
CHAPTER 3

Sequences in R

3.1. Definitions and examples

Definition 3.1.1. A sequence in R is a function whose domain is N and whose
range is in R.

Let s : N → R be a sequence in R. Then the values of s are

s(1), s(2), s(3), . . . , s(n), . . . .

It is customary to write sn instead of s(n) for the values of a sequence. Sometimes
a sequence will be specified by listing its first few terms

s1, s2, s3, s4, . . . ,

and sometimes by listing of all its terms
{
sn
}∞

n=1
or
{
sn
}
. One way of specifying

a sequence is to give a formula, or a recursion formula for its n−th term sn.

Remark 3.1.2. In the above notation s is the “name” of the sequence and n ∈ N

is the independent variable.

Remark 3.1.3. Notice the difference between the following two expressions:
{
sn
}∞

n=1
This expression denotes a function (sequence).

{
sn : n ∈ N

}
This expression denotes a set: The range of a sequence

{
sn
}∞

n=1
.

For example
{
1− (−1)n

}∞

n=1
stands for the function n 7→ 1− (−1)n, n ∈ N, while

{
1− (−1)n : n ∈ N

}
=
{
0, 2
}
.

Example 3.1.4. Here we give examples of sequences given by a formula. In each
formula below n ∈ N.

(a) n, (b) n2, (c)
√
n, (d) (−1)n,

(e)
1

n
, (f)

1

n2
, (g)

1√
n
, (h) 1− (−1)n

n
,

(i)
1

n!
, (j) 21/n, (k) n1/n, (l) n(−1)n ,

(m)
9n

n!
, (n)

(−1)n+1

2n− 1
, (o)

n(−1)n

n+ 1
, (p)

( e

n

)n n!√
n
.

Example 3.1.5. Few more sequences given by a formula are

(a)
{√

n2 + 1− n
}∞

n=1
, (b)

{√
n2 + n− n

}∞

n=1
, (c)

{√
n+ 1−√

n
}∞

n=1
.

Example 3.1.6. In this example we give several recursively defined sequences.
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48 3. SEQUENCES IN R

(a) s1 = 1 and
(
∀n ∈ N

)
sn+1 = −sn

2
,

(b) x1 = 1 and
(
∀n ∈ N

)
xn+1 = 1 +

xn

4
,

(c) x1 = 2 and
(
∀n ∈ N

)
xn+1 =

xn

2
+

1

xn
,

(d) a1 =
√
2 and

(
∀n ∈ N

)
an+1 =

√
2 + an,

(e) s1 = 1 and
(
∀n ∈ N

)
sn+1 =

√
1 + sn,

(f) x1 = 0 and
(
∀n ∈ N

)
xn+1 =

9 + xn

10
.

For a recursively defined sequence it is useful to evaluate the values of the first few
terms to get an idea how sequence behaves.

Example 3.1.7. The most important examples of sequences are listed below:

bn = a, n ∈ N, where a ∈ R,(3.1.1)

pn = an, n ∈ N, where − 1 < a < 1,(3.1.2)

En =

(

1 +
1

n

)n

, n ∈ N,(3.1.3)

G1 = a+ ax and
(
∀n ∈ N

)
Gn+1 = Gn + axn+1, where − 1 < x < 1,(3.1.4)

S1 = 2 and
(
∀n ∈ N

)
Sn+1 = Sn +

1

(n+ 1)!
,(3.1.5)

v1 = 1 + a and
(
∀n ∈ N

)
vn+1 = vn +

an+1

(n+ 1)!
, where a ∈ R.(3.1.6)

Definition 3.1.8. Let
{
an
}
be a sequence in R. A sequence which is recursively

defined by

S1 = a1 and
(
∀n ∈ N

)
Sn+1 = Sn + an+1,(3.1.7)

is called a sequence of partial sum corresponding to
{
an
}
.

Example 3.1.9. The sequences of partial sums associated with the sequences in
Example 3.1.4 (e), (f) and (n) are important examples for Definition 3.1.8. Notice
also that the sequences in (3.1.4), (3.1.5) and (3.1.6) are sequences of partial sums.
All of these are very important.

3.2. Bounded sequences

Definition 3.2.1. Let
{
sn
}
be a sequence in R.

(1) If a real number M satisfies

sn ≤ M for all n ∈ N

then M is called an upper bound of
{
sn
}
and the sequence

{
sn
}
is said to

be bounded above.
(2) If a real number m satisfies

m ≤ sn for all n ∈ N,

then m is called a lower bound of
{
sn
}
and the sequence

{
sn
}
is said to

be bounded below.
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(3) The sequence
{
sn
}

is said to be bounded if it is bounded above and
bounded below.

Remark 3.2.2. Clearly, a sequence
{
sn
}
is bounded above if and only if the set

{
sn : n ∈ N

}
is bounded above. Similarly, a sequence

{
sn
}
is bounded below if

and only if the set
{
sn : n ∈ N

}
is bounded below.

Remark 3.2.3. The sequence
{
sn
}
is bounded if and only if there exists a real

number K > 0 such that |sn| ≤ K for all n ∈ N.

Exercise 3.2.4. There is a huge task here. For each sequence given in this section
it is of interest to determine whether it is bounded or not. As usual, some of the
proofs are easy, some are hard. It is important to do few easy proofs and observe
their structure. This will provide the setting to appreciate proofs for hard examples.

3.3. The definition of a convergent sequence

Definition 3.3.1. A sequence
{
sn
}
is a constant sequence if there exists L ∈ R

such that sn = L for all n ∈ N.

Exercise 3.3.2. Prove that the sequence sn =

⌊
3n− 1

2n

⌋

, n ∈ N, is a constant

sequence.

Definition 3.3.3. A sequence
{
sn
}
is eventually constant if there exists L ∈ R

and N0 ∈ R such that sn = L for all n ∈ N, n > N0.

Exercise 3.3.4. Prove that the sequence sn =

⌈
3n− 2

2n+ 3

⌉

, n ∈ N, is eventually

constant.

Exercise 3.3.5. Prove that the sequence sn =

⌊
5n− (−1)n

n/2 + 5

⌋

, n ∈ N, is eventually

constant.

Definition 3.3.6. A sequence
{
sn
}
converges if there exists L ∈ R such that for

each ǫ > 0 there exists a real number N(ǫ) such that

n ∈ N, n > N(ǫ) ⇒ |sn − L| < ǫ.

The number L is called the limit of the sequence
{
sn
}
. We also say that

{
sn
}

converges to L and write

lim
n→∞

sn = L or sn → L (n → ∞).

If a sequence does not converge we say that it diverges.

Remark 3.3.7. The definition of convergence is a complicated statement. Formally
it can be written as:

∃L ∈ R s.t. ∀ ǫ > 0 ∃N(ǫ) ∈ R s.t. ∀n ∈ N, n > N(ǫ) ⇒ |sn − L| < ǫ.

Exercise 3.3.8. State the negation of the statement in remark 3.3.7.
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3.3.1. My informal discussion of convergence. It is easy to agree that
the constant sequences are simplest possible sequences. For example the sequence

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

cn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

or formally, cn = 1 for all n ∈ N, is a very simple sequence. No action here! In this
case, clearly, limn→∞ cn = 1.

Now, I define sn =
n− (−1)n

n
, n ∈ N, and I ask: Is {sn} a constant sequence?

Just looking at the first few terms

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

sn 2
1

2

4

3

3

4

6

5

5

6

8

7

7

8

10

9

9

10

12

11

11

12

14

13

13

14

16

15

15

16

18

17
indicates that this sequence is not constant. The table above also indicates that the
sequence {sn} is not eventually constant. But imagine that you have a calculator
which is capable of displaying only one decimal place. On this calculator the first
terms of this sequence would look like:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sn 2.0 0.5 1.3 0.8 1.2 0.8 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1

and the next 15 terms would look like:

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

sn 0.9 1.1 0.9 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Basically, after the 20-th term this calculator does not distinguish sn from 1. That
is, this calculator leads us to think that {sn} is eventually constant. Why is this?
On this calculator all numbers between 0.95 = 1 − 1/20 and 1.05 = 1 + 1/20 are
represented as 1, and for our sequence we can prove that

n ∈ N, n > 20 ⇒ 1− 1

20
< sn < 1 +

1

20
,

or, equivalently,

n ∈ N, n > 20 ⇒
∣
∣sn − 1

∣
∣ <

1

20
.

In the notation of Definition 3.3.6 this means N(1/20) = 20.
One can reasonably object that the above calculator is not very powerful and

propose to use a calculator that can display three decimal places. Then the terms
of {sn} starting with n = 21 are

n 21 22 23 24 25 26 27 28 29 30

sn 1.048 0.955 1.043 0.958 1.040 0.962 1.037 0.964 1.034 0.967

Now the question is: Can we fool this powerful calculator to think that {sn} is
eventually constant? Notice that on this calculator all numbers between 0.9995 =
1− 1/2000 and 1.0005 = 1 + 1/2000 are represent as 1. Therefore, in the notation
of Definition 3.3.6, we need N(1/2000) such that

n ∈ N, n > N(1/2000) ⇒ 1− 1

2000
< sn < 1 +

1

2000
.
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An easy calculation shows that N(1/2000) = 2000. That is

n ∈ N, n > 2000 ⇒
∣
∣sn − 1

∣
∣ <

1

2000
.

This is illustrated by the following table

n 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

sn 0.999 1.001 0.999 1.001 1.000 1.000 1.000 1.000 1.000 1.000

Hence, even this more powerful calculator is fooled into thinking that {sn} is even-
tually constant.

In computer science the precision of a computer is measured by the number
called the machine epsilon (also called macheps, machine precision or unit round-
off). It is the smallest number that gives a number greater than 1 when added to
1.

Now, Definition 3.3.6 can be paraphrased as: A sequence converges if on each
computer it appears to be eventually constant. This is the reason why I think that
instead of the phrase “a sequence is convergent” we could use the phrase “a sequence
is constantish.”

3.4. Finding N(ǫ) for a convergent sequence

Example 3.4.1. Prove that lim
n→∞

2n− 1

n+ 3
= 2.

Solution. We prove the given equality using Definition 3.3.6. To do that for
each ǫ > 0 we have to find N(ǫ) such that

(3.4.1) n ∈ N, n > N(ǫ) ⇒
∣
∣
∣
∣

2n− 1

n+ 3
− 2

∣
∣
∣
∣
< ǫ.

Let ǫ > 0 be given. We can think of n as an unknown in

∣
∣
∣
∣

2n− 1

n+ 3
− 2

∣
∣
∣
∣
< ǫ and solve

this inequality for n. To this end first simplify the left-hand side:

(3.4.2)

∣
∣
∣
∣

2n− 1

n+ 3
− 2

∣
∣
∣
∣
=

∣
∣
∣
∣

2n− 1− 2n− 6

n+ 3

∣
∣
∣
∣
=

| − 7|
|n+ 3| =

7

n+ 3
.

Now,
7

n+ 3
< ǫ is much easier to solve for n ∈ N:

(3.4.3)
7

n+ 3
< ǫ ⇔ n+ 3

7
>

1

ǫ
⇔ n+ 3 >

7

ǫ
⇔ n >

7

ǫ
− 3.

Now (3.4.3) indicates that we can choose N(ǫ) = 7
ǫ − 3.

Now we have N(ǫ), but to complete the formal proof, we have to prove impli-
cation (3.4.1). The proof follows. Let n ∈ N and n > 7

ǫ − 3. Then the equivalences

in (3.4.3) imply that 7
n+3 < ǫ. Since by (3.4.3),

∣
∣
∣
2n−1
n+3 − 2

∣
∣
∣ = 7

n+3 , it follows that
∣
∣
∣
2n−1
n+3 − 2

∣
∣
∣ < ǫ. This completes the proof of implication (3.4.1). �

Remark 3.4.2. This remark is essential for the understanding of the process de-
scribed in the following examples. In the solution of Example 3.4.1 we found (in
some sense) the smallest possible N(ǫ). It is important to notice that implication
(3.4.1) holds with any larger value for “N(ǫ).” For example, implication (3.4.1)
holds if we set N(ǫ) = 7

ǫ . With this new N(ǫ) we can prove implication (3.4.1) as
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follows. Let n ∈ N and n > 7
ǫ . Then 7

n < ǫ. Since clearly 7
n+3 < 7

n , the last two

inequalities imply that 7
n+3 < ǫ and we can continue with the same proof as in the

solution of Example 3.4.1.

Example 3.4.3. Prove that lim
n→∞

1

n3 − n+ 1
= 0.

Solution. We prove the given equality using Definition 3.3.6. To do that for
each ǫ > 0 we have to find N(ǫ) such that

(3.4.4) n ∈ N, n > N(ǫ) ⇒
∣
∣
∣
∣

1

n3 − n+ 1
− 0

∣
∣
∣
∣
< ǫ.

Let ǫ > 0 be given. We can think of n as an unknown in

∣
∣
∣
∣

1

n3 − n+ 1
− 0

∣
∣
∣
∣
< ǫ and

solve this inequality for n. To this end first simplify the left-hand side:

(3.4.5)

∣
∣
∣
∣

1

n3 − n+ 1
− 0

∣
∣
∣
∣
=

∣
∣
∣
∣

1

n3 − n+ 1

∣
∣
∣
∣
=

|1|
|n3 − n+ 1| =

1

n3 − n+ 1
.

Unfortunately
1

n3 − n+ 1
< ǫ is not easy to solve for n ∈ N. Therefore we use the

idea from Remark 3.4.2 and replace the quantity
1

n3 − n+ 1
with a larger quantity.

To make a fraction larger we have to make the denominator smaller. Notice that
n2 − n = n(n− 1) ≥ n− 1 for all n ∈ N. Therefore for all n ∈ N we have

n3 − n+ 1 = n3 − (n− 1) ≥ n3 − n(n− 1) = n(n2 − n+ 1) ≥ n.

Consequently,

(3.4.6)
1

n3 − n+ 1
≤ 1

n
.

Now,
1

n
< ǫ is truly easy to solve for n ∈ N:

(3.4.7)
1

n
< ǫ ⇔ n >

1

ǫ
.

Hence we set N(ǫ) = 1
ǫ .

Now we have N(ǫ), but to complete the formal proof, we have to prove impli-
cation (3.4.4). The proof follows. Let n ∈ N and n > 1

ǫ . Then the equivalence in

(3.4.7) implies that 1
n < ǫ. By (3.4.6), 1

n3−n+1 ≤ 1
n . The last two inequalities yield

that 1
n3−n+1 < ǫ. By (3.4.5) it follows that

∣
∣
∣

1
n3−n+1 − 0

∣
∣
∣ < ǫ. This completes the

proof of implication (3.4.4). �

Example 3.4.4. Prove that lim
n→∞

n2 − 1

n2 − 2n+ 2
= 1.

Solution. We prove the given equality using Definition 3.3.6. To do that for
each ǫ > 0 we have to find N(ǫ) such that

(3.4.8) n ∈ N, n > N(ǫ) ⇒
∣
∣
∣
∣

n2 − 1

n2 − 2n+ 2
− 1

∣
∣
∣
∣
< ǫ.



3.4. FINDING N(ǫ) FOR A CONVERGENT SEQUENCE 53

Let ǫ > 0 be given. We can think of n as an unknown in

∣
∣
∣
∣

n2 − 1

n2 − 2n+ 2
− 1

∣
∣
∣
∣
< ǫ and

solve this inequality for n. To this end first simplify the left-hand side:

(3.4.9)

∣
∣
∣
∣

n2 − 1

n2 − 2n+ 2
− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

n2 − 1− n2 + 2n− 2

n2 − 2n+ 2

∣
∣
∣
∣
=

|2n− 3|
n2 − 2n+ 2

.

Unfortunately
|2n− 3|

n2 − 2n+ 2
< ǫ is not easy to solve for n ∈ N. Therefore we use

the idea from Remark 3.4.2 and replace the quantity
|2n− 3|

n2 − 2n+ 2
with a larger

quantity. Here is one way to discover a desired inequality. We first notice that for
all n ∈ N the following two inequalities hold

(3.4.10) |2n− 3| ≤ 2n

and

(3.4.11) n2 − 2n+ 2 =
n2

2
+

1

2

(
n2 − 4n+ 4

)
=

n2

2
+

1

2
(n− 2)2 ≥ n2

2
.

Consequently

(3.4.12)
|2n− 3|

n2 − 2n+ 2
≤ 2n

n2/2
=

4

n
.

Now,
4

n
< ǫ is truly easy to solve for n ∈ N:

(3.4.13)
4

n
< ǫ ⇔ n >

4

ǫ
.

Hence we set N(ǫ) = 4
ǫ .

Finally we have N(ǫ). But to complete the formal proof we have to prove
implication (3.4.8). The proof follows. Let n ∈ N and n > 4

ǫ . Then the equivalence

in (3.4.13) implies 4
n < ǫ. By (3.4.12), |2n−3|

n2−2n+2 ≤ 4
n . The last two inequalities

yield |2n−3|
n2−2n+2 < ǫ. By (3.4.9) it follows that

∣
∣
∣

n2−1
n2−2n+2 − 1

∣
∣
∣ < ǫ. This completes

the proof of implication (3.4.8). �

Remark 3.4.5. For most sequences
{
sn
}
a proof of lim

n→∞
sn = L based on Defini-

tion 3.3.6 should consist from the following steps.

(1) Use algebra to simplify the expression |sn − L|. It is desirable to eliminate the
absolute value.

(2) Discover an inequality of the form

(3.4.14) |sn − L| ≤ b(n) valid for all n ∈ N.

Here b(n) should be a simple function with the following properties:
(a) b(n) > 0 for all n ∈ N.
(b) lim

n→∞
b(n) = 0. (Just check this property “mentally.”)

(c) b(n) < ǫ is easily solvable for n for every ǫ > 0. The solution should be of

the form “n > some expression involving ǫ, call it N(ǫ).”
(3) Use inequality (3.4.14) to prove the implication n ∈ N, n > N(ǫ) ⇒ |sn−L| < ǫ.

Exercise 3.4.6. Determine the limits (if they exist) of the sequences (e), (f), (g),
(h), (i), and (n) in Example 3.1.4. Prove your claims.
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Exercise 3.4.7. Determine whether the sequence

{
3n+ 1

7n− 4

}∞

n=1

converges and, if

it converges, give its limit. Provide a formal proof.

Exercise 3.4.8. Determine the limits (if they exist) of the sequences in Exam-
ple 3.1.5. Prove your claims.

3.5. Two standard sequences

Exercise 3.5.1. Let a ∈ R be such that −1 < a < 1.

(1) Prove that for all n ∈ N we have

|a|n ≤ 1

n (1− |a|) .

(2) Prove that
lim
n→∞

an = 0.

Exercise 3.5.2. Let a be a positive real number. Prove that

lim
n→∞

a1/n = 1.

Solution. Let a > 0. If a = 1, then a1/n = 1 for all n ∈ N. Therefore
limn→∞ a1/n = 1.

Assume a > 1. Then a1/n > 1. We shall prove that

(3.5.1) a1/n − 1 ≤ a
1

n

(
∀n ∈ N

)
.

Put x = a1/n − 1 > 0. Then, by Bernoulli’s inequality we get

a = (1 + x)n ≥ 1 + nx.

Consequently, solving for x we get that x = a1/n − 1 ≤ (a− 1)/n. Since a− 1 < a,
(3.5.1) follows.

Assume 0 < a < 1. Then 1/a > 1. Therefore, by already proved (3.5.1), we
have

(
1

a

)1/n

− 1 ≤ 1

a

1

n

(
∀n ∈ N

)
.

Since (1/a)1/n = 1/
(
a1/n

)
, simplifying the last inequality, together with the in-

equality a1/n < 1, yields

(3.5.2) 1− a1/n ≤ a1/n

a

1

n
≤ 1

a

1

n

(
∀n ∈ N

)
.

As a < a+ 1/a and 1/a < a+ 1/a, the inequalities (3.5.1) and (3.5.2) imply

(3.5.3)
∣
∣a1/n − 1

∣
∣ ≤

(

a+
1

a

)
1

n

(
∀n ∈ N

)
.

Let ǫ > 0 be given. Solving
(
a+ 1/a

)
1
n < ǫ for n, reveals N(ǫ):

N(ǫ) =

(

a+
1

a

)
1

ǫ

Now it is easy to prove the implication (Do it as an exercise!)

n ∈ N, n >

(

a+
1

a

)
1

ǫ
⇒ |a1/n − 1| < ǫ. �
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3.6. Non-convergent sequences

Exercise 3.6.1. Prove that the sequence (d) in Example 3.1.4 does not converge.
Use Remark 3.3.7 and Exercise 3.3.8

Exercise 3.6.2. (Prove or Disprove) If
{
sn
}
does not converge to L, then there

exist ǫ > 0 and N(ǫ) such that |sn − L| ≥ ǫ for all n ≥ N(ǫ).

3.7. Convergence and boundedness

Exercise 3.7.1. Consider the following two statements:

(A) The sequence
{
sn
}
is bounded.

(B) The sequence
{
sn
}
converges.

Is (A)⇒(B) true or false? Is (B)⇒(A) true or false? Justify your answers.

3.8. Algebra of limits of convergent sequences

Exercise 3.8.1. Let
{
sn
}
be a sequence in R and let L ∈ R. Set tn = sn − L for

all n ∈ N.
Prove that

{
sn
}
converges to L if and only if

{
tn
}
converges to 0.

Exercise 3.8.2. Let c ∈ R. If lim
n→∞

xn = X and zn = c xn for all n ∈ N, then

lim
n→∞

zn = cX .

Exercise 3.8.3. Let
{
xn

}
and

{
yn
}
be sequences in R. Assume

(a)
{
xn

}
converges to 0,

(b)
{
yn
}
is bounded,

(c) zn = xnyn for all n ∈ N.

Prove that
{
zn
}
converges to 0.

Exercise 3.8.4. Let
{
xn

}
and

{
yn
}
be sequences in R. Assume

(a) lim
n→∞

xn = X ,

(b) lim
n→∞

yn = Y ,

(c) zn = xn + yn for all n ∈ N.

Prove that lim
n→∞

zn = X + Y .

Exercise 3.8.5. Let
{
xn

}
and

{
yn
}
be sequences in R. Assume

(a) lim
n→∞

xn = X ,

(b) lim
n→∞

yn = Y ,

(c) zn = xn yn for all n ∈ N.

Prove that lim
n→∞

zn = X Y .

Exercise 3.8.6. If lim
n→∞

xn = X and X > 0, then there exists a real number N

such that n ≥ N implies xn ≥ X/2.

Exercise 3.8.7. Let
{
xn

}
be a sequence in R. Assume

(a) xn 6= 0 for all n ∈ N,
(b) lim

n→∞
xn = X ,

(c) X > 0,
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(d) wn =
1

xn
for all n ∈ N.

Prove that lim
n→∞

wn =
1

X
.

Exercise 3.8.8. Let
{
xn

}
and

{
yn
}
be sequences in R. Assume

(a) xn 6= 0 for all n ∈ N,
(b) lim

n→∞
xn = X ,

(c) lim
n→∞

yn = Y ,

(d) X 6= 0,

(e) zn =
yn
xn

for all n ∈ N.

Prove that lim
n→∞

zn =
Y

X
. (Hint: Use previous exercises.)

Exercise 3.8.9. Prove that lim
n→∞

2n2 + n− 5

n2 + 2n+ 2
= (insert correct value) by using

the results we have proved (Exercises 3.8.2, 3.8.4, 3.8.5, 3.8.7, 3.8.8) and a small
trick. You may use Definition 3.3.6 of convergence directly in this problem only to

evaluate limit of the special form lim
n→∞

1

n
.

Remark 3.8.10. The point of Exercise 3.8.9 is to see that the general properties of
limits (Exercises 3.8.2, 3.8.4, 3.8.5, 3.8.7, 3.8.8) can be used to reduce complicated
situations to a few simple ones, so that when the few simple ones have been done
it is no longer necessary to go back to Definition 3.3.6 of convergence every time.

3.9. Convergent sequences and the order in R

Exercise 3.9.1. Let
{
sn
}
be a sequence in R. Assume

(a) lim
n→∞

sn = L.

(b) There exists a real number N0 such that sn ≥ 0 for all n ∈ N such that n > N0.

Prove that L ≥ 0.

Exercise 3.9.2. Let
{
an
}
and

{
bn
}
be sequences in R. Assume

(a) lim
n→∞

an = K.

(b) lim
n→∞

bn = L.

(c) There exists a real number N0 such that an ≤ bn for all n ∈ N such that
n > N0.

Prove that K ≤ L.

Exercise 3.9.3. Is the following refinement of Exercise 3.9.1 true? If
{
sn
}
con-

verges to L and if sn > 0 for all n ∈ N, then L > 0.

Exercise 3.9.4. Let
{
xn

}
be a sequence in R. Assume

(a) xn ≥ 0 for all n ∈ N,
(b) lim

n→∞
xn = X ,

(c) wn =
√
xn for all n ∈ N.

Prove that lim
n→∞

wn =
√
X.
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3.10. Squeeze theorem for convergent sequences

Exercise 3.10.1. There are three sequences in this exercise:
{
an
}
,
{
bn
}
and

{
sn
}
.

Assume the following

(1) The sequence
{
an
}
converges to L.

(2) The sequence
{
bn
}
converges to L.

(3) There exists a real number n0 such that

an ≤ sn ≤ bn for all n ∈ N, n > n0.

Prove that
{
sn
}
converges to L.

Exercise 3.10.2. (1) Let x ≥ 0 and n ∈ N. Prove the inequality

(1 + x)n ≥ 1 + nx+
n(n− 1)

2
x2.

(2) Prove that for all n ∈ N we have 1 ≤ n1/n ≤ 1 +
2√
n
.

Hint: Apply the inequality proved in (1) to
(
1 + 2/

√
n
)n
.

(3) Prove that the sequence
{
n1/n

}
converges and determine its limit.

Exercise 3.10.3. (1) Prove that (n!)2 ≥ nn for all n ∈ N. Hint: Write

(
n!
)2

=
(
1 · n

)(
2 · (n− 1)

)
· · ·
(
(n− 1) · 2

)(
n · 1

)
=

n∏

k=1

k
(
n− k + 1

)
.

Then prove k
(
n− k + 1

)
≥ n for all k = 1, . . . , n.

(2) Prove that

lim
n→∞

1
(
n!
)1/n

= 0.

3.11. The monotonic convergence theorem

Definition 3.11.1. A sequence
{
sn
}
of real numbers is said to be non-decreasing

if sn ≤ sn+1 for all n ∈ N, strictly increasing if sn < sn+1 for all n ∈ N, non-

increasing if sn ≥ sn+1 for all n ∈ N, strictly decreasing if sn > sn+1 for all n ∈ N.

A sequence with any of these properties is said to be monotonic.

Exercise 3.11.2. Again a huge task here. Which of the sequences in Exam-
ples 3.1.4, 3.1.5, and 3.1.6 are monotonic? Find few monotonic ones in each exam-
ple. Provide rigorous proofs.

Exercise 3.11.3. (Prove or Disprove) If
{
xn

}
is non-increasing, then

{
xn

}
con-

verges.

The following two exercises give powerful tools for establishing convergence of
a sequence.

Exercise 3.11.4. If
{
sn
}
is non-increasing and bounded below, then

{
sn
}
con-

verges.

Exercise 3.11.5. If
{
sn
}
is non-decreasing and bounded above, then

{
sn
}
con-

verges.
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Proof. Assume that the sequence
{
sn
}
is non-decreasing and bounded above.

Consider the range of the sequence
{
sn
}
. That is consider the set

A =
{
sn : n ∈ N

}
.

The set A is nonempty and bounded above. Therefore supA exists. Put L = supA.
We will prove that sn → L (n → ∞). Let ǫ > 0 be arbitrary. Since L = supA

we have

(1) L ≥ sn for all n ∈ N.
(2) There exists aǫ ∈ A such that L− ǫ < aǫ.

Since aǫ ∈ A, there exists Nǫ ∈ N such that aǫ = sNǫ
. It remains to prove that

(3.11.1) n ∈ N, n > Nǫ ⇒ |sn − L| < ǫ.

Let n ∈ N, n > Nǫ be arbitrary. Since we assume that
{
sn
}
is non-decreasing,

it follows that sn ≥ s
Nǫ
. Since L− ǫ < aǫ = sNǫ

≤ sn, we conclude that L− sn < ǫ.
Since L ≥ sn, we have |sn−L| = L−sn < ǫ. The implication (3.11.1) is proved. �

Exercise 3.11.6. There is a huge task here. Consider the sequences given in
Example 3.1.6. Prove that each of these sequences converges and determine its
limit.

3.12. Two important sequences with the same limit

In this section we study the sequences defined in (3.1.3) and (3.1.5).

En =

(

1 +
1

n

)n

, n ∈ N,

S1 = 2 and
(
∀n ∈ N

)
Sn+1 = Sn +

1

(n+ 1)!
.

Exercise 3.12.1. Prove by mathematical induction that Sn ≤ 3 − 1/n for all
n ∈ N.

Exercise 3.12.2. Prove that the sequence
{
Sn

}
converges.

Exercise 3.12.3. Let n, k ∈ N and n ≥ k. Use Bernoulli’s inequality to prove that

n!

(n− k)!nk
≥ 1− (k − 1)k

n

Hint: Notice that

n!

nk(n− k)!
= 1 ·

(

1− 1

n

)(

1− 2

n

)

· · ·
(

1− k − 1

n

)

≥
(

1− k − 1

n

)k

.

Exercise 3.12.4. The following inequalities hold: E1 = S1 and for all integers n
greater than 1,

(3.12.1) Sn − 3

n
< En < Sn.

Hint: Let n be an integer greater than 2. Notice that by the Binomial Theorem

En =

(

1 +
1

n

)n

=

n∑

k=0

n!

k!(n− k)!

1

nk
= 1 + 1 +

n∑

k=2

n!

(n− k)!nk

1

k!
.

Then use Exercise 3.12.3 to prove En > Sn − Sn−2/n. Then use Exercise 3.12.1.

Exercise 3.12.5. The sequences {En} and {Sn} converge to the same limit.
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Exercise 3.12.5 justifies the following definition.

Definition 3.12.6. The number e is the common limit of the sequences {En} and
{Sn}.
Remark 3.12.7. The sequence {En} is increasing. To prove this claim let n ∈ N

be arbitrary. Consider the fraction

En+1

En
=

(

1 + 1
n+1

)n+1

(
1 + 1

n

)n =
n+ 1

n

(

1 + 1
n+1

)n+1

(
1 + 1

n

)n+1 =
n+ 1

n

(
n+2
n+1
n+1
n

)n+1

=
n+ 1

n

(
n(n+ 2)

(n+ 1)2

)n+1

=
n+ 1

n

(

1− 1

(n+ 1)2

)n+1

(3.12.2)

Since − 1
(n+1)2 > −1 for all n ∈ N, applying Bernoulli’s Inequality with x = − 1

(n+1)2

we get

(3.12.3)

(

1− 1

(n+ 1)2

)n+1

> 1− (n+ 1)
1

(n+ 1)2
= 1− 1

n+ 1
.

The relations (3.12.2) and (3.12.3) imply

En+1

En
=

n+ 1

n

(

1− 1

(n+ 1)2

)n+1

>
n+ 1

n

(

1− 1

n+ 1

)

= 1.

Thus
En+1

En
> 1 for all n ∈ N,

that is the sequence
{
En

}
is increasing.

3.13. Subsequences

Composing functions is a common way how functions interact with each other.
Can we compose two sequences? Let x : N → R and y : N → R be two sequences.
Does the composition x ◦ y make sense? This composition makes sense only if the
range of y is contained in N. In this case y : N → N. That is the composition x ◦ y
makes sense only if y is a sequence in N. It turns out that the most important
composition of sequences involve increasing sequences in N. In this section the
Greek letters µ and ν will always denote increasing sequences of natural numbers.

Definition 3.13.1. A subsequence of a sequence
{
xn

}
is a composition of the

sequence
{
xn

}
and an increasing sequence

{
µk

}
of natural numbers. This compo-

sition will be denoted by
{
xµk

}
or
{
x(µk)

}
.

Remark 3.13.2. The concept of subsequence consists of two ingredients:

• the sequence
{
xn

}
(remember it’s really a function: x : N → R)

• the increasing sequence
{
µk

}
of natural numbers (remember this is an

increasing function: µ : N → N).

The composition x◦µ of these two sequences is a new sequence y : N → R. The k-th
term yk of this sequence is yk = xµk

. Note the analogy with the usual notation
for functions: y(k) = x(µ(k)). Usually we will not introduce the new name for

a subsequence: we will write
{
xµk

}∞

k=1
to denote a subsequence of the sequence

{
xn

}
. Here {µk}∞k=1 is and increasing sequence of natural numbers which selects

particular elements of the sequence
{
xn

}
to be included in the subsequence.
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Remark 3.13.3. Roughly speaking, a subsequence of
{
xn

}
is a sequence formed

by selecting some of the terms in
{
xn

}
, keeping them in the same order as in

the original sequence. It is the sequence
{
µk

}
of positive integers that does the

selecting.

Example 3.13.4. Few examples of increasing sequences in N are:

(1) µk = 2k, k ∈ N. (The sequence of even positive integers.)
(2) νk = 2k − 1, k ∈ N. (The sequence of odd positive integers.)
(3) µk = k2, k ∈ N. (The sequence of perfect squares.)
(4) Let j be a fixed positive integer. Set νk = j + k for all k ∈ N.
(5) The sequence 2, 3, 5, 7, 11, 13, 17, . . . of prime numbers. For this se-

quence no formula for
{
µk

}
is known.

Exercise 3.13.5. Let
{
µn

}
be an increasing sequence in N. Prove that µn ≥ n

for all n ∈ N.

Exercise 3.13.6. Each subsequence of a convergent sequence is convergent with
the same limit.

Remark 3.13.7. The “contrapositive” of Exercise 3.13.6 is a powerful tool for
proving that a given sequence does not converge. As an illustration prove that the
sequence

{
(−1)n

}
does not converge in two different ways: using the definition of

convergence and using the “contrapositive” of Exercise 3.13.6.

Exercise 3.13.8 (The Zipper Theorem). Let
{
xn

}
be a sequence in R and let

{
µk

}
and

{
νk
}
be increasing sequences in N. Assume

(a)
{
µk : k ∈ N

}∪{νk : k ∈ N
}
= N.

(b)
{
xµ

k

}
converges to L.

(c)
{
xνk

}
converges to L.

Prove that
{
xn

}
converges to L.

Example 3.13.9. The sequence (o) in Example 3.1.4 does not converge, but it does

have convergent subsequences, for instance the subsequence

{
2k

2k + 1

}∞

k=1

(Here

µk = 2k, k ∈ N) and the subsequence

{
1

(2k − 1)2k

}∞

k=1

(Here νk = 2k−1, k ∈ N).

Remark 3.13.10. The notation for subsequences is a little tricky at first. Note that
in xµk

it is k that is the variable. Thus the successive elements of the subsequence
are xµ

1
, xµ

2
, xµ

3
, etc. To indicate a different subsequence of the same sequence

{xn}∞n=1 it would be necessary to change not the variable name, but the selection

sequence. For example
{
xµk

}∞

k=1
and

{
xνk

}∞

k=1
in Example 3.13.9 are distinct

subsequences of {xn}. (Thus
{
xµk

}∞

k=1
and

{
xµj

}∞

j=1
are the same subsequence of

{xn}∞n=1 for exactly the same reason that x 7→ x2 (x ∈ R) and t 7→ t2 (t ∈ R) are
the same function. To make a different function it’s the rule you must change, not
the variable name.)

Example 3.13.11. Let
{
xn

}
be the sequence defined by

xn =
(−1)n(n+ 1)(−1)n

n
, n ∈ N.
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The values of
{
xn

}
are

− 1

1 · 2 ,
3

2
, − 1

3 · 4 ,
5

4
, − 1

5 · 6 ,
7

6
, − 1

7 · 8 ,
9

8
, − 1

9 · 10 ,
11

10
, . . . .

Exercise 3.13.12. Every sequence has a monotonic subsequence.

Hint: Let
{
xn

}
be an arbitrary sequence. Consider the set

M =
{
n ∈ N : ∀ k > n we have xk ≥ xn

}
.

The set M is either finite or infinite. Construct a monotonic subsequence in each
case.

Exercise 3.13.13. Every bounded sequence of real numbers has a convergent
subsequence.

3.14. The Cauchy criterion

Definition 3.14.1. A sequence
{
sn
}
of real numbers is called a Cauchy sequence

if for every ǫ > 0 there exists a real number Nǫ such that

∀n,m ∈ N, n,m > Nǫ ⇒ |sn − sm| < ǫ.

Exercise 3.14.2. Prove that every convergent sequence is a Cauchy sequence.

Exercise 3.14.3. Prove that every Cauchy sequence is bounded.

Exercise 3.14.4. If a Cauchy sequence has a convergent subsequence, then it
converges.

Exercise 3.14.5. Prove that each Cauchy sequence has a convergent subsequence.

Exercise 3.14.6. Prove that a sequence converges if and only if it is a Cauchy
sequence.

3.15. Sequences and supremum and infimum

Exercise 3.15.1. Let A ⊂ R, A 6= ∅ and assume that A is bounded above. Prove
that a = supA if and only if

(a) a is an upper bound of A, that is, a ≥ x, for all x ∈ A;
(b) there exists a sequence

{
xn

}
such that

xn ∈ A for each n ∈ N and lim
n→∞

xn = a.

Exercise 3.15.2. Let A ⊂ R, A 6= ∅ and assume that A is bounded above. Let
a = supA and assume that a /∈ A. Prove that there exists a strictly increasing
sequence

{
xn

}
such that

xn ∈ A for each n ∈ N and lim
n→∞

xn = a.

Exercise 3.15.3. State and prove the characterization of infimum which is analo-
gous to the characterization of supA given in Exercise 3.15.1.

Exercise 3.15.4. State and prove an exercise involving infimum of a set which is
analogous to Exercise 3.15.2.





CHAPTER 4

Continuous functions

In this chapter I will always denote a non-empty subset of R.

4.1. The ǫ-δ definition of a continuous function

Definition 4.1.1. A function f : I → R is continuous at a point x0 ∈ I if for each
ǫ > 0 there exists δ(ǫ) > 0 such that

(4.1.1) x ∈
(
x0 − δ(ǫ), x0 + δ(ǫ)

)
∩ I ⇒ |f(x)− f(x0)| < ǫ.

The function f is continuous on I if it is continuous at each point of I.

Note that the implication in (4.1.1) can be restated as

x ∈ I and |x− x0| < δ(ǫ) ⇒ |f(x)− f(x0)| < ǫ.

Next we restate Definition 4.1.1 using the terminology introduced in Section 2.14.
For a function f : I → R and a subset A ⊆ I we will use the notation f(A) to
denote the set

{
y ∈ R : ∃x ∈ A s.t. f(x) = y

}
=
{
f(x) : x ∈ A

}
.

A function f : I → R is continuous at a point x0 ∈ I if for each neighborhood
V of f(x0) there exists a neighborhood U of x0 such that

f
(
I ∩ U

)
⊆ V.

4.2. Finding δ(ǫ) for a given function at a given point

In this and the next section we will prove that some familiar functions are
continuous.

A general strategy for proving that a given function f is continuous at a given
point x0 is as follows:

Step 1. Simplify the expression |f(x)−f(x0)| and try to establish a simple connec-
tion with the expression |x − x0|. The simplest connection is to discover
positive constants δ0 and K such that

(4.2.1) x ∈ I and x0 − δ0 < x < x0 + δ0 ⇒ |f(x)− f(x0)| ≤ K |x− x0|.
Formulate your discovery as a lemma.

Step 2. Let ǫ > 0 be given. Use the result in Step 1 to define your δ(ǫ). For
example, if (4.2.1) holds, then δ(ǫ) = min

{
ǫ/K, δ0

}
.

Step 3. Use the definition of δ(ǫ) from Step 2 and the lemma from Step 1 to prove
implication (4.1.1).

Example 4.2.1. We will show that the function f(x) = x2 is continuous at x0 = 3.
Here I = R and we do not need to worry about the domain of f .
Step 1. First simplify

(4.2.2)
∣
∣f(x)− f(x0)

∣
∣ =

∣
∣x2 − 32

∣
∣ =

∣
∣(x+ 3)(x− 3)

∣
∣ =

∣
∣x+ 3

∣
∣
∣
∣x− 3

∣
∣.

63
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Now we notice that if 2 < x < 4 we have
∣
∣x + 3

∣
∣ = x + 3 ≤ 7. Thus (4.2.1) holds

with δ0 = 1 and K = 7. We formulate this result as a lemma.

Lemma. Let f(x) = x2 and x0 = 3. Then

(4.2.3) |x− 3| < 1 ⇒
∣
∣x2 − 32

∣
∣ < 7|x− 3|.

Proof. Let |x − 3| < 1. Then 2 < x < 4. Therefore x + 3 > 0 and |x + 3| =
x+ 3 < 7. By (4.2.2) we now have

∣
∣x2 − 32

∣
∣ < 7|x− 3|. �

Step 2. Now we define δ(ǫ) = min
{
ǫ/7, 1

}
.

Step 3. It remains to prove (4.1.1). To this end, assume |x − 3| < min
{
ǫ/7, 1

}
.

Then |x− 3| < 1. Therefore, by Lemma we have
∣
∣x2 − 32

∣
∣ < 7|x− 3|. Since by the

assumption |x− 3| < ǫ/7, we have 7|x− 3| < ǫ. Now the inequalities
∣
∣x2 − 32

∣
∣ < 7|x− 3| and 7|x− 3| < ǫ

imply that
∣
∣x2 − 32

∣
∣ < ǫ. This proves (4.1.1) and completes the proof that the

function f(x) = x2 is continuous at x0 = 3.

Exercise 4.2.2. Let f : R → R be defined by f(x) = 5x − 8. Prove that f is
continuous at x0 = −3.

Exercise 4.2.3. Prove that the reciprocal function x 7→ 1

x
, x 6= 0, is continuous

at x0 = 1/2.

Exercise 4.2.4. Let

f(x) = x

⌊
1

x

⌋

for x 6= 0 and f(0) = 1.

Prove that the function f is continuous at x0 = 0.

Exercise 4.2.5. State carefully what it means for a function f not to be continuous
at a point x0 in its domain. (Express this as a formal mathematical statement.)

Exercise 4.2.6. Consider the function f defined in Exercise 4.2.4. Find a point
x0 at which the function f is not continuous. Provide a formal proof. Provide a
detailed sketch of the graph of f near the point x0.

Exercise 4.2.7. Show that the function of Exercise 4.2.2 is continuous on R.

Exercise 4.2.8. Prove that the function q(x) = 3x2 + 5 is continuous at x = 2.

Exercise 4.2.9. Prove that q(x) = 3x2 + 5 is continuous on R.

4.3. Familiar continuous functions

Exercise 4.3.1. Let m, k ∈ R and m 6= 0. Prove that the linear function ℓ(x) =
mx+ k is continuous on R.

Exercise 4.3.2. Let a, b, c ∈ R and a 6= 0. Prove that the quadratic function
q(x) = a x2 + b x+ c is continuous on R.

Exercise 4.3.3. Let n ∈ N and let x, x0 ∈ R be such that x0 − 1 ≤ x ≤ x0 + 1.
Prove the following inequality

∣
∣xn − xn

0

∣
∣ ≤ n

(
|x0|+ 1

)n−1∣
∣x− x0

∣
∣.
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Hint: First notice that the assumption x0 − 1 ≤ x ≤ x0 + 1 implies that
|x| < |x0|+ 1. Then use the Mathematical Induction and the identity

∣
∣xn+1 − xn+1

0

∣
∣ =

∣
∣xn+1 − xxn

0 + xxn
0 − xn+1

0

∣
∣.

Exercise 4.3.4. Let n ∈ N. Prove that the power function x 7→ xn, x ∈ R, is
continuous on R.

Exercise 4.3.5. Let n ∈ N and let a0, a1, . . . , an ∈ R with an 6= 0. Prove that the
n-th order polynomial

p(x) = a0 + a1 x+ · · ·+ an−1 x
n−1 + an x

n

is a continuous function on R.

Exercise 4.3.6. Prove that the reciprocal function x 7→ 1

x
, x 6= 0, is continuous

on its domain.

Exercise 4.3.7. Prove that the square root function x 7→ √
x, x ≥ 0, is continuous

on its domain.

Exercise 4.3.8. Let n ∈ N and let x and a be positive real numbers. Prove that

∣
∣ n
√
x− n

√
a
∣
∣ ≤

n
√
a

a

∣
∣x− a

∣
∣.

Hint: Notice that the given inequality is equivalent to

bn−1
∣
∣y − b

∣
∣ ≤

∣
∣yn − bn

∣
∣, y, b > 0.

This inequality can be proved using Exercise 2.7.7 (with a = 1 and x = y/b).

Exercise 4.3.9. Let n ∈ N. Prove that the n-th root function x 7→ n
√
x, x ≥ 0, is

continuous on its domain.

4.4. Various properties of continuous functions

Exercise 4.4.1. Let f : I → R be continuous at x0 ∈ I and let y be a real number
such that f(x0) < y. Then there exists α > 0 such that

x ∈ I ∩ (x0 − α, x0 + α) ⇒ f(x) < y.

Illustrate with a diagram.

Exercise 4.4.2. Let f : I → R be a continuous function on I. Let S be a non-
empty bounded above subset of I such that u = supS belongs to I. Let y ∈ R.
Prove: If f(x) ≤ y for each x ∈ S, then f(u) ≤ y.

The following exercise establishes a connection between continuous functions
and convergent sequences.

Exercise 4.4.3. Let f : I → R be continuous at x0 ∈ I. Let {tn} be a sequence
in I that converges to x0 ∈ I. Then f (tn) → f(x0) as n → ∞.

Exercise 4.4.4. Let f : I → R be continuous at x0 ∈ I. Let {tn} be a sequence
in I that converges to x0 ∈ I. Assume that there is a real number y such that
f(tn) ≤ y for all n ∈ N. Then f(x0) ≤ y.

Exercise 4.4.5. Let f : I → R be continuous at x0 ∈ I. Let {xn} be a sequence
in I that converges to x0 ∈ I. Assume that there is a real number y such that
f(tn) ≥ y for all n ∈ N. Then f(x0) ≥ y.
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4.5. Algebra of continuous functions

All exercises in this section have the same structure. With the exception of
Exercise 4.5.3, there are three functions in each exercise: f , g and h. The function
h is always related in a simple (green) way to the functions f and g. Based on the
given (green) information about f and g you are asked to prove a claim (red) about
the function h.

Exercise 4.5.1. Let f : I → R and g : I → R be given functions with a common
domain. Define the function h : I → R by

h(x) = f(x) + g(x), x ∈ I.

(a) If f and g are continuous at x0 ∈ I, then h is continuous at x0.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.2. Let f : I → R and g : I → R be given functions with a common
domain. Define the function h : I → R by

h(x) = f(x)g(x), x ∈ I.

(a) If f and g are continuous at x0 ∈ I, then h is continuous at x0.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.3. Let g : I → R be a given functions such that g(x) 6= 0 for all
x ∈ I. Define the function h : I → R by

h(x) =
1

g(x)
, x ∈ I.

(a) If g is continuous at x0 ∈ I, then h is continuous at x0.
(b) If g is continuous on I, then h is continuous on I.

Exercise 4.5.4. Let f : I → R and g : I → R be given functions with a common
domain. Assume that g(x) 6= 0 for all x ∈ I. Define the function h : I → R by

h(x) =
f(x)

g(x)
, x ∈ I.

(a) If f and g are continuous at x0 ∈ I, then h is continuous at x0.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.5. Let I and J be non-empty subsets of R. Let f : I → R and
g : J → R be given functions. Assume that the range of f is contained in J . Define
the function h : I → R by

h(x) = g(f(x)), x ∈ I.

(a) If f is continuous at x0 ∈ I and g is continuous at f(x0) ∈ J , then h is
continuous at x0.

(b) If f is continuous on I and g is continuous on J , then h is continuous on I.

4.6. Continuous functions on a closed bounded interval [a, b]

In this section we assume that a, b ∈ R and a < b.

Exercise 4.6.1. Let α, β, γ ∈ R. If αβ ≤ 0, then αγ ≤ 0 or βγ ≤ 0.
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Exercise 4.6.2. Let f : [a, b] → R be a continuous function. If f(a)f(b) ≤ 0, then
there exists z ∈ [a, b] such that f(z) = 0.

Hint 1: Use Cantor’s intersection theorem. Define a sequence of closed inter-
vals [an, bn], n ∈ N, such that

[an, bn] ⊆ [a, b], [an+1, bn+1] ⊆ [an, bn], bn − an = (b− a)/2n−1,

and, most importantly, f
(
an
)
f
(
bn
)
≤ 0 for all n ∈ N.

Hint 2: Assume that f(a) < 0 and f(b) > 0 and consider the set

W =
{
w ∈ [a, b) : f(x) < 0 ∀x ∈ [a, w]

}
.

Exercise 4.6.3. Let f : D → R be a function defined on a nonempty set D. If
D = A ∪B, then one of the following two statements hold:

(a) For each x ∈ D there exists y ∈ A such that f(x) ≤ f(y).
(b) For each x ∈ D there exists y ∈ B such that f(x) ≤ f(y).

Exercise 4.6.4. Let f : [a, b] → R be a function defined on [a, b]. Then for each
η > 0 there exists c, d ∈ [a, b] such that 0 < d− c < η and for each x ∈ [a, b] there
exists y ∈ [c, d] such that f(x) ≤ f(y).

Hint: Use a part of the hint for Exercise 4.6.2 and Exercise 4.6.3.

Exercise 4.6.5. Let f : [a, b] → R be a continuous function. Then there exists
w ∈ [a, b] such that f(x) ≤ f(w) for all x ∈ [a, b].

Hint 1: Use Cantor’s intersection theorem, a part of the hint for Exercise 4.6.2
and Exercise 4.6.3.

Hint 2: Consider the set

W =
{

w ∈ [a, b) : ∃ z ∈ (w, b] such that f(x) < f(z) ∀ x ∈ [a, w]
}

.

Here [a, a] denotes the set {a}. Prove that the set W has the following property:
If [a, v) ⊆ W , with a < v, and if there exists t ∈ [a, b] such that f(t) > f(v), then
v ∈ W .

Exercise 4.6.6. Let f : [a, b] → R be a continuous function. Then there exists
v ∈ [a, b] such that f(v) ≤ f(x) for all x ∈ [a, b].

Hint: Use Exercise 4.6.5.

Exercise 4.6.7. Let f : [a, b] → R be a continuous function. Then the range of f
is a closed bounded interval.

Hint: Use Exercises 4.6.5, 4.6.6, and 4.6.2.

Exercise 4.6.8. Consider the function f(x) = x5 − x, x ∈ R.

(a) Prove that 1 is in the range of f .
(b) Prove that the range of f equals R.

Definition 4.6.9. A function f is increasing on an interval I if x, y ∈ I with
x < y imply f(x) < f(y). A function f is decreasing if x, y ∈ I with x < y imply
f(x) > f(y). A function which is increasing or decreasing is said to be strictly

monotonic.

Exercise 4.6.10. If f is continuous and increasing on [a, b] or continuous and
decreasing on [a, b], then for each y between f(a) and f(b) there is exactly one
x ∈ [a, b] such that f(x) = y.

Exercise 4.6.11. Let f(x) = x3 + x, x ∈ R. Prove that f has an inverse. That is,
prove that for each y ∈ R there exists unique x ∈ R such that f(x) = y.


