CHAPTER 4

Continuous functions

In this chapter I will always denote a non-empty subset of \mathbb{R}.

4.1. The $\epsilon-\delta$ definition of a continuous function

Definition 4.1.1. A function $f: I \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in I$ if for each $\epsilon>0$ there exists $\delta(\epsilon)>0$ such that

$$
\begin{equation*}
x \in\left(x_{0}-\delta(\epsilon), x_{0}+\delta(\epsilon)\right) \cap I \quad \Rightarrow \quad\left|f(x)-f\left(x_{0}\right)\right|<\epsilon \tag{4.1.1}
\end{equation*}
$$

The function f is continuous on I if it is continuous at each point of I.
Note that the implication in 4.1.1) can be restated as

$$
x \in I \text { and }\left|x-x_{0}\right|<\delta(\epsilon) \quad \Rightarrow \quad\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

Next we restate Definition 4.1.1]using the terminology introduced in Section 2.14. For a function $f: I \rightarrow \mathbb{R}$ and a subset $A \subseteq I$ we will use the notation $f(A)$ to denote the set $\{y \in \mathbb{R}: \exists x \in A$ s.t. $f(x)=y\}=\{f(x): x \in A\}$.

A function $f: I \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in I$ if for each neighborhood V of $f\left(x_{0}\right)$ there exists a neighborhood U of x_{0} such that

$$
f(I \cap U) \subseteq V
$$

4.2. Finding $\delta(\epsilon)$ for a given function at a given point

In this and the next section we will prove that some familiar functions are continuous.

A general strategy for proving that a given function f is continuous at a given point x_{0} is as follows:
Step 1. Simplify the expression $\left|f(x)-f\left(x_{0}\right)\right|$ and try to establish a simple connection with the expression $\left|x-x_{0}\right|$. The simplest connection is to discover positive constants δ_{0} and K such that

$$
\begin{equation*}
x \in I \quad \text { and } \quad x_{0}-\delta_{0}<x<x_{0}+\delta_{0} \quad \Rightarrow \quad\left|f(x)-f\left(x_{0}\right)\right| \leq K\left|x-x_{0}\right| \tag{4.2.1}
\end{equation*}
$$

Formulate your discovery as a lemma.
Step 2. Let $\epsilon>0$ be given. Use the result in Step 1 to define your $\delta(\epsilon)$. For example, if (4.2.1) holds, then $\delta(\epsilon)=\min \left\{\epsilon / K, \delta_{0}\right\}$.
Step 3. Use the definition of $\delta(\epsilon)$ from Step 2 and the lemma from Step 1 to prove implication 4.1.1).

Example 4.2.1. We will show that the function $f(x)=x^{2}$ is continuous at $x_{0}=3$. Here $I=\mathbb{R}$ and we do not need to worry about the domain of f.
Step 1. First simplify

$$
\begin{equation*}
\left|f(x)-f\left(x_{0}\right)\right|=\left|x^{2}-3^{2}\right|=|(x+3)(x-3)|=|x+3||x-3| \tag{4.2.2}
\end{equation*}
$$

Now we notice that if $2<x<4$ we have $|x+3|=x+3 \leq 7$. Thus 4.2.1 holds with $\delta_{0}=1$ and $K=7$. We formulate this result as a lemma.
Lemma. Let $f(x)=x^{2}$ and $x_{0}=3$. Then

$$
\begin{equation*}
|x-3|<1 \quad \Rightarrow \quad\left|x^{2}-3^{2}\right|<7|x-3| \tag{4.2.3}
\end{equation*}
$$

Proof. Let $|x-3|<1$. Then $2<x<4$. Therefore $x+3>0$ and $|x+3|=$ $x+3<7$. By (4.2.2) we now have $\left|x^{2}-3^{2}\right|<7|x-3|$.
Step 2. Now we define $\delta(\epsilon)=\min \{\epsilon / 7,1\}$.
Step 3. It remains to prove 4.1.1). To this end, assume $|x-3|<\min \{\epsilon / 7,1\}$. Then $|x-3|<1$. Therefore, by Lemma we have $\left|x^{2}-3^{2}\right|<7|x-3|$. Since by the assumption $|x-3|<\epsilon / 7$, we have $7|x-3|<\epsilon$. Now the inequalities

$$
\left|x^{2}-3^{2}\right|<7|x-3| \quad \text { and } \quad 7|x-3|<\epsilon
$$

imply that $\left|x^{2}-3^{2}\right|<\epsilon$. This proves (4.1.1) and completes the proof that the function $f(x)=x^{2}$ is continuous at $x_{0}=3$.

Exercise 4.2.2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=5 x-8$. Prove that f is continuous at $x_{0}=-3$.
Exercise 4.2.3. Prove that the reciprocal function $x \mapsto \frac{1}{x}, x \neq 0$, is continuous at $x_{0}=1 / 2$.

Exercise 4.2.4. Let

$$
f(x)=x\left\lfloor\frac{1}{x}\right\rfloor \quad \text { for } \quad x \neq 0 \quad \text { and } \quad f(0)=1
$$

Prove that the function f is continuous at $x_{0}=0$.
Exercise 4.2.5. State carefully what it means for a function f not to be continuous at a point x_{0} in its domain. (Express this as a formal mathematical statement.)
Exercise 4.2.6. Consider the function f defined in Exercise 4.2.4 Find a point x_{0} at which the function f is not continuous. Provide a formal proof. Provide a detailed sketch of the graph of f near the point x_{0}.
Exercise 4.2.7. Show that the function of Exercise 4.2 .2 is continuous on \mathbb{R}.
Exercise 4.2.8. Prove that the function $q(x)=3 x^{2}+5$ is continuous at $x=2$.
Exercise 4.2.9. Prove that $q(x)=3 x^{2}+5$ is continuous on \mathbb{R}.

4.3. Familiar continuous functions

Exercise 4.3.1. Let $m, k \in \mathbb{R}$ and $m \neq 0$. Prove that the linear function $\ell(x)=$ $m x+k$ is continuous on \mathbb{R}.

Exercise 4.3.2. Let $a, b, c \in \mathbb{R}$ and $a \neq 0$. Prove that the quadratic function $q(x)=a x^{2}+b x+c$ is continuous on \mathbb{R}.
Exercise 4.3.3. Let $n \in \mathbb{N}$ and let $x, x_{0} \in \mathbb{R}$ be such that $x_{0}-1 \leq x \leq x_{0}+1$. Prove the following inequality

$$
\left|x^{n}-x_{0}^{n}\right| \leq n\left(\left|x_{0}\right|+1\right)^{n-1}\left|x-x_{0}\right|
$$

Hint: First notice that the assumption $x_{0}-1 \leq x \leq x_{0}+1$ implies that $|x|<\left|x_{0}\right|+1$. Then use the Mathematical Induction and the identity

$$
\left|x^{n+1}-x_{0}^{n+1}\right|=\left|x^{n+1}-x x_{0}^{n}+x x_{0}^{n}-x_{0}^{n+1}\right|
$$

Exercise 4.3.4. Let $n \in \mathbb{N}$. Prove that the power function $x \mapsto x^{n}, x \in \mathbb{R}$, is continuous on \mathbb{R}.

Exercise 4.3.5. Let $n \in \mathbb{N}$ and let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ with $a_{n} \neq 0$. Prove that the n-th order polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}
$$

is a continuous function on \mathbb{R}.
Exercise 4.3.6. Prove that the reciprocal function $x \mapsto \frac{1}{x}, x \neq 0$, is continuous on its domain.
Exercise 4.3.7. Prove that the square root function $x \mapsto \sqrt{x}, x \geq 0$, is continuous on its domain.

Exercise 4.3.8. Let $n \in \mathbb{N}$ and let x and a be positive real numbers. Prove that

$$
|\sqrt[n]{x}-\sqrt[n]{a}| \leq \frac{\sqrt[n]{a}}{a}|x-a|
$$

Hint: Notice that the given inequality is equivalent to

$$
b^{n-1}|y-b| \leq\left|y^{n}-b^{n}\right|, \quad y, b>0
$$

This inequality can be proved using Exercise 2.7.7 (with $a=1$ and $x=y / b$).
Exercise 4.3.9. Let $n \in \mathbb{N}$. Prove that the n-th root function $x \mapsto \sqrt[n]{x}, x \geq 0$, is continuous on its domain.

4.4. Various properties of continuous functions

Exercise 4.4.1. Let $f: I \rightarrow \mathbb{R}$ be continuous at $x_{0} \in I$ and let y be a real number such that $f\left(x_{0}\right)<y$. Then there exists $\alpha>0$ such that

$$
x \in I \cap\left(x_{0}-\alpha, x_{0}+\alpha\right) \quad \Rightarrow \quad f(x)<y
$$

Illustrate with a diagram.
Exercise 4.4.2. Let $f: I \rightarrow \mathbb{R}$ be a continuous function on I. Let S be a nonempty bounded above subset of I such that $u=\sup S$ belongs to I. Let $y \in \mathbb{R}$. Prove: If $f(x) \leq y$ for each $x \in S$, then $f(u) \leq y$.

The following exercise establishes a connection between continuous functions and convergent sequences.
Exercise 4.4.3. Let $f: I \rightarrow \mathbb{R}$ be continuous at $x_{0} \in I$. Let $\left\{t_{n}\right\}$ be a sequence in I that converges to $x_{0} \in I$. Then $f\left(t_{n}\right) \rightarrow f\left(x_{0}\right)$ as $n \rightarrow \infty$.
Exercise 4.4.4. Let $f: I \rightarrow \mathbb{R}$ be continuous at $x_{0} \in I$. Let $\left\{t_{n}\right\}$ be a sequence in I that converges to $x_{0} \in I$. Assume that there is a real number y such that $f\left(t_{n}\right) \leq y$ for all $n \in \mathbb{N}$. Then $f\left(x_{0}\right) \leq y$.
Exercise 4.4.5. Let $f: I \rightarrow \mathbb{R}$ be continuous at $x_{0} \in I$. Let $\left\{x_{n}\right\}$ be a sequence in I that converges to $x_{0} \in I$. Assume that there is a real number y such that $f\left(t_{n}\right) \geq y$ for all $n \in \mathbb{N}$. Then $f\left(x_{0}\right) \geq y$.

4.5. Algebra of continuous functions

All exercises in this section have the same structure. With the exception of Exercise 4.5.3, there are three functions in each exercise: f, g and h. The function h is always related in a simple (green) way to the functions f and g. Based on the given (green) information about f and g you are asked to prove a claim (red) about the function h.

Exercise 4.5.1. Let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be given functions with a common domain. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=f(x)+g(x), \quad x \in I
$$

(a) If f and g are continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.2. Let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be given functions with a common domain. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=f(x) g(x), \quad x \in I
$$

(a) If f and g are continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.3. Let $g: I \rightarrow \mathbb{R}$ be a given functions such that $g(x) \neq 0$ for all $x \in I$. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=\frac{1}{g(x)}, \quad x \in I
$$

(a) If g is continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If g is continuous on I, then h is continuous on I.

Exercise 4.5.4. Let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be given functions with a common domain. Assume that $g(x) \neq 0$ for all $x \in I$. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=\frac{f(x)}{g(x)}, \quad x \in I
$$

(a) If f and g are continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.5. Let I and J be non-empty subsets of \mathbb{R}. Let $f: I \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}$ be given functions. Assume that the range of f is contained in J. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=g(f(x)), \quad x \in I
$$

(a) If f is continuous at $x_{0} \in I$ and g is continuous at $f\left(x_{0}\right) \in J$, then h is continuous at x_{0}.
(b) If f is continuous on I and g is continuous on J, then h is continuous on I.

4.6. Continuous functions on a closed bounded interval $[a, b]$

In this section we assume that $a, b \in \mathbb{R}$ and $a<b$.
Exercise 4.6.1. Let $\alpha, \beta, \gamma \in \mathbb{R}$. If $\alpha \beta \leq 0$, then $\alpha \gamma \leq 0$ or $\beta \gamma \leq 0$.

Exercise 4.6.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. If $f(a) f(b) \leq 0$, then there exists $z \in[a, b]$ such that $f(z)=0$.

Hint 1: Use Cantor's intersection theorem. Define a sequence of closed intervals $\left[a_{n}, b_{n}\right], n \in \mathbb{N}$, such that

$$
\left[a_{n}, b_{n}\right] \subseteq[a, b], \quad\left[a_{n+1}, b_{n+1}\right] \subseteq\left[a_{n}, b_{n}\right], \quad b_{n}-a_{n}=(b-a) / 2^{n-1}
$$

and, most importantly, $f\left(a_{n}\right) f\left(b_{n}\right) \leq 0$ for all $n \in \mathbb{N}$.
Hint 2: Assume that $f(a)<0$ and $f(b)>0$ and consider the set

$$
W=\{w \in[a, b): f(x)<0 \forall x \in[a, w]\} .
$$

Exercise 4.6.3. Let $f: D \rightarrow \mathbb{R}$ be a function defined on a nonempty set D. If $D=A \cup B$, then one of the following two statements hold:
(a) For each $x \in D$ there exists $y \in A$ such that $f(x) \leq f(y)$.
(b) For each $x \in D$ there exists $y \in B$ such that $f(x) \leq f(y)$.

Exercise 4.6.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function defined on $[a, b]$. Then for each $\eta>0$ there exists $c, d \in[a, b]$ such that $0<d-c<\eta$ and for each $x \in[a, b]$ there exists $y \in[c, d]$ such that $f(x) \leq f(y)$.

Hint: Use a part of the hint for Exercise 4.6.2 and Exercise 4.6.3.
Exercise 4.6.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists $w \in[a, b]$ such that $f(x) \leq f(w)$ for all $x \in[a, b]$.

Hint 1: Use Cantor's intersection theorem, a part of the hint for Exercise 4.6.2 and Exercise 4.6.3.

Hint 2: Consider the set

$$
W=\{w \in[a, b): \exists z \in(w, b] \text { such that } f(x)<f(z) \forall x \in[a, w]\}
$$

Here $[a, a]$ denotes the set $\{a\}$. Prove that the set W has the following property: If $[a, v) \subseteq W$, with $a<v$, and if there exists $t \in[a, b]$ such that $f(t)>f(v)$, then $v \in W$.
Exercise 4.6.6. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists $v \in[a, b]$ such that $f(v) \leq f(x)$ for all $x \in[a, b]$.

Hint: Use Exercise 4.6.5
Exercise 4.6.7. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then the range of f is a closed bounded interval.

Hint: Use Exercises 4.6.5, 4.6.6, and 4.6.2,
Exercise 4.6.8. Consider the function $f(x)=x^{5}-x, x \in \mathbb{R}$.
(a) Prove that 1 is in the range of f.
(b) Prove that the range of f equals \mathbb{R}.

Definition 4.6.9. A function f is increasing on an interval I if $x, y \in I$ with $x<y$ imply $f(x)<f(y)$. A function f is decreasing if $x, y \in I$ with $x<y$ imply $f(x)>f(y)$. A function which is increasing or decreasing is said to be strictly monotonic.

Exercise 4.6.10. If f is continuous and increasing on $[a, b]$ or continuous and decreasing on $[a, b]$, then for each y between $f(a)$ and $f(b)$ there is exactly one $x \in[a, b]$ such that $f(x)=y$.
Exercise 4.6.11. Let $f(x)=x^{3}+x, x \in \mathbb{R}$. Prove that f has an inverse. That is, prove that for each $y \in \mathbb{R}$ there exists unique $x \in \mathbb{R}$ such that $f(x)=y$.

