## ON THE MAXIMUM OF A CONTINUOUS FUNCTION

## BRANKO ĆURGUS

In this note a and b are real numbers such that a < b and  $f : [a, b] \to \mathbb{R}$  is a function defined on [a, b].

**Definition 1.** Let  $f : [a, b] \to \mathbb{R}$  be a given function. If  $z \in [a, b]$  and  $f(z) \ge f(x)$  for all  $x \in [a, b]$ , then the value f(z) is called a *maximum of* f.

**Definition 2.** A function  $f : [a, b] \to \mathbb{R}$  is continuous at a point  $x_0 \in [a, b]$  if for each  $\epsilon > 0$  there exists  $\delta = \delta(\epsilon, x_0) > 0$  such that

 $x \in [a, b]$  and  $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$ .

The function f is continuous on [a, b] if it is continuous at each point  $x_0 \in [a, b]$ .

Let  $\alpha, \beta \in [a, b], \alpha \leq \beta$ . In this note we say that the function f is dominated on  $[\alpha, \beta]$  if there exists  $z_0 \in [a, b]$  such that  $f(x) < f(z_0)$  for all  $x \in [\alpha, \beta]$ ; see Fig. 1 and 2.

The following two lemmas give two simple properties of domination.

**Lemma 1.** Let  $\alpha, \alpha_1, \beta, \beta_1, \in [a, b]$  and  $\alpha \leq \alpha_1 \leq \beta_1 \leq \beta$ . If f is dominated on  $[\alpha, \beta]$ , then f is dominated on  $[\alpha_1, \beta_1]$ .

*Proof.* If f is dominated on  $[\alpha, \beta]$ , then for some  $z_0 \in [a, b]$  we have  $f(x) < f(z_0)$  for all  $x \in [\alpha, \beta]$ . Since  $[\alpha_1, \beta_1] \subseteq [\alpha, \beta]$  we have  $f(x) < f(z_0)$  for all  $x \in [\alpha_1, \beta_1]$ . Hence f is dominated on  $[\alpha_1, \beta_1]$ .

**Lemma 2.** Let  $\alpha, \beta, \gamma \in [a, b]$  and  $\alpha \leq \beta \leq \gamma$ . If f is dominated on both intervals  $[\alpha, \beta]$  and  $[\beta, \gamma]$ , then f is dominated on the interval  $[\alpha, \gamma]$ .

*Proof.* Assume that f is dominated on both intervals  $[\alpha, \beta]$  and  $[\beta, \gamma]$ . Then there exists  $z_0, z_1 \in [a, b]$  such that  $f(x) < f(z_0)$  for all  $x \in [\alpha, \beta]$  and  $f(x) < f(z_1)$  for all  $x \in [\beta, \gamma]$ . Set

$$z_2 := \begin{cases} z_0 & \text{if } f(z_1) \le f(z_0), \\ z_1 & \text{if } f(z_0) < f(z_1). \end{cases}$$

Then  $f(z_1) \leq f(z_2)$  and  $f(z_0) \leq f(z_2)$ . Therefore,  $f(x) < f(z_2)$  for all  $x \in [\alpha, \gamma]$ . Hence f is dominated on  $[\alpha, \gamma]$ .

In the following three lemmas we prove properties of domination which require continuity of the function f at a point.

**Lemma 3.** Let  $d \in [a, b]$ . If f is continuous at d and f(d) is not a maximum of f, then there exists  $\eta > 0$  such that f is dominated on the interval  $[d - \eta, d + \eta] \cap [a, b]$ .

Date: May 30, 2011 at 16:24, File: ContMaxHO<sup>•</sup>2011.tex.

## BRANKO ĆURGUS

*Proof.* This proof is illustrated in Fig. 3. Suppose that f is continuous at d and f(d) is not a maximum of f. Then there exists  $y \in [a, b]$  such that f(d) < f(y). Set

$$\epsilon_0 = \frac{f(y) - f(d)}{2} > 0.$$

Since f is continuous at d, there exists  $\delta_0 = \delta(\epsilon_0, d) > 0$  such that

(1) 
$$x \in [a, b]$$
 and  $|x - d| < \delta_0 \Rightarrow f(d) - \epsilon_0 < f(x) < f(d) + \epsilon_0.$ 

Choose  $\eta > 0$  such that  $\eta < \delta_0$ . Then clearly

x

$$x \in [d - \eta, d + \eta] \cap [a, b] \Rightarrow x \in [a, b] \text{ and } |x - d| < \delta_0,$$

and therefore, by (1),

$$x \in [d - \eta, d + \eta] \cap [a, b] \Rightarrow f(d) - \epsilon_0 < f(x) < f(d) + \epsilon_0.$$

Since

$$f(d) + \epsilon_0 = f(d) + \frac{f(y) - f(d)}{2} = \frac{f(y) + f(d)}{2} < \frac{f(y) + f(y)}{2} = f(y),$$

we have

$$\in [d - \eta, d + \eta] \cap [a, b] \quad \Rightarrow \quad f(x) < f(y)$$

That is,

$$f(x) < f(y)$$
 for all  $x \in [d - \eta, d + \eta] \cap [a, b].$ 

This proves that f is dominated on the interval  $[d - \eta, d + \eta] \cap [a, b]$ .

**Lemma 4.** Let  $\alpha, \beta \in [a, b)$  and  $\alpha \leq \beta$ . If f is continuous at  $\beta$  and if f is dominated on  $[\alpha, \beta]$ , then there exists  $\mu > 0$  such that  $\beta + \mu < b$  and f is dominated on  $[\alpha, \beta + \mu]$ .

Proof. Assume that f is dominated on  $[\alpha, \beta]$ . Let  $z_0 \in [a, b]$  be such that  $f(x) < f(z_0)$ for all  $x \in [\alpha, \beta]$ . In particular,  $f(\beta) < f(z_0)$ . Thus  $f(\beta)$  is not a maximum of f. By Lemma 3 there exists  $\eta > 0$  such that f is dominated on  $[\beta - \eta, \beta + \eta] \cap [a, b]$ . Since  $\beta < b$  we set  $\mu = \min\{\eta, (b - \beta)/2\} > 0$ . Then  $\beta + \mu < b$  and thus  $[\beta, \beta + \mu] \subseteq [\beta - \eta, \beta + \eta] \cap [a, b]$ . As f is dominated on  $[\beta - \eta, \beta + \eta] \cap [a, b]$  Lemma 1 implies that f is also dominated on  $[\beta, \beta + \mu]$ . Since by assumption f is dominated on  $[\alpha, \beta]$ , Lemma 2 implies that f is dominated on  $[\alpha, \beta + \mu]$ .

**Lemma 5.** Let  $d \in (a, b]$ . Assume

- (i) f is dominated on  $[a, \beta]$  for every  $\beta < d$ ;
- (ii) f is continuous at d;
- (iii) f(d) is not a maximum of f.

Then f is dominated on [a, d].

Proof. Assume (i),(ii) and (iii). By Lemma 3 there exists  $\eta > 0$  such that f is dominated on the interval  $[d - \eta, d + \eta] \cap [a, b]$ . Since a < d, the number  $\nu = \min\{\eta, (d - a)/2\}$  is positive. By the definition of  $\nu$  we have  $a < d - \nu$  and thus  $[d - \nu, d] \subseteq [d - \eta, d + \eta] \cap [a, b]$ . Since f is dominated on  $[d - \eta, d + \eta] \cap [a, b]$ , by Lemma 1 f is also dominated on  $[d - \nu, d]$ . Since  $a < d - \nu < d$ , the assumption



(i) implies that f is dominated on  $[a, d - \nu]$ . Since f is dominated on both intervals  $[a, d - \nu]$  and  $[d - \nu, d]$ , Lemma 2 implies that f is dominated on [a, d].

The next corollary is a partial contrapositive of the preceding lemma.

**Corollary 6.** Let  $d \in (a, b]$ . Assume

- (i) f is dominated on  $[a, \beta]$  for every  $\beta < d$ ;
- (ii) f is continuous at d;
- (iii) f is not dominated on [a, d].
- Then f(d) is a maximum of f.

**Theorem.** Let  $a, b \in \mathbb{R}$ , a < b. Let  $f : [a, b] \to \mathbb{R}$  be a continuous function on [a, b]. Then there exists  $c \in [a, b]$  such that  $f(c) \ge f(x)$  for all  $x \in [a, b]$ .

**Proof.** Case I. The value f(a) is a maximum of f. In this case we can set c = a.

**Case II.** The value f(a) is not a maximum of f. Define (see Fig. 4)

$$W = \left\{ \beta \in [a, b] : f \text{ is dominated on } [a, \beta] \right\}.$$

Notice that f is not dominated on [a, b] since the statement

$$\exists z_0 \in [a, b]$$
 such that  $\forall x \in [a, b]$   $f(x) < f(z_0)$ 

is false. Therefore  $b \notin W$ .

**Step 1.** Since f(a) is not a maximum of f, by Lemma 3 there exists  $\eta_1 > 0$  such that f is dominated on  $[a, a + \eta_1] \cap [a, b]$ . As [a, b] is not dominated,  $a + \eta_1 < b$ . Thus f is dominated on  $[a, a + \eta_1] \cap [a, b] = [a, a + \eta_1]$ . Hence  $a + \eta_1 \in W$ . Consequently,  $W \neq \emptyset$ . Since  $W \subseteq [a, b)$ , W is bounded. Hence  $c = \sup W$  exists by the Completeness Axiom. Since b is an upper bound of W and  $a + \eta_1 \in W$ , we have  $a < c \le b$ .

**Step 2.** Let  $\beta \in W$ . Then  $\beta \in [a, b)$  and f is dominated on  $[a, \beta]$ . Since f is continuous at  $\beta$ , Lemma 4 implies that there exists  $\eta > 0$  such that f is also dominated on  $[a, \beta + \eta]$ . Hence  $\beta + \eta \in W$ . This proves that W does not have a maximum. Therefore  $c \notin W$ .

**Step 3.** Here we show that  $[a, c) \subseteq W$ . Let  $\beta \in [a, c)$  be arbitrary. Since  $\beta < c$  and  $c = \sup W$ ,  $\beta$  is not an upper bound of W. Hence, there exists  $\gamma \in W$  such that  $\beta < \gamma < c$ . Since f is dominated on  $[a, \gamma]$  and  $[a, \beta] \subseteq [a, \gamma]$ , Lemma 1 implies that f is dominated on  $[a, \beta]$ . Hence  $\beta \in W$ . This proves  $[a, c) \subseteq W$ .

**Step 4.** By Step 2,  $c \notin W$ . Therefore f is not dominated on [a, c]. By Step 3 we have  $[a, c) \subseteq W$ . Therefore f is dominated on  $[a, \beta]$  for every  $\beta \in [a, c)$ . Now Corollary 6 implies that f(c) is a maximum of f.

The proof is complete.