Section 3.3 Assigned problems: 1-10.

1. $10\left(1-e^{-t / 2}\right)$
2. $\frac{25}{2} e^{-t / 10}\left(1-e^{-2 t / 5}\right)$
3. $\frac{10}{17}\left(4 e^{-t / 2}-4 \cos (2 t)+\sin (2 t)\right)$
4. $\frac{10}{37}\left(-e^{-t / 2}+\cos (3 t)+6 \sin (3 t)\right)$
5. $\frac{51}{5}\left(1-e^{-t / 2}\right)-\frac{t}{10}$
6. $\frac{5}{2}\left(4+e^{-t / 2}-5 e^{-t / 10}\right)$
7. $10\left(1-e^{-t / 10}\right)$
8. $t e^{-t / 10}$
9. $\frac{50}{1+400 \pi^{2}}\left(20 \pi e^{-t / 10}-20 \pi \cos (2 \pi t)+\sin (2 \pi t)\right)$
10. $\frac{40}{901}\left(-e^{-t / 10}+\cos (3 t)+30 \sin (3 t)\right)$
11. $300\left(1-e^{-t / 10}\right)-20 t$
12. $100\left(1-e^{-t / 20}\right)^{2}$
13. $C E\left(1-e^{-t /(C R)}\right)$
14. $\frac{E}{R}+e^{-R t / L}\left(I_{0}-\frac{E}{R}\right)$
15. The current in the circuit is $10 e^{-t / 20}\left(1-e^{-t / 20}\right)$. The maximum is $5 / 2$ and occurs at time $20 \ln 2 \approx 13.863$ seconds.
16. The general solution of the differential equation modeling this circuit is

$$
c_{1} e^{-t / 2}-\frac{2}{1+16 \pi^{2}}(4 \pi \cos (2 \pi t)-\sin (2 \pi t)) .
$$

Here c_{1} is an arbitrary constant. Since the function with c_{1} becomes negligible for large t the steady state response, that is the significant part of all solutions for large t, is

$$
-\frac{2}{1+16 \pi^{2}}(4 \pi \cos (2 \pi t)-\sin (2 \pi t))
$$

The period of this function is 1 . Hence its frequency is also 1 .
20. By the capacitance law the voltage drop $V(t)$ across a capacitor is related to the charge $Q(t)$ on the capacitor by the following formula: $Q(t)=C V(t)$, where C is the capacitance, which is constant. Therefore $Q^{\prime}(t)=C V^{\prime}(t)$. Now we substitute the last two equations in

$$
R Q^{\prime}(t)+\frac{1}{C} Q(t)=E \cos (\omega t)
$$

and get

$$
R C V^{\prime}(t)+\frac{1}{C} C V(t)=E \cos (\omega t)
$$

which simplifies to

$$
R C V^{\prime}(t)+V(t)=E \cos (\omega t)
$$

The general solution of the last differential equation is

$$
V(t)=c_{1} e^{-t /(R C)}+\frac{E}{1+(R C \omega)^{2}}(R C \omega \sin (\omega t)+\cos (\omega t))
$$

Here c_{1} is an arbitrary constant. As before, the function with c_{1} becomes negligible for large t. Therefore the steady state response, that is the significant part of all solutions for large t, is

$$
\frac{E}{1+(R C \omega)^{2}}(R C \omega \sin (\omega t)+\cos (\omega t))
$$

