CHAPTER 4

Continuous functions

In this chapter I will always denote a non-empty subset of \mathbb{R} .

4.1. The ϵ - δ definition of a continuous function

Definition 4.1.1. A function $f: I \to \mathbb{R}$ is *continuous at a point* $x_0 \in I$ if for each $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that

(4.1.1)
$$x \in (x_0 - \delta(\epsilon), x_0 + \delta(\epsilon)) \cap I \quad \Rightarrow \quad |f(x) - f(x_0)| < \epsilon.$$

The function f is *continuous on* I if it is continuous at each point of I.

Note that the implication in (4.1.1) can be restated as

$$x \in I$$
 and $|x - x_0| < \delta(\epsilon) \implies |f(x) - f(x_0)| < \epsilon.$

Next we restate Definition 4.1.1 using the terminology introduced in Section 2.14. For a function $f : I \to \mathbb{R}$ and a subset $A \subseteq I$ we will use the notation f(A) to denote the set $\{y \in \mathbb{R} : \exists x \in A \text{ s.t. } f(x) = y\} = \{f(x) : x \in A\}.$

A function $f: I \to \mathbb{R}$ is continuous at a point $x_0 \in I$ if for each neighborhood V of $f(x_0)$ there exists a neighborhood U of x_0 such that

$$f(I \cap U) \subseteq V.$$

4.2. Finding $\delta(\epsilon)$ for a given function at a given point

In this and the next section we will prove that some familiar functions are continuous.

A general strategy for proving that a given function f is continuous at a given point x_0 is as follows:

- Step 1. Simplify the expression $|f(x) f(x_0)|$ and try to establish a simple connection with the expression $|x x_0|$. The simplest connection is to discover positive constants δ_0 and K such that
- $(4.2.1) \quad x \in I \text{ and } x_0 \delta_0 < x < x_0 + \delta_0 \quad \Rightarrow \quad |f(x) f(x_0)| \le K |x x_0|.$

Formulate your discovery as a lemma.

- Step 2. Let $\epsilon > 0$ be given. Use the result in Step 1 to define your $\delta(\epsilon)$. For example, if (4.2.1) holds, then $\delta(\epsilon) = \min\{\epsilon/K, \delta_0\}$.
- Step 3. Use the definition of $\delta(\epsilon)$ from Step 2 and the lemma from Step 1 to prove implication (4.1.1).

Example 4.2.1. We will show that the function $f(x) = x^2$ is continuous at $x_0 = 3$. Here $I = \mathbb{R}$ and we do not need to worry about the domain of f. Step 1. First simplify

(4.2.2)
$$|f(x) - f(x_0)| = |x^2 - 3^2| = |(x+3)(x-3)| = |x+3||x-3|.$$

Now we notice that if 2 < x < 4 we have $|x+3| = x+3 \le 7$. Thus (4.2.1) holds with $\delta_0 = 1$ and K = 7. We formulate this result as a lemma.

Lemma. Let $f(x) = x^2$ and $x_0 = 3$. Then (4.2.3) $|x - 3| < 1 \implies |x^2 - 3^2| < 7|x - 3|$.

PROOF. Let |x-3| < 1. Then 2 < x < 4. Therefore x+3 > 0 and |x+3| = x+3 < 7. By (4.2.2) we now have $|x^2-3^2| < 7|x-3|$.

Step 2. Now we define $\delta(\epsilon) = \min\{\epsilon/7, 1\}$.

Step 3. It remains to prove (4.1.1). To this end, assume $|x-3| < \min\{\epsilon/7, 1\}$. Then |x-3| < 1. Therefore, by Lemma we have $|x^2 - 3^2| < 7|x - 3|$. Since by the assumption $|x-3| < \epsilon/7$, we have $7|x-3| < \epsilon$. Now the inequalities

 $|x^2 - 3^2| < 7|x - 3|$ and $7|x - 3| < \epsilon$

imply that $|x^2 - 3^2| < \epsilon$. This proves (4.1.1) and completes the proof that the function $f(x) = x^2$ is continuous at $x_0 = 3$.

Exercise 4.2.2. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 5x - 8. Prove that f is continuous at $x_0 = -3$.

Exercise 4.2.3. Prove that the reciprocal function $x \mapsto \frac{1}{x}$, $x \neq 0$, is continuous at $x_0 = 1/2$.

Exercise 4.2.4. Let

$$f(x) = x \left\lfloor \frac{1}{x} \right\rfloor$$
 for $x \neq 0$ and $f(0) = 1$.

Prove that the function f is continuous at $x_0 = 0$.

Exercise 4.2.5. State carefully what it means for a function f not to be continuous at a point x_0 in its domain. (Express this as a formal mathematical statement.)

Exercise 4.2.6. Consider the function f defined in Exercise 4.2.4. Find a point x_0 at which the function f is not continuous. Provide a formal proof. Provide a detailed sketch of the graph of f near the point x_0 .

Exercise 4.2.7. Show that the function of Exercise 4.2.2 is continuous on \mathbb{R} .

Exercise 4.2.8. Prove that the function $q(x) = 3x^2 + 5$ is continuous at x = 2.

Exercise 4.2.9. Prove that $q(x) = 3x^2 + 5$ is continuous on \mathbb{R} .

4.3. Familiar continuous functions

Exercise 4.3.1. Let $m, k \in \mathbb{R}$ and $m \neq 0$. Prove that the linear function $\ell(x) = mx + k$ is continuous on \mathbb{R} .

Exercise 4.3.2. Let $a, b, c \in \mathbb{R}$ and $a \neq 0$. Prove that the quadratic function $q(x) = a x^2 + b x + c$ is continuous on \mathbb{R} .

Exercise 4.3.3. Let $n \in \mathbb{N}$ and let $x, x_0 \in \mathbb{R}$ be such that $x_0 - 1 \leq x \leq x_0 + 1$. Prove the following inequality

$$|x^n - x_0^n| \le n(|x_0| + 1)^{n-1} |x - x_0|.$$

November 16, 2009

HINT: First notice that the assumption $x_0 - 1 \le x \le x_0 + 1$ implies that $|x| < |x_0| + 1$. Then use the Mathematical Induction and the identity

$$\left|x^{n+1} - x_0^{n+1}\right| = \left|x^{n+1} - x\,x_0^n + x\,x_0^n - x_0^{n+1}\right|.$$

Exercise 4.3.4. Let $n \in \mathbb{N}$. Prove that the power function $x \mapsto x^n, x \in \mathbb{R}$, is continuous on \mathbb{R} .

Exercise 4.3.5. Let $n \in \mathbb{N}$ and let $a_0, a_1, \ldots, a_n \in \mathbb{R}$ with $a_n \neq 0$. Prove that the *n*-th order polynomial

$$p(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$$

is a continuous function on \mathbb{R} .

Exercise 4.3.6. Prove that the reciprocal function $x \mapsto \frac{1}{x}, x \neq 0$, is continuous on its domain.

Exercise 4.3.7. Prove that the square root function $x \mapsto \sqrt{x}$, $x \ge 0$, is continuous on its domain.

Exercise 4.3.8. Let $n \in \mathbb{N}$ and let x and a be positive real numbers. Prove that

$$\left|\sqrt[n]{x} - \sqrt[n]{a}\right| \le \frac{\sqrt[n]{a}}{a} |x - a|.$$

HINT: Notice that the given inequality is equivalent to

$$|b^{n-1}|y-b| \le |y^n-b^n|, \quad y,b>0.$$

This inequality can be proved using Exercise 2.7.7 (with a = 1 and x = y/b).

Exercise 4.3.9. Let $n \in \mathbb{N}$. Prove that the *n*-th root function $x \mapsto \sqrt[n]{x}$, $x \ge 0$, is continuous on its domain.

4.4. Various properties of continuous functions

Exercise 4.4.1. Let $f: I \to \mathbb{R}$ be continuous at $x_0 \in I$ and let y be a real number such that $f(x_0) < y$. Then there exists $\alpha > 0$ such that

$$x \in I \cap (x_0 - \alpha, x_0 + \alpha) \quad \Rightarrow \quad f(x) < y.$$

Illustrate with a diagram.

Exercise 4.4.2. Let $f: I \to \mathbb{R}$ be a continuous function on I. Let S be a nonempty bounded above subset of I such that $u = \sup S$ belongs to I. Let $y \in \mathbb{R}$. Prove: If $f(x) \leq y$ for each $x \in S$, then $f(u) \leq y$.

The following exercise establishes a connection between continuous functions and convergent sequences.

Exercise 4.4.3. Let $f: I \to \mathbb{R}$ be continuous at $x_0 \in I$. Let $\{t_n\}$ be a sequence in I that converges to $x_0 \in I$. Then $f(t_n) \to f(x_0)$ as $n \to \infty$.

Exercise 4.4.4. Let $f: I \to \mathbb{R}$ be continuous at $x_0 \in I$. Let $\{t_n\}$ be a sequence in I that converges to $x_0 \in I$. Assume that there is a real number y such that $f(t_n) \leq y$ for all $n \in \mathbb{N}$. Then $f(x_0) \leq y$.

Exercise 4.4.5. Let $f: I \to \mathbb{R}$ be continuous at $x_0 \in I$. Let $\{x_n\}$ be a sequence in I that converges to $x_0 \in I$. Assume that there is a real number y such that $f(t_n) \ge y$ for all $n \in \mathbb{N}$. Then $f(x_0) \ge y$.

November 16, 2009

4. CONTINUOUS FUNCTIONS

4.5. Algebra of continuous functions

All exercises in this section have the same structure. With the exception of Exercise 4.5.3, there are three functions in each exercise: f, g and h. The function h is always related in a simple (green) way to the functions f and g. Based on the given (green) information about f and g you are asked to prove a claim (red) about the function h.

Exercise 4.5.1. Let $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ be given functions with a common domain. Define the function $h: I \to \mathbb{R}$ by

$$h(x) = f(x) + g(x), \quad x \in I.$$

- (a) If f and g are continuous at $x_0 \in I$, then h is continuous at x_0 .
- (b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.2. Let $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ be given functions with a common domain. Define the function $h: I \to \mathbb{R}$ by

$$h(x) = f(x)g(x), \quad x \in I.$$

(a) If f and g are continuous at $x_0 \in I$, then h is continuous at x_0 .

(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.3. Let $g: I \to \mathbb{R}$ be a given functions such that $g(x) \neq 0$ for all $x \in I$. Define the function $h: I \to \mathbb{R}$ by

$$h(x) = \frac{1}{g(x)}, \quad x \in I.$$

(a) If g is continuous at $x_0 \in I$, then h is continuous at x_0 .

(b) If g is continuous on I, then h is continuous on I.

Exercise 4.5.4. Let $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ be given functions with a common domain. Assume that $g(x) \neq 0$ for all $x \in I$. Define the function $h: I \to \mathbb{R}$ by

$$h(x) = \frac{f(x)}{g(x)}, \quad x \in I$$

- (a) If f and g are continuous at $x_0 \in I$, then h is continuous at x_0 .
- (b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.5. Let I and J be non-empty subsets of \mathbb{R} . Let $f : I \to \mathbb{R}$ and $g: J \to \mathbb{R}$ be given functions. Assume that the range of f is contained in J. Define the function $h: I \to \mathbb{R}$ by

$$h(x) = g(f(x)), \quad x \in I.$$

- (a) If f is continuous at $x_0 \in I$ and g is continuous at $f(x_0) \in J$, then h is continuous at x_0 .
- (b) If f is continuous on I and g is continuous on J, then h is continuous on I.

4.6. Continuous functions on a closed bounded interval [a, b]

In this section we assume that $a, b \in \mathbb{R}$ and a < b.

Exercise 4.6.1. Let $\alpha, \beta, \gamma \in \mathbb{R}$. If $\alpha\beta \leq 0$, then $\alpha\gamma \leq 0$ or $\beta\gamma \leq 0$.

Exercise 4.6.2. Let $f : [a, b] \to \mathbb{R}$ be a continuous function. If $f(a)f(b) \leq 0$, then there exists $z \in [a, b]$ such that f(z) = 0.

HINT 1: Use Cantor's intersection theorem. Define a sequence of closed intervals $[a_n, b_n], n \in \mathbb{N}$, such that

 $[a_n, b_n] \subseteq [a, b], \quad [a_{n+1}, b_{n+1}] \subseteq [a_n, b_n], \quad b_n - a_n = (b-a)/2^{n-1},$

and, most importantly, $f(a_n)f(b_n) \leq 0$ for all $n \in \mathbb{N}$.

HINT 2: Assume that f(a) < 0 and f(b) > 0 and consider the set

 $W = \{ w \in [a, b) : f(x) < 0 \ \forall x \in [a, w] \}.$

Exercise 4.6.3. Let $f : D \to \mathbb{R}$ be a function defined on a nonempty set D. If $D = A \cup B$, then one of the following two statements hold:

(a) For each $x \in D$ there exists $y \in A$ such that $f(x) \leq f(y)$.

(b) For each $x \in D$ there exists $y \in B$ such that $f(x) \leq f(y)$.

Exercise 4.6.4. Let $f : [a, b] \to \mathbb{R}$ be a function defined on [a, b]. Then for each $\eta > 0$ there exists $c, d \in [a, b]$ such that $0 < d - c < \eta$ and for each $x \in [a, b]$ there exists $y \in [c, d]$ such that $f(x) \leq f(y)$.

HINT: Use a part of the hint for Exercise 4.6.2 and Exercise 4.6.3.

Exercise 4.6.5. Let $f : [a,b] \to \mathbb{R}$ be a continuous function. Then there exists $w \in [a,b]$ such that $f(x) \leq f(w)$ for all $x \in [a,b]$.

HINT 1: Use Cantor's intersection theorem, a part of the hint for Exercise 4.6.2 and Exercise 4.6.3.

HINT 2: Consider the set

 $W = \Big\{ w \in [a,b) \, : \, \exists \ z \in (w,b] \ \text{ such that } \ f(x) < f(z) \ \forall \ x \in [a,w] \Big\}.$

Here [a, a] denotes the set $\{a\}$. Prove that the set W has the following property: If $[a, v) \subseteq W$, with a < v, and if there exists $t \in [a, b]$ such that f(t) > f(v), then $v \in W$.

Exercise 4.6.6. Let $f : [a,b] \to \mathbb{R}$ be a continuous function. Then there exists $v \in [a,b]$ such that $f(v) \leq f(x)$ for all $x \in [a,b]$.

HINT: Use Exercise 4.6.5.

Exercise 4.6.7. Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then the range of f is a closed bounded interval.

HINT: Use Exercises 4.6.5, 4.6.6, and 4.6.2.

Exercise 4.6.8. Consider the function $f(x) = x^5 - x, x \in \mathbb{R}$.

(a) Prove that 1 is in the range of f.

(b) Prove that the range of f equals \mathbb{R} .

Definition 4.6.9. A function f is *increasing* on an interval I if $x, y \in I$ with x < y imply f(x) < f(y). A function f is *decreasing* if $x, y \in I$ with x < y imply f(x) > f(y). A function which is increasing or decreasing is said to be *strictly monotonic*.

Exercise 4.6.10. If f is continuous and increasing on [a, b] or continuous and decreasing on [a, b], then for each y between f(a) and f(b) there is exactly one $x \in [a, b]$ such that f(x) = y.

Exercise 4.6.11. Let $f(x) = x^3 + x$, $x \in \mathbb{R}$. Prove that f has an inverse. That is, prove that for each $y \in \mathbb{R}$ there exists unique $x \in \mathbb{R}$ such that f(x) = y.

November 16, 2009