Math 321: Week 1

- **Preliminaries** Review of functions. Important concepts: domain and range. In this course all domains of functions are **intervals** of real numbers.
 - Review of derivatives. Derivatives of elementary functions; the product rule and the chain rule; geometric interpretation of the derivative.

Product rule:	(u v)' = u v' + u' v	Chain rule:	$\frac{d}{dt}\left[F(G(t))\right] = F'(G(t))G'(t)$

Important special cases for the product rule:

(1) $u(t) = e^{2t}, v(t) = y(t).$ Then $(e^t y)' = e^t y' + 2e^t y.$

(2)
$$u(t) = e^{t/2}, v(t) = y(t).$$
 Then $(e^{t/2}y)' = e^{t/2}y' + \frac{1}{2}e^{t/2}y.$

(3)
$$u(t) = \sqrt{t}, v(t) = y(t).$$
 Then $(\sqrt{t}y)' = \sqrt{t}y' + \frac{1}{2\sqrt{t}}y.$

Important special cases for the chain rule:

(1) $F(x) = \ln |x|, \ G(t) = y(t).$ Then $\frac{d}{dt} \left[\ln |y(t)| \right] = \frac{y'(t)}{y(t)} = \frac{y'}{y}.$ (2) $F(x) = x^2, \ G(t) = y(t).$ Then $\frac{d}{dt} \left[(y(t))^2 \right] = 2y(t)y'(t) = 2yy'.$

(3)
$$F(x) = \sqrt{x}, \ G(t) = y(t).$$
 Then $\frac{d}{dt} \left[\sqrt{y(t)}\right] = \frac{1}{2} \frac{1}{\sqrt{y(t)}} y'(t) = \frac{1}{2\sqrt{y}} y'.$

• Review of integration: Table of integrals; integration by parts and integration by substitution.

What is a differential equation?

Basic concepts:

- direction field
- a solution (all solutions)
- initial value problem

Solving simple differential equations: (below m and k are constants)

$$\begin{array}{lll} y'=1, & y'=t, & y'=\cos t, & y'=\arctan t, & y'=1/t, & y'=t \ e^t, & y'=t \ \sin t, \\ y'=y, & y'=-y, & y'=y/2, & y'=m \ y, & y'=m \ y+k, & y'=1/(2y), & y'=2\sqrt{y}, \end{array}$$

Linear Differential Equations (Section 2.1)

- I will demonstrate in class how to draw direction fields using the computer algebra system *Mathamatica*.
- Do the following exercises:
 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 31, 32, 35, 36