ON THE MAXIMUM OF A CONTINUOUS FUNCTION

BRANKO ĆURGUS

Theorem. Let $a, b \in \mathbb{R}$, a < b. Let $f : [a, b] \to \mathbb{R}$ be a continuous function on [a, b]. Then there exists $c \in [a, b]$ such that $f(c) \ge f(x)$ for all $x \in [a, b]$. **Proof. Case I.** Assume $f(a) \ge f(x)$ for all $x \in [a, b]$. Then we can take c = a.

Case II. Assume that there exists $s \in [a, b]$ such that f(s) > f(a). Set

$$W = \Big\{ w \in [a,b] : \exists z \in [a,b] \text{ such that } f(x) < f(z) \quad \forall x \in [a,w] \Big\}.$$

Step 1. In this case we have $a \in W$. Just set z = s and f(x) < f(z) is true for all $x \in [a, a] = \{a\}$. By definition, $W \subset [a, b)$. Therefore

$$c = \sup W$$

exists by the Completeness Axiom. Clearly $c \in [a, b]$.

Step 2. Here we show that W does not have a maximum. Let $v \in W$ be arbitrary. Then v < b and there exists $z \in [a, b]$ such that

(1)
$$f(x) < f(z) \quad \forall \ x \in [a, v]$$

In particular, f(v) < f(z). Set $\epsilon_0 = \frac{1}{2}(f(z) - f(v)) > 0$. Since f is continuous at v, there exists $\delta_0 = \delta_v(\epsilon_0) > 0$ such that

(2)
$$x \in [a,b] \cap (v - \delta_0, v + \delta_0) \Rightarrow f(v) - \epsilon_0 < f(v) + \epsilon_0.$$

Set $\mu = \frac{1}{2} \min\{\delta_0, b - v\} > 0$. Then $v + \mu < b$ and $v + \mu < v + \delta_0$. Now (2) implies

(3)
$$f(x) < f(v) + \epsilon_0 = \frac{1}{2} (f(v) + f(z)) < f(z) \quad \forall x \in [v, v + \mu].$$

It follows from (1) and (3) that

$$f(x) < f(z) \quad \forall \ x \in [a, v + \mu].$$

Consequently $v + \mu \in W$. Hence v is not a maximum of W. Thus, $c \notin W$. In particular c > a.

Step 3. Here we show that $[a, c) \subset W$. Let $x \in [a, c)$ be arbitrary. Since x < c and $c = \sup W$, x is not an upper bound of W. Hence, there exists $w \in W$ such that x < w < c. Now $x \in W$ follows directly from the definition of W. Thus $[a, c) \subset W$.

Step 4. Next we prove the implication:

Date: December 8, 2009 at 11:38, File: ContMaxHO.tex.

BRANKO ĆURGUS

a < c and $[a, c) \subset W$ and $c \notin W \implies f(c) \ge f(x) \quad \forall x \in [a, b].$

The following implication is a partial contrapositive of the preceding one and hence equivalent to it:

a < v and $[a, v) \subset W$ and $\exists t \in [a, b]$ s.t. $f(t) > f(v) \implies v \in W$.

Since this implication is easier to prove, we proceed with its proof in the next step.

Step 5. Assume a < v, $[a, v) \subset W$ and let $t \in [a, b]$ be such that f(t) > f(v). Set $\epsilon_1 = \frac{1}{2}(f(t) - f(v)) > 0$. Since f is continuous at v there exists $\delta_1 = \delta_v(\epsilon_1) > 0$ such that

(4)
$$x \in [a,b] \cap (v-\delta_1,v+\delta_1) \Rightarrow f(v)-\epsilon_1 < f(x) < f(v)+\epsilon_1.$$

Now set $\eta = \frac{1}{2} \min\{\delta_1, v - a\} > 0$. Then $a < v - \eta$ and $v - \delta_1 < v - \eta$. Therefore, by (4) we have

$$f(x) < f(v) + \epsilon_1 = \frac{1}{2} (f(v) + f(t)) < f(t) \quad \forall \ x \in [v - \eta, v].$$

Or, briefly,

(5)
$$f(x) < f(t) \quad \forall \ x \in [v - \eta, v].$$

Since $a < v - \eta < v$, the assumption $[a, v) \subset W$ gives $v - \eta \in W$. Therefore, there exists $s \in [a, b]$ such that

(6)
$$f(x) < f(s) \quad \forall \ x \in [a, v - \eta]$$

To prove that $v \in W$, we set

$$z = \begin{cases} s & \text{if } f(t) < f(s), \\ t & \text{if } f(s) \le f(t). \end{cases}$$

Then, clearly,

$$f(z) = \max\{f(t), f(s)\}$$

Therefore, (5) and (6) imply

$$f(x) < f(z) \quad \forall \ x \in [a, v].$$

Thus, $v \in W$.

Conclusion. The second implication in Step 4 is proved in Step 5. Since two implications in Step 4 are equivalent, we have proved the first implication in Step 4. Since the hypotheses of the first implication in Step 4 are true by Steps 2 and 3, we have proved that $f(c) \ge f(x)$ for all $x \in [a, b]$. The proof is complete.

2