\qquad
Problem 1. Let $\left\{I_{k}, k \in \mathbb{N}\right\}$ be a family of open bounded intervals in \mathbb{R}. Prove the following implication: If the intersection of the intervals $I_{k}, k \in \mathbb{N}$, is nonempty, then the union of these intervals is also an open interval. (Hint: this is a sup - inf problem.)
Problem 2. Let A and B be nonempty subsets of \mathbb{R}. Define the set $A+B$ to be the set of all real numbers x for which there exist $a \in A$ and $b \in B$ such that $x=a+b$, i.e.,

$$
A+B=\{x \in \mathbb{R}: \exists a \in A \text { and } \exists b \in B \text { such that } x=a+b\}
$$

(a) Work out the set $A+B$ in each of the following cases:
(i) $A=(0,1], B=[-1,0) ; \quad$ (ii) $A=[0,1], B=\{1,2,3\} ; \quad$ (iii) $A=(0,1), B=\{1,2,3\}$;
(b) Prove that A and B are bounded above if and only if $A+B$ is bounded above.
(c) If $A+B$ is bounded above, then $\sup (A+B)=\sup A+\sup B$.

Problem 3. Let $a<b$. Prove that the closed interval $[a, b]$ has the Heine-Borel property: Let $\left\{I_{k}, k \in \mathbb{N}\right\}$ be a family of open intervals in \mathbb{R}. The following implication holds: If

$$
[a, b] \subset \bigcup_{k \in \mathbb{N}} I_{k}
$$

then there exists $n \in \mathbb{N}$ such that

$$
[a, b] \subset \bigcup_{k=1}^{n} I_{k} .
$$

Hint: Consider the set

$$
S=\left\{x \in[a, b]: \exists k \in \mathbb{N} \text { such that }[a, x] \subset \bigcup_{j=1}^{k} I_{j}\right\}
$$

Definition 1. A family \mathcal{A} of sets is said to be pairwise disjoint or mutually disjoint for arbitrary $A, B \in \mathcal{A}$ implies $A=B$ or $A \cap B=\emptyset$.

In the problem below, we call a subset A of \mathbb{R} an open interval if there exist $a, b \in \mathbb{R}$ such that $A=(a, b)$.

Problem 4. Let \mathcal{I} be an infinite family of open mutually disjoint intervals. Prove that \mathcal{I} is countable.

Problem 5. Use $\epsilon-\delta$ definition of continuity to prove that the function

$$
f(x)=\frac{x}{x^{2}+1}, \quad x \in \mathbb{R}
$$

is continuous on its domain.
Problem 6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Let $c \in \mathbb{R}$ and define the function $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=f(c x), x \in \mathbb{R}$. Prove the following implication: If f is continuous, then g is continuous. Is the converse true? Give a complete answer with proofs.

