$MATH \ 312 \ {}^{\rm Assignment \ 2}_{\rm August \ 11, \ 2011}$

Name ____

Problem 1. Let $\{I_k, k \in \mathbb{N}\}$ be a family of open bounded intervals in \mathbb{R} . Prove the following implication: If the intersection of the intervals $I_k, k \in \mathbb{N}$, is nonempty, then the union of these intervals is also an open interval. (HINT: this is a sup – inf problem.)

Problem 2. Let A and B be nonempty subsets of \mathbb{R} . Define the set A + B to be the set of all real numbers x for which there exist $a \in A$ and $b \in B$ such that x = a + b, i.e.,

$$A + B = \{ x \in \mathbb{R} : \exists a \in A \text{ and } \exists b \in B \text{ such that } x = a + b \}.$$

(a) Work out the set A + B in each of the following cases:

(i) A = (0, 1], B = [-1, 0); (ii) $A = [0, 1], B = \{1, 2, 3\};$ (iii) $A = (0, 1), B = \{1, 2, 3\};$

(b) Prove that A and B are bounded above if and only if A + B is bounded above.

(c) If A + B is bounded above, then $\sup(A + B) = \sup A + \sup B$.

Problem 3. Let a < b. Prove that the closed interval [a, b] has the Heine-Borel property: Let $\{I_k, k \in \mathbb{N}\}$ be a family of open intervals in \mathbb{R} . The following implication holds: If

$$[a,b] \subset \bigcup_{k \in \mathbb{N}} I_k,$$

then there exists $n \in \mathbb{N}$ such that

$$[a,b] \subset \bigcup_{k=1}^{n} I_k$$

HINT: Consider the set

$$S = \left\{ x \in [a, b] : \exists k \in \mathbb{N} \text{ such that } [a, x] \subset \bigcup_{j=1}^{k} I_j \right\}.$$

Definition 1. A family \mathcal{A} of sets is said to be *pairwise disjoint* or *mutually disjoint* for arbitrary $A, B \in \mathcal{A}$ implies A = B or $A \cap B = \emptyset$.

In the problem below, we call a subset A of \mathbb{R} an open interval if there exist $a, b \in \mathbb{R}$ such that A = (a, b).

Problem 4. Let \mathcal{I} be an infinite family of open mutually disjoint intervals. Prove that \mathcal{I} is countable.

Problem 5. Use ϵ - δ definition of continuity to prove that the function

$$f(x) = \frac{x}{x^2 + 1}, \quad x \in \mathbb{R},$$

is continuous on its domain.

Problem 6. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Let $c \in \mathbb{R}$ and define the function $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = f(cx), x \in \mathbb{R}$. Prove the following implication: If f is continuous, then g is continuous. Is the converse true? Give a complete answer with proofs.