CHAPTER 3

Continuous functions

In this chapter I will always denote a non-empty subset of \mathbb{R}. This includes more general sets, but the most common examples of I are intervals.

3.1. The $\epsilon-\delta$ definition of a continuous function

Definition 3.1.1. A function $f: I \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in I$ if for each $\epsilon>0$ there exists $\delta=\delta\left(\epsilon, x_{0}\right)>0$ such that

$$
\begin{equation*}
x \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap I \quad \Rightarrow \quad\left|f(x)-f\left(x_{0}\right)\right|<\epsilon \tag{3.1.1}
\end{equation*}
$$

The function f is continuous on I if it is continuous at each point of I.
Note that the implication in (3.1.1) can be restated as

$$
x \in I \text { and }\left|x-x_{0}\right|<\delta\left(\epsilon, x_{0}\right) \quad \Rightarrow \quad\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

Next we restate Definition 3.1.1]using the terminology introduced in Section 2.14 For a function $f: I \rightarrow \mathbb{R}$ and a subset $A \subseteq I$ we will use the notation $f(A)$ to denote the set $\{y \in \mathbb{R}: \exists x \in A$ s.t. $f(x)=y\}=\{f(x): x \in A\}$.

A function $f: I \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in I$ if for each neighborhood V of $f\left(x_{0}\right)$ there exists a neighborhood U of x_{0} such that

$$
f(I \cap U) \subseteq V
$$

3.2. Finding $\delta(\epsilon)$ for a given function at a given point

In this and the next section we will prove that some familiar functions are continuous. This should be a review of what was done in Math 226.

A general strategy for proving that a given function f is continuous at a given point x_{0} is as follows:
Step 1. Simplify the expression $\left|f(x)-f\left(x_{0}\right)\right|$ and try to establish a simple connection with the expression $\left|x-x_{0}\right|$. The simplest connection is to discover positive constants δ_{0} and K such that

$$
\begin{equation*}
x \in I \text { and } x_{0}-\delta_{0}<x<x_{0}+\delta_{0} \Rightarrow\left|f(x)-f\left(x_{0}\right)\right| \leq K\left|x-x_{0}\right| \tag{3.2.1}
\end{equation*}
$$

Constants δ_{0} and K might depend on x_{0}. Formulate your discovery as a lemma.
Step 2. Let $\epsilon>0$ be given. Use the result in Step 1 to define your $\delta\left(\epsilon, x_{0}\right)$. For example, if (3.2.1) holds, then $\delta\left(\epsilon, x_{0}\right)=\min \left\{\epsilon / K, \delta_{0}\right\}$.
Step 3. Use the definition of $\delta\left(\epsilon, x_{0}\right)$ from Step 2 and the lemma from Step 1 to prove the implication (3.1.1).

Example 3.2.1. We will show that the function $f(x)=x^{2}$ is continuous at $x_{0}=3$. Here $I=\mathbb{R}$ and we do not need to worry about the domain of f.
Step 1. First simplify

$$
\begin{equation*}
\left|f(x)-f\left(x_{0}\right)\right|=\left|x^{2}-3^{2}\right|=|(x+3)(x-3)|=|x+3||x-3| \tag{3.2.2}
\end{equation*}
$$

Now we notice that if $2<x<4$ we have $|x+3|=x+3 \leq 7$. Thus (3.2.1) holds with $\delta_{0}=1$ and $K=7$. We formulate this result as a lemma.

Lemma. Let $f(x)=x^{2}$ and $x_{0}=3$. Then

$$
\begin{equation*}
|x-3|<1 \quad \Rightarrow \quad\left|x^{2}-3^{2}\right|<7|x-3| \tag{3.2.3}
\end{equation*}
$$

Proof. Let $|x-3|<1$. Then $2<x<4$. Therefore $x+3>0$ and $|x+3|=$ $x+3<7$. By (3.2.2) we now have $\left|x^{2}-3^{2}\right|<7|x-3|$.

Step 2. Now we define $\delta(\epsilon)=\min \{\epsilon / 7,1\}$.
Step 3. It remains to prove (3.1.1). To this end, assume $|x-3|<\min \{\epsilon / 7,1\}$. Then $|x-3|<1$. Therefore, by Lemma we have $\left|x^{2}-3^{2}\right|<7|x-3|$. Since by the assumption $|x-3|<\epsilon / 7$, we have $7|x-3|<7 \epsilon / 7 \epsilon$. Now the inequalities

$$
\left|x^{2}-3^{2}\right|<7|x-3| \quad \text { and } \quad 7|x-3|<\epsilon
$$

imply that $\left|x^{2}-3^{2}\right|<\epsilon$. This proves (3.1.1) and completes the proof that the function $f(x)=x^{2}$ is continuous at $x_{0}=3$.
Exercise 3.2.2. Prove that the reciprocal function $x \mapsto \frac{1}{x}, x \neq 0$, is continuous at $x_{0}=1 / 2$.
Exercise 3.2.3. State carefully what it means for a function f not to be continuous at a point x_{0} in its domain. (Express this as a formal mathematical statement.)

Exercise 3.2.4. Consider the function $f(x)=\operatorname{sgn} x$. Find a point x_{0} at which the function f is not continuous. Provide a formal proof.

Exercise 3.2.5. Show that the function $f(x)=x^{2}$ is continuous on \mathbb{R}.
Exercise 3.2.6. Prove that $q(x)=3 x^{2}+5$ is continuous on \mathbb{R}.

3.3. Familiar continuous functions

Exercise 3.3.1. Let $m, k \in \mathbb{R}$ and $m \neq 0$. Prove that the linear function $\ell(x)=$ $m x+k$ is continuous on \mathbb{R}.

Exercise 3.3.2. Let $a, b, c \in \mathbb{R}$ and $a \neq 0$. Prove that the quadratic function $q(x)=a x^{2}+b x+c$ is continuous on \mathbb{R}.

Exercise 3.3.3. Let $n \in \mathbb{N}$ and let $x, x_{0} \in \mathbb{R}$ be such that $x_{0}-1 \leq x \leq x_{0}+1$. Prove the following inequality

$$
\left|x^{n}-x_{0}^{n}\right| \leq n\left(\left|x_{0}\right|+1\right)^{n-1}\left|x-x_{0}\right| .
$$

Hint: First notice that the assumption $x_{0}-1 \leq x \leq x_{0}+1$ implies that $|x|<\left|x_{0}\right|+1$. Then use the Mathematical Induction and the identity

$$
\left|x^{n+1}-x_{0}^{n+1}\right|=\left|x^{n+1}-x x_{0}^{n}+x x_{0}^{n}-x_{0}^{n+1}\right|
$$

Exercise 3.3.4. Let $n \in \mathbb{N}$. Prove that the power function $x \mapsto x^{n}, x \in \mathbb{R}$, is continuous on \mathbb{R}.

Exercise 3.3.5. Let $n \in \mathbb{N}$ and let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ with $a_{n} \neq 0$. Prove that the n-th order polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}
$$

is a continuous function on \mathbb{R}.
Exercise 3.3.6. Prove that the reciprocal function $x \mapsto \frac{1}{x}, x \neq 0$, is continuous on its domain.
Exercise 3.3.7. Prove that the square root function $x \mapsto \sqrt{x}, x \geq 0$, is continuous on its domain.

Exercise 3.3.8. Let $n \in \mathbb{N}$ and let x and a be positive real numbers. Prove that

$$
|\sqrt[n]{x}-\sqrt[n]{a}| \leq \frac{\sqrt[n]{a}}{a}|x-a|
$$

Hint: Notice that the given inequality is equivalent to

$$
b^{n-1}|y-b| \leq\left|y^{n}-b^{n}\right|, \quad y, b>0
$$

This inequality can be proved using Exercise 2.7.7 (with $a=1$ and $x=y / b$).
Exercise 3.3.9. Let $n \in \mathbb{N}$. Prove that the n-th root function $x \mapsto \sqrt[n]{x}, x \geq 0$, is continuous on its domain.

3.4. Various properties of continuous functions

Exercise 3.4.1. Let $f: I \rightarrow \mathbb{R}$ be continuous at $x_{0} \in I$ and let y be a real number such that $f\left(x_{0}\right)<y$. Then there exists $\alpha>0$ such that

$$
x \in I \cap\left(x_{0}-\alpha, x_{0}+\alpha\right) \quad \Rightarrow \quad f(x)<y
$$

Illustrate with a diagram.
Exercise 3.4.2. Let $f: I \rightarrow \mathbb{R}$ be a continuous function on I. Let S be a nonempty bounded above subset of I such that $u=\sup S$ belongs to I. Let $y \in \mathbb{R}$. Prove: If $f(x) \leq y$ for each $x \in S$, then $f(u) \leq y$.

3.5. Algebra of continuous functions

All exercises in this section have the same structure. With the exception of Exercise 3.5.3 there are three functions in each exercise: f, g and h. The function h is always related in a simple (green) way to the functions f and g. Based on the given (green) information about f and g you are asked to prove a claim (red) about the function h.

Exercise 3.5.1. Let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be given functions with a common domain. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=f(x)+g(x), \quad x \in I
$$

(a) If f and g are continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 3.5.2. Let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be given functions with a common domain. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=f(x) g(x), \quad x \in I
$$

(a) If f and g are continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 3.5.3. Let $g: I \rightarrow \mathbb{R}$ be a given functions such that $g(x) \neq 0$ for all $x \in I$. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=\frac{1}{g(x)}, \quad x \in I
$$

(a) If g is continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If g is continuous on I, then h is continuous on I.

Exercise 3.5.4. Let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be given functions with a common domain. Assume that $g(x) \neq 0$ for all $x \in I$. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=\frac{f(x)}{g(x)}, \quad x \in I .
$$

(a) If f and g are continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 3.5.5. Let I and J be non-empty subsets of \mathbb{R}. Let $f: I \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}$ be given functions. Assume that the range of f is contained in J. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=g(f(x)), \quad x \in I
$$

(a) If f is continuous at $x_{0} \in I$ and g is continuous at $f\left(x_{0}\right) \in J$, then h is continuous at x_{0}.
(b) If f is continuous on I and g is continuous on J, then h is continuous on I.

3.6. Continuous functions on a closed bounded interval $[a, b]$

In this section we assume that $a, b \in \mathbb{R}$ and $a<b$.
Exercise 3.6.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. If $f(a)<0$ and $f(b)>0$, then there exists $c \in[a, b]$ such that $f(c)=0$.

Hint: Consider the set

$$
W=\{w \in[a, b): \forall x \in[a, w] f(x)<0\}
$$

Prove the following properties of W :
(i) W does not have a maximum.
(ii) W has a supremum. Set $w=\sup W$.
(iii) Review Exercise 3.4.2
(iv) Connect the dots.

Exercise 3.6.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists $c \in[a, b]$ such that $f(x) \leq f(c)$ for all $x \in[a, b]$.

Hint: Consider the set

$$
W=\{v \in[a, b): \exists z \in[a, b] \text { such that } \forall x \in[a, v] f(x)<f(z)\} .
$$

Here $[a, a]$ denotes the set $\{a\}$. Prove the following properties of the set W :
(i) If $a<u$ and $[a, u) \subseteq W$ and there exists $t \in[a, b]$ such that $f(t)>f(u)$, then $u \in W$.
(ii) W does not have a maximum.
(iii) W has a supremum. Set $w=\sup W$ and prove $[a, w) \subseteq W$.
(iv) The items (iii) and (iii) yield information about w.

Exercise 3.6.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists $d \in[a, b]$ such that $f(d) \leq f(x)$ for all $x \in[a, b]$.

Hint: Use Exercise 3.6.2
Exercise 3.6.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then the range of f is a closed bounded interval.

Hint: Use Exercises 3.6.2, 3.6.3, and 3.6.1.
Exercise 3.6.5. Consider the function $f(x)=x^{2}, x \in \mathbb{R}$.
(a) Prove that 2 is in the range of f.
(b) Prove that the range of f equals $[0,+\infty)$.

Definition 3.6.6. A function f is increasing on an interval I if $x, y \in I$ and $x<y$ imply $f(x)<f(y)$. A function f is decreasing if $x, y \in I$ and $x<y$ imply $f(x)>f(y)$. A function which is increasing or decreasing is said to be strictly monotonic.

Exercise 3.6.7. If f is continuous and increasing on $[a, b]$ or continuous and decreasing on $[a, b]$, then for each y between $f(a)$ and $f(b)$ there is exactly one $x \in[a, b]$ such that $f(x)=y$.

Exercise 3.6.8. Let $f(x)=x^{3}+x, x \in \mathbb{R}$. Prove that f has an inverse. That is, prove that for each $y \in \mathbb{R}$ there exists unique $x \in \mathbb{R}$ such that $f(x)=y$.

