ON THE MAXIMUM OF A CONTINUOUS FUNCTION

BRANKO ĆURGUS

In this note a and b are real numbers such that $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ is a function defined on $[a, b]$.
Definition 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a given function. If $z \in[a, b]$ and $f(z) \geq f(x)$ for all $x \in[a, b]$, then the value $f(z)$ is called a maximum of f.
Definition 2. A function $f:[a, b] \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in[a, b]$ if for each $\epsilon>0$ there exists $\delta=\delta\left(\epsilon, x_{0}\right)>0$ such that

$$
x \in[a, b] \text { and }\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

The function f is continuous on $[a, b]$ if it is continuous at each point $x_{0} \in[a, b]$.
Let $\alpha, \beta \in[a, b], \alpha \leq \beta$. In this note we say that the function f is dominated on $[\alpha, \beta]$ if there exists $z_{0} \in[a, b]$ such that $f(x)<f\left(z_{0}\right)$ for all $x \in[\alpha, \beta]$; see Fig. 1 and 2.

The following two lemmas give two simple properties of domination.
Lemma 1. Let $\alpha, \alpha_{1}, \beta, \beta_{1}, \in[a, b]$ and $\alpha \leq \alpha_{1} \leq \beta_{1} \leq \beta$. If f is dominated on $[\alpha, \beta]$, then f is dominated on $\left[\alpha_{1}, \beta_{1}\right]$.

Proof. If f is dominated on $[\alpha, \beta]$, then for some $z_{0} \in[a, b]$ we have $f(x)<f\left(z_{0}\right)$ for all $x \in[\alpha, \beta]$. Since $\left[\alpha_{1}, \beta_{1}\right] \subseteq[\alpha, \beta]$ we have $f(x)<f\left(z_{0}\right)$ for all $x \in\left[\alpha_{1}, \beta_{1}\right]$. Hence f is dominated on $\left[\alpha_{1}, \beta_{1}\right]$.

Lemma 2. Let $\alpha, \beta, \gamma \in[a, b]$ and $\alpha \leq \beta \leq \gamma$. If f is dominated on both intervals $[\alpha, \beta]$ and $[\beta, \gamma]$, then f is dominated on the interval $[\alpha, \gamma]$.
Proof. Assume that f is dominated on both intervals $[\alpha, \beta]$ and $[\beta, \gamma]$. Then there exists $z_{0}, z_{1} \in[a, b]$ such that $f(x)<f\left(z_{0}\right)$ for all $x \in[\alpha, \beta]$ and $f(x)<f\left(z_{1}\right)$ for all $x \in[\beta, \gamma]$. Set

$$
z_{2}:=\left\{\begin{array}{lll}
z_{0} & \text { if } & f\left(z_{1}\right) \leq f\left(z_{0}\right) \\
z_{1} & \text { if } & f\left(z_{0}\right)<f\left(z_{1}\right)
\end{array}\right.
$$

Then $f\left(z_{1}\right) \leq f\left(z_{2}\right)$ and $f\left(z_{0}\right) \leq f\left(z_{2}\right)$. Therefore, $f(x)<f\left(z_{2}\right)$ for all $x \in[\alpha, \gamma]$. Hence f is dominated on $[\alpha, \gamma]$.

In the following three lemmas we prove properties of domination which require continuity of the function f at a point.
Lemma 3. Let $d \in[a, b]$. If f is continuous at d and $f(d)$ is not a maximum of f, then there exists $\eta>0$ such that f is dominated on the interval $[d-\eta, d+\eta] \cap[a, b]$.

Date: May 30, 2011 at 16:24, File: ContMaxHO 2011 .tex.

Proof. This proof is illustrated in Fig. 3. Suppose that f is continuous at d and $f(d)$ is not a maximum of f. Then there exists $y \in[a, b]$ such that $f(d)<f(y)$. Set

$$
\epsilon_{0}=\frac{f(y)-f(d)}{2}>0 .
$$

Since f is continuous at d, there exists $\delta_{0}=\delta\left(\epsilon_{0}, d\right)>0$ such that

$$
\begin{equation*}
x \in[a, b] \text { and }|x-d|<\delta_{0} \quad \Rightarrow \quad f(d)-\epsilon_{0}<f(x)<f(d)+\epsilon_{0} . \tag{1}
\end{equation*}
$$

Choose $\eta>0$ such that $\eta<\delta_{0}$. Then clearly

$$
x \in[d-\eta, d+\eta] \cap[a, b] \quad \Rightarrow \quad x \in[a, b] \text { and }|x-d|<\delta_{0},
$$

and therefore, by (1),

$$
x \in[d-\eta, d+\eta] \cap[a, b] \quad \Rightarrow \quad f(d)-\epsilon_{0}<f(x)<f(d)+\epsilon_{0} .
$$

Since

$$
f(d)+\epsilon_{0}=f(d)+\frac{f(y)-f(d)}{2}=\frac{f(y)+f(d)}{2}<\frac{f(y)+f(y)}{2}=f(y),
$$

we have

$$
x \in[d-\eta, d+\eta] \cap[a, b] \quad \Rightarrow \quad f(x)<f(y)
$$

That is,

$$
f(x)<f(y) \quad \text { for all } \quad x \in[d-\eta, d+\eta] \cap[a, b] .
$$

This proves that f is dominated on the interval $[d-\eta, d+\eta] \cap[a, b]$.
Lemma 4. Let $\alpha, \beta \in[a, b)$ and $\alpha \leq \beta$. If f is continuous at β and if f is dominated on $[\alpha, \beta]$, then there exists $\mu>0$ such that $\beta+\mu<b$ and f is dominated on $[\alpha, \beta+\mu]$.
Proof. Assume that f is dominated on $[\alpha, \beta]$. Let $z_{0} \in[a, b]$ be such that $f(x)<f\left(z_{0}\right)$ for all $x \in[\alpha, \beta]$. In particular, $f(\beta)<f\left(z_{0}\right)$. Thus $f(\beta)$ is not a maximum of f. By Lemma 3 there exists $\eta>0$ such that f is dominated on $[\beta-\eta, \beta+\eta] \cap[a, b]$.
Since $\beta<b$ we set $\mu=\min \{\eta,(b-\beta) / 2\}>0$. Then $\beta+\mu<b$ and thus $[\beta, \beta+\mu] \subseteq$ $[\beta-\eta, \beta+\eta] \cap[a, b]$. As f is dominated on $[\beta-\eta, \beta+\eta] \cap[a, b]$ Lemma 1 implies that f is also dominated on $[\beta, \beta+\mu]$. Since by assumption f is dominated on $[\alpha, \beta]$, Lemma 2 implies that f is dominated on $[\alpha, \beta+\mu]$.

Lemma 5. Let $d \in(a, b]$. Assume
(i) f is dominated on $[a, \beta]$ for every $\beta<d$;
(ii) f is continuous at d;
(iii) $f(d)$ is not a maximum of f.

Then f is dominated on $[a, d]$.
Proof. Assume (i),(ii) and (iii). By Lemma 3 there exists $\eta>0$ such that f is dominated on the interval $[d-\eta, d+\eta] \cap[a, b]$. Since $a<d$, the number $\nu=$ $\min \{\eta,(d-a) / 2\}$ is positive. By the definition of ν we have $a<d-\nu$ and thus $[d-\nu, d] \subseteq[d-\eta, d+\eta] \cap[a, b]$. Since f is dominated on $[d-\eta, d+\eta] \cap[a, b]$, by Lemma $1 f$ is also dominated on $[d-\nu, d]$. Since $a<d-\nu<d$, the assumption

(i) implies that f is dominated on $[a, d-\nu]$. Since f is dominated on both intervals $[a, d-\nu]$ and $[d-\nu, d]$, Lemma 2 implies that f is dominated on $[a, d]$.

The next corollary is a partial contrapositive of the preceding lemma.
Corollary 6. Let $d \in(a, b]$. Assume
(i) f is dominated on $[a, \beta]$ for every $\beta<d$;
(ii) f is continuous at d;
(iii) f is not dominated on $[a, d]$.

Then $f(d)$ is a maximum of f.
Theorem. Let $a, b \in \mathbb{R}, a<b$. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$.
Then there exists $c \in[a, b]$ such that $f(c) \geq f(x)$ for all $x \in[a, b]$.
Proof. Case I. The value $f(a)$ is a maximum of f. In this case we can set $c=a$.

Case II. The value $f(a)$ is not a maximum of f. Define (see Fig. 4)

$$
W=\{\beta \in[a, b]: \quad f \text { is dominated on }[a, \beta]\} .
$$

Notice that f is not dominated on $[a, b]$ since the statement

$$
\exists z_{0} \in[a, b] \quad \text { such that } \forall x \in[a, b] \quad f(x)<f\left(z_{0}\right)
$$

is false. Therefore $b \notin W$.
Step 1. Since $f(a)$ is not a maximum of f, by Lemma 3 there exists $\eta_{1}>0$ such that f is dominated on $\left[a, a+\eta_{1}\right] \cap[a, b]$. As $[a, b]$ is not dominated, $a+\eta_{1}<b$. Thus f is dominated on $\left[a, a+\eta_{1}\right] \cap[a, b]=\left[a, a+\eta_{1}\right]$. Hence $a+\eta_{1} \in W$. Consequently, $W \neq \emptyset$. Since $W \subseteq[a, b), W$ is bounded. Hence $c=\sup W$ exists by the Completeness Axiom. Since b is an upper bound of W and $a+\eta_{1} \in W$, we have $a<c \leq b$.
Step 2. Let $\beta \in W$. Then $\beta \in[a, b)$ and f is dominated on $[a, \beta]$. Since f is continuous at β, Lemma 4 implies that there exists $\eta>0$ such that f is also dominated on $[a, \beta+\eta]$. Hence $\beta+\eta \in W$. This proves that W does not have a maximum. Therefore $c \notin W$.
Step 3. Here we show that $[a, c) \subseteq W$. Let $\beta \in[a, c)$ be arbitrary. Since $\beta<c$ and $c=\sup W, \beta$ is not an upper bound of W. Hence, there exists $\gamma \in W$ such that $\beta<\gamma<c$. Since f is dominated on $[a, \gamma]$ and $[a, \beta] \subseteq[a, \gamma]$, Lemma 1 implies that f is dominated on $[a, \beta]$. Hence $\beta \in W$. This proves $[a, c) \subseteq W$.
Step 4. By Step 2, $c \notin W$. Therefore f is not dominated on $[a, c]$. By Step 3 we have $[a, c) \subseteq W$. Therefore f is dominated on $[a, \beta]$ for every $\beta \in[a, c)$. Now Corollary 6 implies that $f(c)$ is a maximum of f.

The proof is complete.

