ON A ZERO OF A CONTINUOUS FUNCTION

BRANKO ĆURGUS

In this note a and b are real numbers and $a<b$.
Definition 1. A function $f:[a, b] \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in[a, b]$ if for each $\epsilon>0$ there exists $\delta\left(\epsilon, x_{0}\right)>0$ such that

$$
x \in\left(x_{0}-\delta\left(\epsilon, x_{0}\right), x_{0}+\delta\left(\epsilon, x_{0}\right)\right) \cap[a, b] \quad \Rightarrow \quad\left|f(x)-f\left(x_{0}\right)\right|<\epsilon .
$$

Theorem. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$. If $f(a)>0$ and $f(b)<0$, then there exists $c \in[a, b]$ such that $f(c)=0$.

Proof. Assume $f(a)>0$ and $f(b)<0$.
Step 1. Set

$$
W=\{x \in[a, b]: \quad f(x)>0\} .
$$

Clearly $a \in W, b \notin W$ and $W \subset[a, b]$. Therefore, $c=\sup W$ exists by the Completeness Axiom. Since $a \in W$ and b is an upper bound for W we have $c \in[a, b]$.
Step 2. Here we show that W does not have a maximum. Let $v \in W$ be arbitrary. Then $v<b$ and $f(v)>0$. Set $\epsilon_{1}=f(v) / 2$. Since $\epsilon_{1}>0$ and f is continuous at v there exists $\delta_{1}=\delta\left(\epsilon_{1}, v\right)>0$ such that

$$
\begin{equation*}
x \in[a, b] \cap\left(v-\delta_{1}, v+\delta_{1}\right) \quad \Rightarrow \quad f(v)-\epsilon_{1}<f(x)<f(v)+\epsilon_{1} . \tag{1}
\end{equation*}
$$

Set $\mu=\frac{1}{2} \min \left\{\delta_{1}, b-v\right\}$. Then $\mu>0$ and $v+\mu<b$ and $v+\mu<v+\delta_{1}$. It follows from (1) that $f(v+\mu)>f(v)-\epsilon_{1}=f(v) / 2>0$. Thus $v+\mu \in W$. Since $v+\mu>v$, we proved that v is not a maximum of W.
Step 3. Since W does not have a maximum, $c \notin W$. Since $c \in[a, b]$ and $c \notin W$ we conclude that $f(c) \leq 0$.
Step 4. Here we show that $f(c) \geq 0$. Let $\epsilon>0$ be arbitrary. Since f is continuous at c, there exists $\delta(\epsilon, c)>0$ such that

$$
\begin{equation*}
x \in[a, b] \cap(c-\delta(\epsilon, c), c+\delta(\epsilon, c)) \quad \Rightarrow \quad f(c)-\epsilon<f(x)<f(c)+\epsilon \tag{2}
\end{equation*}
$$

Since $c=\sup W$ and $\delta(\epsilon, c)>0$ there exists $w \in W$ such that

$$
c-\delta(\epsilon, c)<w<c .
$$

Now (2) and $f(w)>0$ yield $0<f(w)<f(c)+\epsilon$. Since $\epsilon>0$ was arbitrary, we proved that $f(c)>-\epsilon$ for all $\epsilon>0$. Consequently $f(c) \geq 0$.
Step 5. In Step 3 we proved $f(c) \leq 0$. In Step 4 we proved $f(c) \geq 0$. Thus $f(c)=0$. This completes the proof.

