ON THE MAXIMUM OF A CONTINUOUS FUNCTION

BRANKO ĆURGUS

Theorem. Let $a, b \in \mathbb{R}, a<b$. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$. Then there exists $c \in[a, b]$ such that $f(c) \geq f(x)$ for all $x \in[a, b]$.
Proof. Case I. Assume $f(a) \geq f(x)$ for all $x \in[a, b]$. Then we can take $c=a$.
Case II. Assume that there exists $s \in[a, b]$ such that $f(s)>f(a)$. Set

$$
W=\{w \in[a, b): \exists z \in[a, b] \text { such that } f(x)<f(z) \forall x \in[a, w]\} .
$$

Step 1. In this case we have $a \in W$. Just set $z=s$ and $f(x)<f(z)$ is true for all $x \in[a, a]=\{a\}$. By definition, $W \subset[a, b)$. Therefore

$$
c=\sup W
$$

exists by the Completeness Axiom. Clearly $c \in[a, b]$.
Step 2. Here we show that W does not have a maximum. Let $v \in W$ be arbitrary. Then $v<b$ and there exists $z \in[a, b]$ such that

$$
\begin{equation*}
f(x)<f(z) \quad \forall x \in[a, v] . \tag{1}
\end{equation*}
$$

In particular, $f(v)<f(z)$. Set $\epsilon_{0}=\frac{1}{2}(f(z)-f(v))>0$. Since f is continuous at v, there exists $\delta_{0}=\delta_{v}\left(\epsilon_{0}\right)>0$ such that

$$
\begin{equation*}
x \in[a, b] \cap\left(v-\delta_{0}, v+\delta_{0}\right) \quad \Rightarrow \quad f(v)-\epsilon_{0}<f(x)<f(v)+\epsilon_{0} . \tag{2}
\end{equation*}
$$

Set $\mu=\frac{1}{2} \min \left\{\delta_{0}, b-v\right\}>0$. Then $v+\mu<b$ and $v+\mu<v+\delta_{0}$. Now (2) implies

$$
\begin{equation*}
f(x)<f(v)+\epsilon_{0}=\frac{1}{2}(f(v)+f(z))<f(z) \quad \forall x \in[v, v+\mu] . \tag{3}
\end{equation*}
$$

It follows from (1) and (3) that

$$
f(x)<f(z) \quad \forall x \in[a, v+\mu] .
$$

Consequently $v+\mu \in W$. Hence v is not a maximum of W. Thus, $c \notin W$. In particular $c>a$.
Step 3. Here we show that $[a, c) \subset W$. Let $x \in[a, c)$ be arbitrary. Since $x<c$ and $c=\sup W, x$ is not an upper bound of W. Hence, there exists $w \in W$ such that $x<w<c$. Now $x \in W$ follows directly from the definition of W. Thus $[a, c) \subset W$.
Step 4. Next we prove the implication:

[^0]$$
a<c \text { and }[a, c) \subset W \text { and } c \notin W \Longrightarrow f(c) \geq f(x) \forall x \in[a, b] .
$$

The following implication is a partial contrapositive of the preceding one and hence equivalent to it:

$$
a<v \text { and }[a, v) \subset W \text { and } \exists t \in[a, b] \text { s.t. } f(t)>f(v) \Longrightarrow v \in W
$$

Since this implication is easier to prove, we proceed with its proof in the next step.

Step 5. Assume $a<v,[a, v) \subset W$ and let $t \in[a, b]$ be such that $f(t)>$ $f(v)$. Set $\epsilon_{1}=\frac{1}{2}(f(t)-f(v))>0$. Since f is continuous at v there exists $\delta_{1}=\delta_{v}\left(\epsilon_{1}\right)>0$ such that

$$
\begin{equation*}
x \in[a, b] \cap\left(v-\delta_{1}, v+\delta_{1}\right) \quad \Rightarrow \quad f(v)-\epsilon_{1}<f(x)<f(v)+\epsilon_{1} \tag{4}
\end{equation*}
$$

Now set $\eta=\frac{1}{2} \min \left\{\delta_{1}, v-a\right\}>0$. Then $a<v-\eta$ and $v-\delta_{1}<v-\eta$. Therefore, by (4) we have

$$
f(x)<f(v)+\epsilon_{1}=\frac{1}{2}(f(v)+f(t))<f(t) \quad \forall x \in[v-\eta, v]
$$

Or, briefly,

$$
\begin{equation*}
f(x)<f(t) \quad \forall x \in[v-\eta, v] \tag{5}
\end{equation*}
$$

Since $a<v-\eta<v$, the assumption $[a, v) \subset W$ gives $v-\eta \in W$. Therefore, there exists $s \in[a, b]$ such that

$$
\begin{equation*}
f(x)<f(s) \quad \forall x \in[a, v-\eta] \tag{6}
\end{equation*}
$$

To prove that $v \in W$, we set

$$
z= \begin{cases}s & \text { if } f(t)<f(s) \\ t & \text { if } f(s) \leq f(t)\end{cases}
$$

Then, clearly,

$$
f(z)=\max \{f(t), f(s)\}
$$

Therefore, (5) and (6) imply

$$
f(x)<f(z) \quad \forall x \in[a, v]
$$

Thus, $v \in W$.
Conclusion. The second implication in Step 4 is proved in Step 5. Since two implications in Step 4 are equivalent, we have proved the first implication in Step 4. Since the hypotheses of the first implication in Step 4 are true by Steps 2 and 3, we have proved that $f(c) \geq f(x)$ for all $x \in[a, b]$. The proof is complete.

[^0]: Date: December 8, 2009 at 11:38, File: ContMaxHO.tex

