbers 2, 3, 4, 5, 6, 7, 8, 9. The reason that we stopped at 9 is the fact that the
number 9 + 1 plays a special role in our culture. We could continue this process
further, but it would not lead to a rigorous definition of the set of natural numbers.
Therefore we chose a different route.

Consider the following two properties of a subset S of R:

1 ∈ S,(2.6.1)

n ∈ S ⇒ n + 1 ∈ S.(2.6.2)

There are many subsets of R that have these two properties. For example one
such set is the set of positive real numbers, that is the open infinite interval,

(0, +∞).

Another such set is the closed infinite interval

[1, +∞),

and also the union
{1} ∪ [2, +∞).

There are many such sets. Next we form the family of all subsets of R with the
properties (2.6.1) and (2.6.2):

N :=
{

S ⊂ R : 1 ∈ S and n ∈ S ⇒ n + 1 ∈ S
}

Intuitively, the set of natural numbers is the smallest set in N .

Definition 2.6.1. We define N to be the intersection of the family N :

N :=
⋂ {

S : S ∈ N
}
.

That is, k ∈ N if and only if k ∈ S for all S ∈ N . The elements of the set N are
called natural numbers.
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With this definition and Axioms 1 through 15 we should be able to prove all
familiar properties of natural numbers.

Theorem 2.6.2. (N 1) 1 ∈ N.

(N 2) The formula σ(n) = n + 1 defines a function σ : N → N.

(N 3) If σ(m) = σ(n), then n = m; that is σ is one-to-one.

(N 4) For all n ∈ N, σ(n) 6= 1.
(N 5) If K ⊆ N has the following two properties

1 ∈ K,
(
∀n ∈ N

)
n ∈ K ⇒ n + 1 ∈ K,

then K = N.

Proof. Since 1 ∈ S for all S ∈ N , we have 1 ∈ N. This proves (N 1). To
prove (N 2), let n ∈ N be arbitrary. Then n ∈ S for all S ∈ N . Since (2.6.2) holds
for each S ∈ N , we conclude that n + 1 ∈ S for all S ∈ N . Hence n + 1 ∈ N for
all n ∈ N. Property (N 3) follows from Exercise 2.1.2 (a). To prove (N 5) assume
that K ⊆ N and K has properties (2.6.1) and (2.6.2). Then K ∈ N . Consequently,
N = ∩{S : S ∈ N} ⊆ K. Thus, K = N. �

Remark 2.6.3. The five properties of N proved in Theorem 2.6.2 are known
as Peano’s axioms. Italian mathematician Giuseppe Peano (1858-1932) used these
five properties for an axiomatic foundation of natural numbers. All other familiar
properties of the natural numbers can be proved using these axioms. The theory
of natural numbers developed from Peano’s axioms is called Peano’s arithmetic.

An important consequence of the property (N 5) in Theorem 2.6.2 is the Prin-

ciple of Mathematical Induction. It is stated and proved in the next theorem. This
principle is the main tool in dealing with statements involving natural numbers.

Theorem 2.6.4. Let P (n), n ∈ N, be a family of statements such that

(I) P (1) is true,

(II) For all n ∈ N, P (n) implies P (n + 1).

Then the statement P (n) is true for each n ∈ N.

Proof. Consider the set

S =
{
n ∈ N : P (n) is true

}
.

By (I), 1 ∈ S. By (II), for all n ∈ N, if n ∈ S, then n + 1 ∈ S. Hence, S has both
properties from Theorem 2.6.2 (5). Consequently, S = N. This means that for all
n ∈ N the statement P (n) is true. �

Remark 2.6.5. The step (II) of the mathematical induction requires you to
reach the conclusion that P (n + 1) is true by using the assumption that P (n) is
true, i.e., you have to prove the implication P (n) ⇒ P (n + 1) for all n ∈ N.

The following theorem can be proved using the properties from Theorem 2.6.2
and the principle of mathematical induction.

Theorem 2.6.6. (i) 1 = min N; that is, 1 ∈ N and 1 ≤ n for all n ∈ N.

(ii) For every n ∈ N\{1}, we have n − 1 ∈ N.

(iii) For all m, n ∈ N, we have m + n ∈ N.
(iv) For all m, n ∈ N we have mn ∈ N.
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(v) For all m, n ∈ N such that m < n, we have n − m ∈ N.
(vi) If m, n ∈ N and m < n, then m + 1 ≤ n.

Proof. (i) As we mentioned before the closed infinite interval [1, +∞) belongs
to the family N . Therefore N ⊆ [1, +∞). Therefore n ≥ 1 for all n ∈ N. Since
1 ∈ N was proved in Theorem 2.6.2, (i) is proved.

(ii) Consider the following set S = {1}∪
{
m ∈ N : m− 1 ∈ N

}
. Clearly S ⊆ N

and 1 ∈ S. Notice also that 2 ∈ S, since 2 − 1 = 1 ∈ N. Next we will prove

(2.6.3) n ∈ S ⇒ n + 1 ∈ S.

Assume n ∈ S. We distinguish two cases: n = 1 and n ∈
{
m ∈ N : m − 1 ∈ N

}
.

If n = 1, then n + 1 = 2 ∈ S. Hence (2.6.3) holds in this case. If n ∈
{
m ∈ N :

m − 1 ∈ N
}
, then n ∈ N and n − 1 ∈ N. By Theorem 2.6.2 (1), n + 1 ∈ N and,

obviously, (n + 1) − 1 = n ∈ N. Therefore n + 1 ∈
{
m ∈ N : m − 1 ∈ N

}
. Hence

n + 1 ∈ S. Thus (2.6.3) holds. Now, by Theorem 2.6.2 (5), S = N. This proves
N\{1} =

{
m ∈ N : m − 1 ∈ N

}
.

Remaining properties are proved similarly. �

The Principle of Mathematical Induction is also used to define functions on N.
The process described in the next proposition is called the Principle of Inductive

Definition.

Proposition 2.6.7. If a function f has the following two properties

(I) f(1) is defined,

(II)
(
∀n ∈ N

)
f(n + 1) is defined in terms of f(1), . . . , f(n),

then f is defined on N.

Proof. Denote the domain of f by D. Let k ∈ N and set the statement P (k)
to be: 1, . . . , k ∈ D. Clearly P (1) is true by (I). Now, let n ∈ N be arbitrary and
assume that P (n) is true. That is assume that 1, . . . , n ∈ D. By (II) f(n+1) is de-
fined in terms of f(1), . . . , f(n). Since by the inductive hypothesis all f(1), . . . , f(n)
are defined, we conclude that f(n+1) is defined. Thus n+1 ∈ D. Since we assume
that 1, . . . , n ∈ D, we have proved that 1, . . . , n, n + 1 ∈ D. Hence P (n + 1) is
proved. By the Principle of Mathematical induction P (n) is true for all n ∈ N.
Therefore 1, . . . , n ∈ D for all n ∈ N. Consequently, n ∈ D for all n ∈ N. �

A definition of a function with properties (I) and (II) in Proposition 2.6.7 is
called recursive or inductive definition.

Definition 2.6.8. A function whose domain equals N and whose range is in R

is called a sequence in R.

Remark 2.6.9. Traditionally, if f : A → B is a function and if x ∈ A, then
the value of f at x is denoted by f(x). In addition to this traditional notation,
for a sequence f : N → R we will often write fn instead of f(n), n ∈ N. When
convenient we will use both notations for the same sequence. The reason for this

is purely typographical. For example if n =
m(m + 1)

2
+ 1, then it is awkward to

write fm(m+1)
2 +1

. In such a case, the expression f
(

m(m+1)
2 + 1

)
is preferable since

it is easier to read and understand.
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2.7. Examples and Exercises related to N

The following two examples deal with two familiar functions: the factorial and
the power function. Let n ∈ N. The factorial is informally “defined” as

n! = 1 · 2 · . . . · (n − 1) · n.

Let a ∈ R. The n-th power of a is informally expressed as

an = a · a · . . . · a · a
︸ ︷︷ ︸

n times

.

Next we give the rigorous definitions of the factorial and the power function as
examples of recursive definitions.

Example 2.7.1. The function f : N → N defined by

(i) f(1) = 1,
(ii)

(
∀n ∈ N

)
f(n + 1) = (n + 1) f(n),

is called the factorial.
The standard notation for the factorial is f(n) = n!. The definition of factorial

is extended to 0 by setting 0! = 1.

Example 2.7.2. Let a ∈ R. Define the function g : N → R by

(i) g(1) = a,
(ii)

(
∀n ∈ N

)
g(n + 1) = a g(n).

The standard notation for the function g is g(n) = an. The expression an is
called the n-th power of a. For a 6= 0, the definition of the power is extended to 0
by setting a0 = 1. The expression 00 is not defined.

Exercise 2.7.3. Let a, b ∈ R be such that a, b ≥ 0. Let n ∈ N. Prove that
a < b if and only if an < bn.

Use the Principle of Mathematical Induction to do the following exercises.

Exercise 2.7.4. Consider the function f : N → N defined by

(i) f(1) = 1,
(ii)

(
∀n ∈ N

)
f(n + 1) = f(n) + (2n + 1).

Evaluate the values f(2), f(3), f(4), f(5). Based on the numbers that you get,
guess a simple formula for f(n) and prove it.

Exercise 2.7.5. Consider the function T : N → N defined by

(i) T (1) = 1,
(ii)

(
∀n ∈ N

)
T (n + 1) = T (n) + (n + 1).

Evaluate the values T (2), T (3), T (4), T (5), T (6). Based on these numbers guess a
simple formula for T (n) in terms of n and prove it.

Remark 2.7.6. The numbers T (n), n ∈ N, are called triangular numbers. For
n ∈ N, the triangular number

T (n) = 1 + 2 + · · · + (n − 1) + n

is the additive analog of the factorial (see Example 2.7.1)

n! = 1 · 2 · · · · · (n − 1) · n.

For completeness we set T (0) = 0.
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Exercise 2.7.7. Let a, x ∈ R. Consider the function g : N → R defined by

(i) g(1) = a,
(ii)

(
∀n ∈ N

)
g(n + 1) = g(n) + a xn.

Another way of writing g(n) is

g(n) =

n−1∑

k=0

a xk.

Informally this sum is sometimes written as

g(n) = a + a x + · · · + a xn−1.

This sum is called the geometric sum.
Prove that

g(n) =







a
1 − xn

1 − x
if x 6= 1,

n a if x = 1.

Exercise 2.7.8 (Bernoulli’s inequality). Let n ∈ N and x > −1. Then

(1 + x)n ≥ 1 + n x.

Exercise 2.7.9. Let n ∈ N and let x ∈ R be such that 0 ≤ x ≤ 1. Then

(1 + x)n ≤ 1 +
(
2n − 1

)
x.

Exercise 2.7.10 (Binomial theorem). Let n ∈ N and x, y ∈ R. Then

(x + y)n =

n∑

k=0

(
n

k

)

xn−k yk.

Here

(
n

k

)

denotes the binomial coefficient which is defined by

(
n

k

)

:=
n!

k! (n − k)!
, n ∈ N, k = 0, 1, . . . , n.

The most important property of binomial coefficients is given by the following
equality

(
n

k − 1

)

+

(
n

k

)

=

(
n + 1

k

)

, n ∈ N, k = 1, . . . , n.

This formula is proved by using the definition of the binomial coefficients and the
rules for adding fractions.

2.8. Finite sets, infinite sets, countable sets

One of the most important applications of the natural numbers is counting.
The following special subsets of N are used for counting

[[1, n]]N :=
{
k ∈ N : k ≤ n

}
, n ∈ N.
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Since this notation will be used often in this section, we will, for simplicity of
notation drop the subscript N in [[1, n]]N and simply write [[1, n]]. For example

[[1, 1]] = {1}
[[1, 2]] = {1, 2}
[[1, 3]] = {1, 2, 3}
[[1, 4]] = {1, 2, 3, 4}
[[1, 5]] = {1, 2, 3, 4, 5}
[[1, 6]] = {1, 2, 3, 4, 5, 6}

...

Exercise 2.8.1. Let m ∈ N. If n ∈ N and there exists a bijection f : [[1, m]] →
[[1, n]], then n = m.

Solution. We will prove the claim by Mathematical Induction with respect
to m. For m = 1 the statement reads: “If n ∈ N and there exists a bijection
f : [[1, 1]] → [[1, n]], then n = 1”. To prove this statement, assume that f : [[1, 1]] →
[[1, n]] is a bijection. Since f is onto, there exist j, k ∈ [[1, 1]] such that f(j) = 1
and f(k) = n. Since j, k ∈ [[1, 1]] = {1}, we have j = k = 1. Hence f(1) = 1
and f(1) = n. Since f is a function, we must have n = 1. Now let m ∈ N be
arbitrary and assume that the statement: “If n ∈ N and there exists a bijection
f : [[1, m]] → [[1, n]], then n = m.” is true. (This is the inductive assumption.) The
final step of the Mathematical Induction is to prove: “If p ∈ N and there exists a
bijection g : [[1, m+1]] → [[1, p]], then p = m+1.” To prove this implication assume
that p ∈ N and that g : [[1, m + 1]] → [[1, p]] is a bijection. Since m ∈ N, m + 1 > 1.
Since g is one-to-one, g(m + 1) 6= g(1). Hence max{g(1), g(m + 1)} > 1 and clearly
max{g(1), g(m + 1)} ≤ p. Hence p > 1. We continue the proof by considering two
cases.

Case 1. g(m+1) = p. Define h : [[1, m]] → [[1, p−1]] by h(k) := g(k), k ∈ [[1, m]].
Since g is a bijection, h is a bijection as well. By the inductive assumption p−1 = m.
Therefore p = m + 1. Thus the proof is finished in this case.

Case 2. g(m+1) ∈ [[1, p−1]]. Since g is onto, there exists j ∈ [[1, m]] such that
g(j) = p. Now define h : [[1, m]] → [[1, p − 1]], by

h(k) :=

{

g(k), if k ∈ [[1, m]] \ {j}
g(m + 1), if k = j.

You can verify that h is a bijection. Now, by the inductive assumption p − 1 = m.
Therefore p = m + 1. Thus the proof is finished in this case. �

Next we give a formal mathematical definition of the counting process.

Definition 2.8.2. A set A is finite if there exists a natural number n and a
bijection f : [[1, n]] → A. In this case we say that A has n elements. We use the
notation #A for the number of elements of A.

Remark 2.8.3. Notice that there is a possibility for an ambiguity in Defini-
tion 2.8.2. There could exist another natural number m and a bijection g : [[1, m]] →
A. Then, f−1 ◦ g : [[1, m]] → [[1, n]] is a bijection, and, by Exercise 2.8.1, m = n.
Hence Definition 2.8.2 is not ambiguous.
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Definition 2.8.4. A nonempty set which is not finite is said to be infinite.

Finite sets are often informally written as A = {a1, a2, . . . , an}. However, this
way of writing does not imply that the mapping k 7→ ak, k ∈ [[1, n]], is a bijection,
but it does imply that this mapping is a surjection.

Theorem 2.8.5. Let n ∈ N. If A is a nonempty subset of [[1, n]], then A is

finite and #A = k for some k ∈ [[1, n]].

Proof. We will prove the statement by Mathematical induction. For n = 1
the claim is: If A is a nonempty subset of {1}, then A is finite and #A = 1. This
statement is true, since the only nonempty subset of {1} is the set {1}.

We now state the inductive hypothesis. Let m ∈ N be arbitrary. Assume that
the statement “If A is a nonempty subset of [[1, m]], then A is finite and #A = j
for some j ∈ [[1, m]].” is true.

Next we will prove the statement: “If B is a nonempty subset of [[1, m + 1]],
then B is finite and #B = k for some k ∈ [[1, m + 1]].”

Assume that B is a nonempty subset of [[1, m + 1]]. We consider the following
three cases:

Case 1: B = [[1, m + 1]],
Case 2: m + 1 6∈ B,
Case 3: m + 1 ∈ B and p 6∈ B for some p ∈ [[1, m]].

In Case 1 the claim is true, since the set [[1, m + 1]] is clearly finite and #B =
m + 1. In Case 2, B ⊆ [[1, m]]. Hence, by the inductive hypothesis, B is finite and
#B = j for some j ∈ [[1, m]]. Since [[1, m]] ⊆ [[1, m + 1]], the claim is true in this
case as well.

Now consider Case 3. Assume that m + 1 ∈ B and p 6∈ B for some p ∈ [[1, m]].
Define the set B′ by B′ =

(
B\{m+1}

)
∪{p}. It is clear that B′ ⊆ [[1, m]]. Therefore,

by the inductive hypothesis, B′ is finite and #B′ = j for some j ∈ [[1, m]]. It is also
clear that the function f : B′ → B defined for x ∈ B′ by

f(x) =

{

x if x 6= p,

m + 1 if x = p,

is a bijection. Therefore, B is finite and #B = #B′ = j for some j ∈ [[1, m]]. This
completes the proof. �

Corollary 2.8.6. Each nonempty subset of a finite set is finite.

Proof. Let X be a finite set. Then there exists n ∈ N and a bijection

f : [[1, n]] → X.

Let Y be a nonempty subset of X . Consider the set

B =
{
k ∈ [[1, n]] : f(k) ∈ Y

}
.

Since Y is nonempty subset of X , B is a nonempty subset of [[1, n]]. By Theo-
rem 2.8.5, B is finite and #B = k for some k ∈ [[1, n]]. Hence, there exists a bijection
g : [[1, k]] → B. It is not difficult to prove that the composition f ◦ g : [[1, k]] → Y is
a bijection. (Prove this claim as an exercise.) Therefore, Y is finite. �

Exercise 2.8.7. If A and B are finite sets and A ∩ B = ∅, then

#
(
A ∪ B

)
= #A + #B.
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Solution. Let A and B be finite sets such that A ∩ B = ∅. Since A is finite
there exist m ∈ N and a bijection f : [[1, m]] → A. Since B is finite there exist
n ∈ N and a bijection g : [[1, n]] → B. Notice that the equivalence

x ∈ [[1, m + n]] \ [[1, m]] ⇔ x − m ∈ [[1, n]]

follows from the basic properties of N. Now we define h : [[1, m + n]] → A ∪ B by

h(x) =

{

f(x), x ∈ [[1, m]],

g(x − m), x ∈ [[1, m + n]] \ [[1, m]].

It is not difficult to prove that h is a bijection. Here is the proof. Let c ∈ A ∪ B
be arbitrary. Then, c ∈ A or c ∈ B. If c ∈ A, then, since f is a surjection, there
exists k ∈ [[1, m]] such that f(k) = c. Then k ∈ [[1, m + n]] and by definition of
h, h(k) = f(k) = c. If c ∈ B, then, since g is a surjection, there exists j ∈ [[1, n]]
such that g(j) = c. Then j + m ∈ [[1, m + n]] \ [[1, m]] and by definition of h,
h(j + m) = g(j) = c. Thus, h is a surjection. To prove that h is a bijection, let
x, y ∈ [[1, m + n]] and assume x < y. Consider the following three cases: Case 1:
y ≤ m, Case 2: x ≤ m < y, Case 3: m < x. In Case 1, since f is an injection,
f(x) 6= f(y). Since in this case h(x) = f(x) and h(y) = f(y), we have h(x) 6= h(y).
In Case 2, h(x) ∈ A and h(y) ∈ B. Since A ∩ B = ∅, h(x) 6= h(y). In Case 3 we
have 1 ≤ x − m < y − m ≤ n. Since g is an injection, g(x − m) 6= g(y − m). Since
in this case h(x) = g(x − m) and h(y) = g(y − m), we have h(x) 6= h(y). Thus, in
each case, x, y ∈ [[1, m + n]] and x < y imply h(x) 6= h(y). This proves that h is an
injection. Thus h is a bijection. �

Exercise 2.8.8. Let B ⊆ A and assume A is finite. Then B is finite and
#B ≤ #A.

Exercise 2.8.9. Let B ⊆ A and assume A is finite. If B is a proper subset of
A, then #B < #A.

Exercise 2.8.10. Let B ⊆ A and assume A is finite. If #B = #A, then
B = A.

Exercise 2.8.11. If A is a finite set and f : A → A is an injection, then f is a
surjection.

Exercise 2.8.12. If there exists a proper subset B ⊂ A and a bijection g :
A → B, then A is an infinite set. Hint: This statement can be viewed as a
partial contrapositive of Exercise 2.8.11. The contrapositive of P ∧ Q ⇒ R is
¬R ⇒ ¬P ∨ ¬Q. However, the implication Q ∧ ¬R ⇒ ¬P , can be considered as a
partial contrapositive.

Exercise 2.8.13. If A is a finite subset of R, then A has a minimum and a
maximum.

Remark 2.8.14. The importance of Exercise 2.8.13 is twofold. First, it states
the most important property of finite sets of real numbers. Second, its contraposi-
tive provides a simple way of proving that a set is infinite: If a nonempty subset of
R does not have a minimum or it does not have a maximum, then it is infinite.

The fact that infinite sets might not have a minimum and/or maximum makes
dealing with such sets more difficult. On a positive side an important feature of
real numbers (see Section 2.11) is that there is a class of subsets of R which are
guaranteed to have a minimum or a maximum.
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Exercise 2.8.15. Prove that N does not have a maximum.

Exercise 2.8.16. Prove that a nonempty subset of N is finite if and only if it
has a maximum.

Exercise 2.8.17. Prove that the set N is infinite.

Exercise 2.8.18. Let A be a nonempty subset of N. Then A has a minimum.

Remark 2.8.19. Subsets of N can be infinite. As I mentioned in Remark 2.8.14
a problem with infinite sets is a possible absence of minimum and maximum. Exer-
cise 2.8.18 tells us that a subset of natural numbers must at least have a minimum.
Consequently, infinite subsets of N are not as bad as infinite subsets of R.

Solution of Exercise 2.8.18. This proof uses the following two facts:

(1) Each finite set has a minimum. (Proved in Exercise 2.8.13.)
(2) For each n ∈ N each subset of the set {1, 2, . . . , n} = [[1, n]] is finite.

(Proved in Corollary 2.8.6.)

Since A 6= ∅, there exists n ∈ A. Consider the set B = {x ∈ A : x ≤ n}. Then
B ⊆ [[1, n]]. By fact (2) B is finite. Now, by fact (1) B has a minimum; denote it
by m = min B. Then m is also the minimum of A. (Here is a proof: If a ∈ A, then
either a ≤ n, or n < a. In the first case a ∈ B, and therefore m ≤ a. If n < a, then
m ≤ n < a, and therefore m ≤ a for each a ∈ A.) �

Definition 2.8.20. A set A is countable if there exists a bijection f : N → A.

Exercise 2.8.21. Prove that the set of even natural numbers is countable.

Exercise 2.8.22. If S is an infinite subset of N, then S is countable.

Solution. (This is an extended Hint.) Let S be an infinite subset of N. Let
s ∈ S be arbitrary. Then the set S ∩ [[1, s]] is finite, since it is a nonempty subset of
the finite set [[1, s]]. Define the function:

f(s) := #
(
S ∩ [[1, s]]

)
, s ∈ S.

Clearly f : S → N. The function f has the following three properties:

(I) If s, t ∈ S and s < t, then f(s) < f(t).
(II) If s = min S, then f(s) = 1.

(III) If s ∈ S and t = min
(
S \ [[1, s]]

)
, then f(t) = f(s) + 1.

Property (I) follows from Exercise 2.8.9. Property (II) follows from the fact that,
s = min S implies S ∩ [[1, s]] = {s}. Property (III) follows from Exercise 2.8.7.

Property (I) implies that f is an injection. Properties (II) and (III) imply that
the range of f , call it T , has the following properties: 1 ∈ T and n ∈ T ⇒ n+1 ∈ T .
Since T ⊆ N, this, by Theorem 2.6.2 (5), implies T = N. Thus f is a surjection.
Hence, f is a bijection. �

It will be proved in Section 2.10 that the set of integers and the set of rational
numbers are countable sets.

We conclude this section with a proposition which makes it easier to prove that
an infinite set is countable. It states that it is sufficient to construct a surjection
of N onto that set. This will be used to prove that the set of rational numbers is
countable.
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Proposition 2.8.23. Let A be an infinite set and let g : N → A be a surjection.

Then A is countable. That is, there exists a bijection φ : N → A.

Proof. Assume that A is an infinite set and that g : N → A is a surjection.
Since g is a surjection the set

{
k ∈ N : g(k) = a

}
is nonempty for each a ∈ A. By

Exercise 2.8.18 this set has a minimum. Define the function

h(a) := min
{
k ∈ N : g(k) = a

}
, a ∈ A.

Clearly h : A → N. As an exercise the reader can prove that h is one-to-one.
Denote by S ⊆ N the range of h. Then h is a bijection between A and S. Since A is
infinite, S is also infinite. (Prove this as an exercise.) Therefore, by Exercise 2.8.22,
there exists a bijection f : S → N. Now, h : A → S is a bijection and f : S → N.
Hence the composition f ◦ h is also a bijection. Since f ◦ h : A → N the proof is
complete. �

2.9. More on countable sets

In the following example we give a recursive definition of the sequence indicated
by the following table. The triangular numbers are in bold face.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Rn 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7

Example 2.9.1. Define the function R : N → N by

(i) R1 = 1,

(ii)
(
∀n ∈ N

)
Rn+1 = 1 + R(n + 1 − Rn).

To understand the recursive formula in (ii) we calculate the first few terms. We
already know that R1 = 1. Therefore

R2 = 1 + R(2 − R1) = 1 + R(2 − 1) = 1 + R1 = 1 + 1 = 2.

In a similar way we calculate:

R3 = 1 + R(3 − R2) = 1 + R(3 − 2) = 1 + R1 = 1 + 1 = 2,

R4 = 1 + R(4 − R3) = 1 + R(4 − 2) = 1 + R2 = 1 + 2 = 3,

R5 = 1 + R(5 − R4) = 1 + R(5 − 3) = 1 + R2 = 1 + 2 = 3,

R6 = 1 + R(6 − R5) = 1 + R(6 − 3) = 1 + R3 = 1 + 2 = 3,

R7 = 1 + R(7 − R6) = 1 + R(7 − 3) = 1 + R4 = 1 + 3 = 4,

R8 = 1 + R(8 − R7) = 1 + R(8 − 4) = 1 + R4 = 1 + 3 = 4,

R9 = 1 + R(9 − R8) = 1 + R(9 − 4) = 1 + R5 = 1 + 3 = 4,

...

Next we will prove that the sequence {Rn} really does what is indicated in the
table at the beginning of this section.

Exercise 2.9.2. Let n ∈ N. The following implication holds: If m ∈ N is such
that

(m − 1)m

2
+ 1 ≤ n ≤ m(m + 1)

2
,

then Rn = m.
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Solution. The statement is clearly true for n = 1 with m = 1. Let n ∈ N, n >
1 and assume that the claim is true for all k ∈ N such that k ≤ n. Let us state this
inductive assumption explicitly:

If k ∈ N, k ≤ n and for some j ∈ N we have

(j − 1)j

2
+ 1 ≤ k ≤ j(j + 1)

2
,

then Rk = j.
Next, we will prove the statement for n + 1. Let m ∈ N be such that

(m − 1)m

2
+ 1 ≤ n + 1 ≤ m(m + 1)

2
.

Clearly m > 1. We need to prove that Rn = m. Consider two cases

Case 1:
(m − 1)m

2
+ 1 < n + 1 and Case 2:

(m − 1)m

2
+ 1 = n + 1.

Consider Case 1. In this case we clearly have

(m − 1)m

2
+ 1 ≤ n ≤ m(m + 1)

2
.

Therefore, by the inductive assumption applied to k = n we have Rn = m. Now
we calculate Rn+1 using the recursive definition of R:

Rn+1 = 1 + R(n + 1 − Rn) = 1 + R(n + 1 − m).

To calculate R(n + 1 − m) we recall that

(m − 1)m

2
+ 1 < n + 1 ≤ m(m + 1)

2
,

and consequently,

(m − 1)m

2
+ 1 − m < n + 1 − m ≤ m(m + 1)

2
− m,

which simplifies to

(m − 2)(m − 1)

2
< n − (m − 1) ≤ (m − 1)m

2
.

By the inductive assumption applied to k = n− (m− 1) we deduce that R(n + 1−
m) = m − 1. Hence Rn+1 = m.

Now we consider Case 2. In this case n = (m− 1)m/2. Therefore Rn = m− 1.
Also

n + 1 − (m − 1) =
(m − 1)m

2
+ 1 − (m − 1) =

(m − 2)(m − 1)

2
+ 1.

Hence, by the inductive assumption we have R
(
n + 1 − (m − 1)

)
= m − 1. Thus,

Rn+1 = 1 + R(n + 1 − Rn) = 1 + R
(
n + 1 − (m − 1)

)
= 1 + m − 1 = m.

Since in both cases we proved Rn+1 = m the proof is complete. �

Remark 2.9.3. There are several other formulas for the sequence R. For ex-
ample for n ∈ N,

Rn =

⌊
1

2
+
√

2n

⌋

or Rn =

⌈

−1

2
+
√

2n

⌉

.

I chose the recursive formula since the formulas above use functions that we have
not introduced yet.
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The following exercise deals with the Cartesian square of the set N; that is the
set N × N. Recall that this is the set of all ordered pairs of positive integers:

N × N :=
{
(s, t) : s, t ∈ N

}
.

The set N × N is illustrated by the following infinite table:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) . . .

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) . . .

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) . . .

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) . . .

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) . . .

...
...

...
...

...
. . .

Exercise 2.9.4. Prove that the function A : N × N → N defined by

A(s, t) =
(s + t − 2)(s + t − 1)

2
+ s, s, t ∈ N,

is a bijection.
A long Hint: Prove that the inverse of A is given by

B(n) =

(

n −
(
Rn − 1

)
Rn

2
,

Rn

(
Rn + 1

)

2
− n + 1

)

, n ∈ N.

Here R is the sequence recursively defined in Example 2.9.1. Notice also that by
Exercise 2.7.5 the formulas for A and B can be written as

A(s, t) = T (s + t − 2) + s, s, t ∈ N,

B(n) =
(

n − T
(
Rn − 1

)
, T
(
Rn

)
− n + 1

)

, n ∈ N.

Let s, t ∈ N. To evaluate B
(
A(s, t)

)
you will need to evaluate R

(
T (s + t − 2) + s

)

first. For this, use Exercise 2.9.2 and the following inequalities

T (s + t − 2) + 1 ≤ T (s + t − 2) + s ≤ T (s + t − 2) + s + t − 1 = T (s + t − 1),

to conclude that

R
(
T (s + t − 2) + s

)
= s + t − 1.

Hence, R
(
A(s, t)

)
= s + t − 1. With this identity calculating B

(
A(s, t)

)
should be

easier. This is the end of Hint.

To visualize the action of the function A on N × N we rearrange the table
preceding Exercise 2.9.4 in a triangular shape and place the value of A in a circle
next to the corresponding ordered pair. As a result we get the following table.
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(1, 1)
h1

-
(1, 2)

h2

?
(1, 3)

h4

?
(1, 4)

h7

?
(1, 5)

h11

?
(1, 6)

h16

?
. . .

(2, 1)
h3

���

(2, 2)
h5

?
(2, 3)

h8

?
(2, 4)

h12

?
(2, 5)

h17

?
. . .

(3, 1)
h6

���

(3, 2)
h9

?
(3, 3)

h13

?
(3, 4)

h18

?
. . .

(4, 1)
h10

���

(4, 2)
h14

?
(4, 3)

h19

?
. . .

(5, 1)
h15

���

(5, 2)
h20

?
. . .

(6, 1)
h21

���

. . .

. . .

Exercise 2.9.5. Let A be countable family of sets, that is there exists a
bijection f : N → A. Assume that each set in A is countable. Prove that
⋃{

A : A ∈ A
}

is also countable.

Exercise 2.9.6. Prove that the set of all functions f : N → {0, 1} is not
countable. (As mentioned in Section 1.6 this set of functions is denoted by {0, 1}N.)

Solution. To prove the claim we will take an arbitrary function Φ : N →
{0, 1}N and prove that Φ is not a surjection. This will be proved by constructing
a specific element f ∈ {0, 1}N, that is f : N → {0, 1}, such that f 6= Φn for all
n ∈ N. To construct f let us analyze Φn, n ∈ N. Clearly Φ1 : N → {0, 1}, that is
Φ1(n) ∈ {0, 1} for all n ∈ N. We can indicate the action of Φ1 on N by listing its
first 7 values:

Φ1(1) Φ1(2) Φ1(3) Φ1(4) Φ1(5) Φ1(6) Φ1(7) . . .

We can do the same for Φ2, Φ3, Φ4, Φ5, Φ6, . . . to get

Φ1(1) Φ1(2) Φ1(3) Φ1(4) Φ1(5) Φ1(6) Φ1(7) . . .

Φ2(1) Φ2(2) Φ2(3) Φ2(4) Φ2(5) Φ2(6) Φ2(7) . . .

Φ3(1) Φ3(2) Φ3(3) Φ3(4) Φ3(5) Φ3(6) Φ3(7) . . .

Φ4(1) Φ4(2) Φ4(3) Φ4(4) Φ4(5) Φ4(6) Φ4(7) . . .

Φ5(1) Φ5(2) Φ5(3) Φ5(4) Φ5(5) Φ5(6) Φ5(7) . . .

Φ6(1) Φ6(2) Φ6(3) Φ6(4) Φ6(5) Φ6(6) Φ6(7) . . .

Φ7(1) Φ7(2) Φ7(3) Φ7(4) Φ7(5) Φ7(6) Φ7(7) . . .

...
...

...
...

...
...

...
. . .

Now we are ready to define f : N → {0, 1} which will differ from each Φn, n ∈ N.
Set

f(n) := 1 − Φn(n), n ∈ N.
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Since Φn(n) ∈ {0, 1} we have that f(n) = 1 − Φn(n) 6= Φn(n) for all n ∈ N.
Therefore

f 6= Φn for all n ∈ N.

Hence Φ : N → {0, 1}N is not a surjection. Since Φ : N → {0, 1}N was arbitrary
function, we conclude that there does not exist a bijection between N and {0, 1}N.

�

2.10. The sets Z and Q

We define an integer to be a real number x such that either x = 0 or x is a
natural number or −x is a natural number. The set of all integers is denoted by Z.
Hence

Z =
{
x ∈ R : x ∈ N or x = 0 or − x ∈ N

}
.

Exercise 2.10.1. Prove that Z is countable.

Exercise 2.10.2. Prove that Z × N is countable.

Now we define a rational number to be a real number of the form m · 1
n

where

m ∈ Z and n ∈ N. (We write shortly m/n or m
n

instead of m · 1
n
.) The set of all

rational numbers we denote by Q, that is

Q =
{

x ∈ R : ∃m ∈ Z and ∃n ∈ N such that x =
m

n

}

.

Exercise 2.10.3. Denote by Q+ the set of all positive rational numbers. Prove
that Q+ is countable.

Exercise 2.10.4. Prove that there exists a bijection between Q+ and Q.

Exercise 2.10.5. Prove that the set Q is countable.

Exercise 2.10.6. Prove that r2 6= 2 for all r ∈ Q.

Solution. Now that we have a definition of Q we can prove that for each
r ∈ Q there exist p ∈ Z and q ∈ N which are not both even such that r = p/q. Let
r ∈ Q be arbitrary. Set

S =
{

n ∈ N : ∃ m ∈ Z such that r =
m

n

}

.

Since r ∈ Q the set S is not empty. Since S is a nonempty subset of N, by
Exercise 2.8.18 S has a minimum. Set q = min S. Since q ∈ S, there exists p ∈ Z

such that r = p/q. Next we will prove that p and q are not both even. That is we
will prove the following implication: If q = min S, p ∈ Z, and r = p/q, then p and
q are not both even.

It is easier to prove a partial contrapositive of the last implication. If n ∈ S,
m ∈ Z, r = m/n and both m and n are even, then n is not a minimum of S. So,
assume n ∈ S, m ∈ Z are both even and r = m/n. Then there exist k ∈ Z and
j ∈ N such that m = 2k and n = 2j. Clearly j < n. Also,

r =
m

n
=

2 k

2 j
=

k

j
.

Hence j ∈ S and therefore n is not a minimum of S.
In Chapter 1 we indicated how to prove that 2 q2 6= p2. Hence r2 6= 2 is

proved. �
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There are many basic properties on N, Z and Q that are not stated so far. For
example:

• The set N is not bounded.
• There exists α ∈ R such that α2 = 2.
• The set Q is a proper subset of R.
• The set R is not countable.

In Exercise 2.10.6 we proved that the fact that there is no rational number
x such that x2 = 2. Since the set Q of rational numbers satisfies all Axioms 1
through 2.11.1 we can not expect that based only on Axioms 1 through 2.11.1 we
can prove that there exists a real number number α such that α2 = 2. Therefore
we need an extra axiom for the set of real numbers; an axiom that will not be
satisfied by the set of rational numbers. This is the Completeness Axiom which
we introduce in Section 2.11. It turns out that proofs of the four statements listed
above use the Completeness Axiom.

2.11. The Completeness axiom

Recall Exercise 2.2.3: If a and b are real numbers such that a < b, then there
exists a real number c such that a < c < b.

This statement quarantines that there are no big holes in R; between any two
real numbers there is another real number. A natural question to ask is whether
the same is true for sets. If we are given two sets which are in some sense separated,
does there exists a real number between them?

Axiom 16 (CA: Completeness Axiom). If A and B are nonempty subsets of
R such that for every a ∈ A and for every b ∈ B we have a ≤ b, then there exists
c ∈ R such that a ≤ c ≤ b for all a ∈ A and all b ∈ B.

Visually this corresponds to the picture

A B

c
d

Since we perceive the real number line to have no holes, the place marked by
the open circle must correspond to a real the number c.

Now we have 16 axioms of R. It is remarkable that all statements about
real numbers that are studied in beginning mathematical analysis courses can be
deduced from these sixteen axioms and basic properties of sets.

The formulation of the Completeness Axiom given as Axiom 16 above is not
standard. This formulation I found in the book Mathematical analysis by Vladimir
Zorich, published by Springer in 2004. The standard formulation of the Complete-
ness Axiom is given in Exercise 2.13.5 below. In that exercise you will prove that
Zorich’s Completeness Axiom is equivalent to the standard one.

Now we have a powerful tool. Let us use it to prove some important statements.
We start with the proof that N is not bounded.

Exercise 2.11.1 (Archimedean Property). For every b ∈ R there exists n ∈ N

such that n > b.
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Solution. We will prove the statement by contradiction. Assume that the
negation of the statement is true. That is, assume that there exists β ∈ R such
that β ≥ n for all n ∈ N. Set

A = N and B =
{
b ∈ R : b ≥ n ∀n ∈ N

}
.

Since 1 ∈ N and β ∈ B, the sets A and B are nonempty subsets of R. By the
definition of the set B we have a ≤ b for all a ∈ A and all b ∈ B. By Completeness
Axiom there exists c ∈ R such that a ≤ c ≤ b for all a ∈ A and all b ∈ B. In other
words, n ≤ c ≤ b for all n ∈ nN and all b ∈ B. Since c ≤ b for all b ∈ B, we
conclude that c− 1/2 6∈ B. Thus, there exists m ∈ N such that c− 1/2 < m. Since
n ≤ c for all n ∈ N we conclude that m + 1 ≤ c. Hence,

c − 1/2 < m < m + 1 ≤ c.

Using the above inequalities we get

1 = (m + 1) − m < c −
(
c − 1/2

)
= 1/2,

that is 2 < 1. Wrong! (by Exercise 2.2.5) This proves the statement. �

Exercise 2.11.2. Prove that there exists a unique positive real number α such
that α2 = 2.

Solution. Set

A =
{
x ∈ R : x > 0 and x2 < 2

}
, B =

{
y ∈ R : y > 0 and y2 > 2

}
.

Since 1 ∈ A and 2 ∈ B, A and B are nonempty subsets of R. By Exercise 2.2.7,
x < y for all x ∈ A and all y ∈ B. The Completeness axiom implies that there
exists c ∈ R such that x ≤ c ≤ y for all x ∈ A and all y ∈ B.

Next we will prove that B does not have minimum and A does not have max-
imum. The idea for these proofs comes from Exercise 2.2.9 which states that
(s + t)2 > 4st whenever s 6= t. Thus for arbitrary s > 0 such that s2 6= 2 we
have

(2.11.1)

(
s

2
+

1

s

)2

> 2.

That is (s/2 + 1/s) ∈ B. Taking reciprocal and multiplying by 4 in (2.11.1) yields

(2.11.2)
4

(
s
2 + 1

s

)2 < 2.

Hence 2/(s/2 + 1/s) ∈ A.
A proof that B does not have a minimum follows. Let y ∈ B. Then y2 > 2

and y > 0. Set

v =
y

2
+

1

y
.

Clearly v > 0. Since y2 > 2 we have y/2 > 1/y. Hence y > y/2 + 1/y, that is
y > v. Since by (2.11.1), v ∈ B this proves that B does not have a minimum.

A proof that A does not have a maximum follows. Let x ∈ A. Then x2 < 2
and x > 0. Set

u =
2

x
2 + 1

x

.
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Clearly u > 0. Since x2 < 2 we have x/2 < 1/x. Therefore, x/2 + 1/x < 2/x and
consequently u > x. Since by (2.11.2), u ∈ A this proves that A does not have a
maximum.

As A does not have a maximum c /∈ A; that is c2 < 2 is not true. As B does
not have a minimum c /∈ B; that is c2 > 2 is not true. Consequently, by Axiom 12,
c2 = 2. �

Exercise 2.11.3. Prove that Q is a proper subset of R.

Theorem 2.11.4 (Cantor’s Intersection Theorem). Assume that for each n ∈ N

we are given a bounded closed interval [an, bn] ⊂ R. Assume that for m, n ∈ N such

that m ≤ n we have

(2.11.3)
[
an, bn

]
⊆
[
am, bm

]
, that is am ≤ an ≤ bn ≤ bm.

Then ⋂

n∈N

[
an, bn

]
6= ∅.

Proof. Define the sets

A =
{
an : n ∈ N

}
and B =

{
bn : n ∈ N

}
.

Clearly A and B are nonempty sets. It follows from (2.11.3) that x ≤ y for all
a ∈ A and all y ∈ B. Now the Completeness axiom implies that there exists c ∈ R

such that

an ≤ c ≤ bn ∀n ∈ N.

Hence

c ∈
⋂

n∈N

[
an, bn

]
,

that is,
⋂

n∈N

[
an, bn

]
6= ∅.

This proves Cantor’s Intersection Theorem. �

Exercise 2.11.5. Let a, b ∈ R be such that a < b. Let f : N → (a, b) be a
function. Then f is not a surjection.

Proof. This is a sketch of a proof. First notice that by the assumption a <
f(n) < b for all n ∈ N.

Next, for each n ∈ N we will define a closed interval
[
an, bn

]
⊂ (a, b) using the

principle of inductive definition.

(i) Set a1 =
2

3
f(1) +

1

3
b, b1 =

1

3
f(1) +

2

3
b.

(ii) For each n ∈ N, we distinguish the following three cases and in each case we
define an+1 and bn+1 as follows.

Case 1: If f(n + 1) ≤ an set

an+1 =
1

2
an +

1

2
bn, bn+1 = bn.

Case 2: If an < f(n + 1) < bn set

an+1 =
1

2
f(n + 1) +

1

2
bn, bn+1 = bn.
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Case 3: If f(n + 1) ≥ bn set

an+1 = an, bn+1 =
1

2
an +

1

2
bn.

The following two properties are not difficult to prove:

(A) The closed intervals
[
an, bn

]
, n ∈ N, satisfy (2.11.3). Therefore, by Cantor’s

intersection theorem (Exercise 2.11.4), there exists c ∈ (a, b) such that c ∈
[
an, bn

]
for all n ∈ N.

(B) For each n ∈ N we have f(n) /∈
[
an, bn

]
.

From (A) and (B) above we conclude that f(n) 6= c for all n ∈ N and c ∈ (a, b).
Thus f is not a surjection. �

2.12. More on the sets N, Z and Q

Exercise 2.12.1. If b > 0, then there exists a natural number n such that
1

n
< b.

Exercise 2.12.2. If c ∈ R and − 1

n
< c <

1

n
for all n ∈ N, then c = 0.

Exercise 2.12.3. If a and b are positive real numbers, then there exists a
natural number n such that b < na. This tells us that, even if a is quite small and
b quite large, some integer multiple of a will exceed b.

Remark 2.12.4. Note that if we set b = 1 we obtain the statement in Exer-
cise 2.12.1 and if we set a = 1, we obtain the Archimedean property.

Exercise 2.12.5. If α, β ∈ R. 0 ≤ α < β and β − α > 1, then there exists
m ∈ N such that α < m < β (that is, there exists m ∈ (α, β) ∩ N).

Solution. Consider the set A = {k ∈ N : α < k}. By Axiom 2.11.1 the set A
is not empty. Clearly A ⊆ N. By Exercise 2.8.18 the set A has a minimum element.
Put m = min A. Now we have to prove that α < m < β. Since m ∈ A, we have
α < m. In order to prove that m < β we consider the following two cases: Case 1:
m = 1 and Case 2: m ∈ N\{1}.
Case 1. Assume that m = 1. Since 1 < β − α < β we see that m < β.
Case 2. Assume that m ∈ N\{1}. By Theorem 2.6.6 (ii), j = m − 1 ∈ N. Clearly
j < m. Is j ∈ A? NO: j is not in A since j < m = min A. Since j ∈ N and j /∈ A, we
have j ≤ α. Add 1 to both sides of this inequality and we get m = j+1 ≤ α+1 < β.
Therefore m < β. �

Remark 2.12.6. The goal of Exercise 2.12.5 is to prove the existence of a
natural number with a certain property. In other words, given α and β we must
construct a natural number m with the given property. What are possible tools for
this construction? The proof above uses a remarkable idea how to do “construc-
tions” of numbers:

Step 1: Identify a set of candidates for the desired number.
Step 2: The set of candidates is nice enough that it has an extreme element.

(In this case it is a minimum.)
Step 3: Where else could our special number be hiding?

Exercise 2.12.7. Let A ⊂ N be a nonempty and bounded subset of N. Prove
that A is finite.
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Exercise 2.12.8. A nonempty bounded below subset of Z has a minimum.

Exercise 2.12.9. A nonempty bounded above subset of Z has a maximum.

Exercise 2.12.10. Let x ∈ R be arbitrary. Prove that the set
{
k ∈ Z : k ≤ x

}

has a maximum.

Exercise 2.12.11. Let x ∈ R be arbitrary. Prove that the set
{
k ∈ Z : k ≥ x

}

has a minimum.

Based on the last two exercises we define the following two functions which
relate real numbers to integers.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

0

Figure 12. The floor function

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

0

Figure 13. The ceiling function

Definition 2.12.12. The floor function is defined by

flr(x) = ⌊x⌋ := max
{
k ∈ Z : k ≤ x

}
, x ∈ R.

The ceiling function is defined by

clg(x) = ⌈x⌉ := min
{
k ∈ Z : x ≤ k

}
, x ∈ R.

Exercise 2.12.13. Prove x − 1 < ⌊x⌋ ≤ x for all x ∈ R.

Exercise 2.12.14. Prove x ≤ ⌈x⌉ < x + 1 for all x ∈ R.

Exercise 2.12.15. Prove x

⌈
1

x

⌉

≥ 1 for all x > 0.

Exercise 2.12.16. Let a, b ∈ R and assume b−a ≥ 1. Prove a <
⌈a⌉ + ⌊b⌋

2
< b.

Exercise 2.12.17. Let a, b ∈ R and assume a < b. Prove

a <

⌈⌈
1

b − a

⌉

a

⌉

+

⌊⌈
1

b − a

⌉

b

⌋

2

⌈
1

b − a

⌉ < b.

Exercise 2.12.18. If a, b ∈ R and a < b, then there exists a rational number
r ∈ Q such that a < r < b

Exercise 2.12.19. Let a, b ∈ R and a < b. Prove that
{
x ∈ Q : a < x < b

}
is

an infinite set.
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2.13. Infimums and supremums

Definition 2.13.1. Let A be a nonempty subset of R. A number w ∈ R is a
supremum (or a least upper bound) of A if

(i) w is an upper bound for A, and
(ii) if v is an upper bound for A and w 6= v, then w < v.

Definition 2.13.2. Let A be a nonempty subset of R. A number u ∈ R is an
infimum (or greatest lower bound) of A if

(i) u is a lower bound for A, and
(ii) if v is a lower bound for A and v 6= u, then v < w.

If u and w are as in Definitions 2.13.1 and 2.13.2, we write

u = supA ( = lubA ) and w = inf A ( = glbA).

Exercise 2.13.3. If (supA) ∈ A, then supA = maxA. State and prove the
analogous statement for inf A.

Exercise 2.13.4. Let A be a nonempty and bounded above subset of R. Prove
that the set of all upper bounds of A has a minimum.

The following exercise gives the standard form of the Completeness axiom.

Exercise 2.13.5. A nonempty subset of R that is bounded above has a supre-
mum. In other words, if a set A ⊂ R is nonempty and bounded above, then supA
exists and it is a real number.

Exercise 2.13.6. A nonempty and bounded below subset of R has an infimum.

Exercise 2.13.7. Let A ⊂ R, A 6= ∅ and A is bounded below. Prove that
a = inf A if and only if

(a) a is a lower bound of A, that is, a ≤ x, for all x ∈ A;
(b) for each ǫ > 0 there exists x ∈ A such that x < a + ǫ.

Notice that x in (b) depends on ǫ. Sometimes it is useful to indicate this dependence
by writing xǫ or x(ǫ) instead of x.

Exercise 2.13.8. State and prove a characterization of supA which is analo-
gous to the characterization of inf A given in Exercise 2.13.7.

Exercise 2.13.9. Find sup and inf for the sets A =

{
1

n
: n ∈ N

}

and B =
{

n

n + 1
: n ∈ N

}

. Formal proofs are required. (By a formal proof I mean a rigorous

mathematical proof of properties (i) and (ii) in Definitions 2.13.1 and 2.13.2.)

Exercise 2.13.10. Find sup and inf for the set

{
n(−1)n

n + 1
: n ∈ N

}

.

Exercise 2.13.11. Let A be a nonempty and bounded above subset of R. If B
is a nonempty subset of A, then B is bounded above and supB ≤ sup A. Formulate
the corresponding statement for the infimums.

Exercise 2.13.12. Let A and B be nonempty bounded above subsets of R.
Prove

sup(A ∪ B) = max
{
sup A, sup B

}
.
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Exercise 2.13.13. Let A and B be nonempty subsets of R such that for all
x ∈ A and for all y ∈ B we have x ≤ y. Prove that supA ≤ inf B.

If the condition x ≤ y is replaced by the condition x < y, can we conclude that
supA < inf B?

Exercise 2.13.14. Suppose that A and B are nonempty subsets of R such that
for all x ∈ A and for all y ∈ B we have x ≤ y. Prove that supA = inf B if and only
if for each δ > 0 there exist x ∈ A and y ∈ B such that x + δ > y.

Exercise 2.13.15. Let A be a nonempty and bounded above subset of R, and
let F be a finite subset of A. If (supA) /∈ A, then sup(A\F ) = supA.

State and prove an analogous statement for inf A?

Exercise 2.13.16. Consider the set

A =
{
x ∈ R : x > 0 and x2 < 2

}
.

Prove that A is nonempty and bounded. Put α = supA. Prove that α2 = 2.
Note: Do this exercise using only the properties of the supremum. Do not use

the existence of
√

2 proved in Exercise 2.11.2.

Exercise 2.13.17. Let a > 0. Consider the set

A =
{
x ∈ R : x > 0 and x2 < a

}
.

Prove that A is nonempty and bounded. Put α = supA. Prove that α2 = a.

Exercise 2.13.18. Let a > 0 and n ∈ N. Consider the set

A =
{
x ∈ R : x > 0 and xn < a

}
.

Prove that A is nonempty and bounded. Put α = supA. Prove that αn = a.

Exercise 2.13.19. Let n ∈ N. Prove that the function f : [0, +∞) → [0, +∞)
defined by f(x) = xn, x ≥ 0, is a bijection.

Definition 2.13.20. The inverse of the bijection f : [0, +∞) → [0, +∞) from
Exercise 2.13.19 is called the n-th root function. For x ≥ 0 the value of the n-th
root function at x is denoted by n

√
x and it is called the n-th root of x.

Exercise 2.13.21. Let A be a nonempty subset of R. Define the difference set
Ad of A to be

Ad :=
{
b − a : a, b ∈ A and a < b

}

If A is infinite and bounded, then inf Ad = 0.

Remark 2.13.22. A partial contraposition of the last exercise is as follows. If A
is infinite and inf Ad > 0, then A is not bounded. Since we proved that N is infinite
and clearly Nd = N and hence inf Nd = 1, the contrapositive of Exercise 2.13.21
implies that N is not bounded. This is another proof of the Archimedean property
proved in Exercise 2.11.1. Notice that the existence of the floor and the ceiling
function and the fact that there are rational numbers in any open interval all depend
on the Archimedean property, and via the Archimedean property these properties
depend on the Completeness Axiom.

In conclusion, the set R is completely described by Axioms 1 through 15 and
the Completeness Axiom. All claims about real numbers can be proved using these
16 axioms and their consequences. As you probably already noticed in proofs we
also use elementary properties of sets and operations with sets.
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2.14. The topology of R

The terminology that we introduce in the next definition provides the essential
vocabulary of the modern analysis.

Definition 2.14.1. All points in this definition are elements of R and all sets
are subsets of R.

(a) Let ǫ > 0. A neighborhood (or ǫ-neighborhood) of a point a is the set

N(a, ǫ) =
{
x ∈ R : |x − a| < ǫ

}
= (a − ǫ, a + ǫ)

The number ǫ is called the radius of N(a, ǫ).
(b) A point a is an accumulation point of a set E if every neighborhood of a contains

a point x 6= a such that x ∈ E. That is, a is an accumulation point of the set
E if

E∩ (N(a, ǫ) \ {a}
)
6= ∅ for all ǫ > 0.

(c) A set E is closed if it contains all its accumulation points. That is, E is closed
if the following implication holds:

x is an accumulation point of E ⇒ x ∈ E.

(d) A point a is an interior point of the set E if there is a neighborhood of a that
is a subset of E. That is, a is an interior point of E if there exists ǫ > 0 such
that N(a, ǫ) ⊆ E.

(e) A set E is open if every point of E is an interior point of E.
(f) A set E is compact if every infinite subset of E has an accumulation point in

E.
(g) Let E ⊆ F . A set E is dense in F if every neighborhood of every point in F

contains a point of E.

Exercise 2.14.2. Find all accumulation points of the set

{
n(−1)n

n + 1
: n ∈ N

}

.

Provide formal proofs.

Exercise 2.14.3. Find all accumulation points of

{
4

n
+

n

4
−
⌊n

4

⌋

: n ∈ N

}

.

Provide formal proofs.

Exercise 2.14.4. Let A ⊂ R be a bounded set. If A does not have a maximum,
then supA is an accumulation point of A. Is the converse of the last implication
true?

Exercise 2.14.5. Let a < b. Prove that the open interval (a, b) is an open set.
Prove that the complement of (a, b), that is the set R \ (a, b) is closed. (Hint:
State the contrapositive of the implication in the definition of a closed set. Simplify
the contrapositive using the concept of an interior point.)

Exercise 2.14.6. Let a < b. Prove that the closed interval [a, b] is a closed
set. Prove that the complement of [a, b], that is the set R \ [a, b] is open.

Exercise 2.14.7. Let a < b. Consider the interval [a, b). Is this a closed set?
Is it open?

Exercise 2.14.8. Is R a closed set? Is it open?

Exercise 2.14.9. Prove that G ⊂ R is open if and only if R \ G is closed.
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Exercise 2.14.10. Let a < b. Prove that the closed interval [a, b] is a compact
set.

Hint: Use Cantor’s intersection theorem. Consider an arbitrary infinite subset
E of [a, b]. Define a sequence of closed intervals [an, bn], n ∈ N, such that, for all
n ∈ N,

[an, bn] ⊆ [a, b], [an+1, bn+1] ⊆ [an, bn], bn − an = (b − a)/2n−1,

and, most importantly, [an, bn] ∩ E is infinite.

Definition 2.14.11. A family G of open sets is an open cover for a set E if

E ⊆
⋃ {

G : G ∈ G
}
.

Definition 2.14.12. If every open cover of a set E has a finite subfamily that
is also an open cover of E, than we say that E has the Heine-Borel property.

Exercise 2.14.13. Let a < b. Prove that the closed interval [a, b] has the
Heine-Borel property.

Hint: Let G be an arbitrary open cover of [a, b]. Consider the set

S =
{

x ∈ (a, b] : ∃n ∈ N and ∃G1, . . . , Gn ∈ G such that [a, x] ⊆
n⋃

j=1

Gj

}

.

2.14.1. The structure of open sets in R.

Definition 2.14.14. A subset I ⊆ R is an open interval if one of the following
four conditions is satisfied

• I = R.
• There exists a ∈ R such that I = (−∞, a).
• There exists b ∈ R such that I = (b, +∞).
• There exist a, b ∈ R such that a < b and I = (a, b).

Exercise 2.14.15. Let I be an infinite family of open mutually disjoint inter-
vals. (Mutually disjoint means that if I1, I2 ∈ I and I1 6= I2, then I1 ∩ I2 6= ∅.)
Prove that I is countable.

Exercise 2.14.16. Let G be a nonempty open subset of R. Assume that R\G is
neither bounded above nor below. Prove that for each x ∈ G there exist a, b ∈ R\G
such that a < b, x ∈ (a, b) and (a, b) ⊆ G.

Exercise 2.14.17. Let G be a nonempty open subset of R. Assume that R\G
is neither bounded above nor below. Prove that there exists a finite or countable
family of open mutually disjoint intervals whose union equals G.

Exercise 2.14.18. Let G be a nonempty open subset of R. Then there exists
a finite or countable family of open mutually disjoint intervals whose union equals
G.
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