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Introduction to 
Differential Equations 
w ith the systematic study of differential equations, the calculus of functions of 
a single variable reaches a state of completion. Modeling by differential equations 
greatly expands the list of possible applications. The list continues to grow as we 
discover more differential equation models in old and in new areas of application. 
The use of differential equations makes available to us the full power of the calculus. 

When explicit solutions to differential equations are available, they can be used 
to predict a variety of phenomena. Whether explicit solutions are available or not, 
we can usually compute useful and very accurate approximate numerical solutions. 
The use of modem computer technology makes possible the visualization of the 
results. Furthermore, we continue to discover ways to analyze solutions without 
knowing the solutions explicitly. 

The subject of differential equations is solving problems and making predic- 
tions. In this book, we will exhibit many examples of this-in physics, chemistry, 
and biology, and also in such areas as personal finance and forensics. This is the 
process of mathematical modeling. If it were not true that differential equations 
were so useful, we would not be studying them, so we will spend a lot of time on 
the modeling process and with specific models. In the first section of this chapter 
we will present some examples of the use of differential equations. 

The study of differential equations, and their application, uses the derivative 
and the integral, the concepts that make up the calculus. We will review these ideas 
starting in Sections 1.2 and 1.3. 

A . 
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la1 Equation Models 
To start our study of differential equations, we will give a number of examples. This 
list is meant to be indicative of the many applications of the topic. It is far from being 
exhaustive. In each case, our discussion will be brief. Most of the examples will be 
discussed later in the book in greater detail. This section should be considered as 
advertising for what will be done in the rest of the book. 

The theme that you will see in the examples is that in every case we compute 
the rate of change of a variable in two different ways. First there is the mathematical 
way. In mathematics, the rate at which a quantity changes is the derivative of that 
quantity. This is the same for each example. The second way of computing the rate 
of change comes from the application itself and is different from one application to 
another. When these two ways of expressing the rate of change are equated, we get 
a differential equation, the subject we will be studying. 

Mechanics 
Isaac Newton was responsible for a large number of discoveries in physics and math- 
ematics, but perhaps the three most important are the following: 

The systeinatic development of the calculus. Newton's achievement was the 
realization and utilization of the fact that integration and differentiation are 
operations inverse to each other. 
The discovery of the laws of mechanics. Principal among these was Newton's 
second law, which says that force is equal to the rate of change of momentum 
with respect to time. Momentum is defined to be the product of mass and 
velocity, or mu. Thus the force is equal to the derivative of the momentum. If 
the mass is constant, 

d d v 
-mu = /?I-- = m a ,  
r l t  d t 

where a is the acceleration. Newton's second law says that the rate of change 
of momentum is equal to the force F. Expressing the equality of these two 
ways of loolung at the rate of change, we get the equation 

F = ma,  (1.1) 

the standard expression for Newton's second law. 
The discovery of the universal law of gravitation. This law says that any body 
with mass M attracts any other body with mass m directly toward the mass M ,  
with a magnitude proportional to the product of the two masses and inversely 
proportional to the square of the distance separating them. This means that 
there is a constant G, which is universal, such that the magnitude of the force 
is 

G M m  

r2 ' 

where r is the distance between the two bodies. 
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All of these discoveries were made in the period betweell 1665 and 167 1. The 
discoveries were presented originally in Newton's E-'liilo.so~~lzic~c NCI~LII.(I~~.V Pt-illci/)i(l 
Mutherncztic~r, better known as Principia M~~thrwzt~tira, published in 1687. 

Newton's de\relopment of the calculus is what makes the theory and use of 
differential equations possible. His laws of mechanics create a templ;lte for a   nod el 
for motion in allnost complete generality. It is necessary in each case to figure out 
what forces are acting on a body. His law of gravitation does just that in one very 
important case. 

The simplest example is the motion of a ball thrown into the air near the surface 
of the earth. If .r measures the distance the ball is above the earth, then the velocity 
and acceleration of the ball are 

d.r . du  d 2 ~ x  
LI = - and a = - = -  

dt  d t  dt" 
Since the ball is assumed to move only a short distance in comparison to the radius 
of the earth. the force given by (1.2) may be assumed to be constant. Notice that nz, 
the mass of the ball, occurs in (1.2). We can write the force as F = -mg, where 
g = G M / ~ ~  and r is the radiu5 of the earth. The constant g is called the earth's 
acceleration due to gravity. The minus sign reflects the fact that the displacement x 
is measured positively above the surface of the earth, and the force of gravity tends 
to decrease x. Newton's second law, (1. l), becomes 

d v  d'x 
- ntg = ma = nl- = m-. 

rl t dt2 
The masses cancel, and we get the differential equatinn 

d 2 x  
p = -g .  (1.3) 

which is our mathematical model for the rrotion of the ball. 
The equation in (1.3) is called a differential equation because it involves an 

unknown function .r(t) and at least one of its derivatives. In this case the highest 
derivative occurring is the second order, so this is called a differential equation of 
second order. 

A more interesting example of the application of Newton's ideas has to do with 
planetary motion. For this case, we will assume that the sun with mass M is tixed 
and put the origin of our coordinate system at the center of'the sun. We will denote 
by x ( t )  the vector that gives the location of a planet relative to the sun. The vector 
x(t) has three components. Its derivative is 

d x  
v(t) = -, 

d t 
which is the vector valued velocity of the planet. For this example, Newton's second 
law and his law of gravitation become 

d 2 x  GMnl x m- = 
dt2  /xI2 1x1' 

This system of three second-order differential equations is Newton's model of 
planetary motion. Newton solved these and verified that the three laws observed by 
Kepler follow from his model. 
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Population models 
Consider a population P ( t )  that is varying with time.' A mathematician will say 
that the rate at which the population is changing with respect to time is given by the 
derivative 

d P  
d t  

However, the population biologist will say that the rate of change is roughly propor- 
tional to the population. This means that there is a constant r ,  called the reproductive 
rate, such that the rate of change is equal to r P .  Putting together the ideas of the 
mathematician and the biologist, we get the equation 

This is an equation for the function P ( t ) .  It involves both P  and its derivative, so it 
is a differential equation. It is not difficult to show by direct substitution into (1 .4 )  
that the exponential function 

P ( t )  = poerf 

is a solution. Thus, assuming that the reproductive rate r  is positive, our population 
will grow exponentially. 

If at this point you go back to the biologist he or she will undoubtedly say that 
the reproductive rate is not really a constant. While that assumption works for small 
populations, over the long term you have to take into account the fact that resources 
of food and space are limited. When you do, a better model for the the reproductive 
rate is the function r ( l  - P I K ) ,  and then the rate at which the population changes 
is better modeled by r  (1 - PI K )  P .  Here both r  and K are constants. 

When we equate our two ideas about the rate at which the population changes, 
we get the equation 

This differential equation for the function P  ( t )  is called the logistic equation. It is 
much harder to solve than (1 .4) ,  but it does a creditable job of predicting how single 
populations grow in isolated circumstances. 

Pollution 
Consider a lake that has a volume of V = 100 km3. It is fed by an input river, and 
there is another river which is fed by the lake at a rate that keeps the volume of the 
lake constant. The flow of the input river varies with the season, and assuming that 
t  = 0 corresponds to January 1 of the first year of the study, the input rate is 

Notice that we are measuring time in years. Thus the maximum flow into the lake 
occurs when t  = 114, or at the beginning of April. 

'For the time being, the population can be anything-humans, paramecia, butterflies, etc. We will be 
more careful later. 
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In addition, there is a factory on the lake that introduces a pollutant into the lake 
at the rate of 2 kmVyear. Let x ( t )  denote the total amount of pollution in the lake 
at time t .  If we make the assumption that the pollutant is rapidly mixed throughout 
the lake, then we can show that x ( t )  satisfies the differential equation 

This equation can be solved and we can then answer questions about how dan- 
gerous the pollution problem really is. For example, if we know that a concentration 
of less than 2% is safe, will there there be a problem? The solution will tell us. 

The assumption that the pollutant is rapidly mixed into the lake is not very 
realistic. We know that this does not happen, especially in this situation, where 
there is a flow of water through the lake. This assumption can be removed, but to do 
so, we need to allow the concentration of the pollutant to vary with position in the 
lake as well as with time. Thus the concentration is a function c ( t ,  x ,  y ,  z ) ,  where 
(x, y ,  z )  represents a position in the three-dimensional lake. Instead of assuming 
perfect mixing, we will assume that the pollutant diffuses through water at a certain 
rate. 

Once again we can construct a mathematical model. Again it will be a differ- 
ential equation, but now it will involve partial derivatives with respect to the spatial 
coordinates x ,  y,  and z ,  as well as the time t .  

Personal finance 
How much does a person need to save during his or her work life in order to be sure 
of a retirement without money worries? How much is it necessary to save each year 
in order to accumulate these assets? Suppose one's salary increases over time. What 
percent of one's salary should be saved to reach one's retirement goal? 

All of these questions, and many more like them, can be modeled using dif- 
ferential equations. Then, assuming particular values for important parameters like 
return on investment and rate of increase of one's salary, answers can be found. 

Other examples 
We have given four examples. We could have given a hundred more. We could talk 
about electrical circuits, the behavior of musical instruments, the shortest paths on 
a complicated-looking surface, finding a family of curves that are orthogonal to a 
given family, discovering how two coexisting species interact, and many others. 

All of these examples use ordinary differential equations. The applications of 
partial differential equations go much farther. We can include electricity and mag- 
netism; quantum chromodynamics, which unifies electricity and magnetism with 
the weak and strong nuclear forces; the flow of heat; oscillations of many kinds, 
such as vibrating strings; the fair pricing of stock options; and many more. 

The use of differential equations provides a way to reduce many areas of appli- 
cation to mathematical analysis. In this book, we will learn how to do the modeling 
and how to use the models after we make them. 
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................ 
EXERCISES 
The phrase "y is proportional to x" implies that .y is related to x  via the equation 
y = k x ,  where k  is a constant. In a similar manner, "y is proportional to the 
square of x" implies y = kx', " y  is proportional to the product of ,T and ,-" implies 
y = kx,- ,  and " y  is inversely proportional to the cube of x" implies y = k / x !  For 
example, when Newton proposed that the force of attraction of one body on another 
is proportional to the product of the masses and inversely proportional to the square 
of the distance between them, we can immediately write 

GM1n 
F = - ,  

r2  

where G is the constant of proportionality, usually known as the universal gravita- 
tional constant. In Exercises 1-10, use these ideas to model each application with a 
differential equation. All rates are assumed to be with respect to time. 

1. The rate of growth of bacteria in a petri dish is proportional to the number of 
bacteria in the dish. 

2. The rate of growth of a population of field mice is inversely proportional to the 
square root of the population. 

3. A certain area can sustain a maximum population of 100 ferrets. The rate of 
growth of a population of ferrets in this area is proportional to the product of the 
population and the difference between the actual population and the maximum 
sustainable population. 

4. The rate of decay of a given radioactive substance is proportional to the amount 
of substance remaining. 

5. The rate of decay of a certain substance is inversely proportional to the amount 
of substance remaining. 

6. A potato that has been cooking for some time is removed from a heated oven. 
The room temperature of the kitchen is 65°F. The rate at which the potato 
cools is proportional to the difference between the room temperature and the 
temperature of the potato. 

7. A thermometer is placed in a glass of ice water and allowed to cool for an ex- 
tended period of time. The themlometer is removed from the ice water and 
placed in a room having temperature 77°F. The rate at which the thermometer 
warms is proportional to the difference in the room temperature and the tem- 
perature of the thermometer. 

8. A particle moves along the x-axis, its position from the origin at time t given 
by x ( t ) .  A single force acts on the particle that is proportional to but opposite 
the object's displacement. Use Newton's law to derive a differential equation 
for the object's motion. 

9. Use Newton's law to develop the equation of motion for the particle in Exercise 
8 if the force is proportional to but opposite the square of the particle's velocity. 

10. Use Newton's law to develop the equation of motion for the particle in Exercise 
8 if the force is inversely proportional to but opposite the square of the particle's 
displacement from the origin. 
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11. The voltage drop across an inductor is proportional to the rate at which the 
current is changing with respect to time. 

1.2 The Derivative 
Before reading this section, ask yourself, "What is the derivative?'Several answers 
may come to mind, but remember your first answer. 

Chances are very good that your answer was one of the following five: 

1. The rate of change of a function 

Table 1 A table of 2. The slope of the tangent line to the graph of a function 

derivatives 3. The best linear approximation of a function 

f (x) = f'(r) = 4. The limit of difference quotients, 

f ' (xo)  = lim f ( - r )  - f (xo)  C 0 x-'xo x  - XO 

X 1 5. A table containing items such as we see in Table 1 
xn nxn-' 

cos(x) - sin(x) All of these answers are correct. Each of them provides a different way of 
sin(x) Cos(x) looking at the derivative. The best answer to the question is "all of the above." 

ex ex Since we will be using all five ways of looking at the derivative, let's spend a little 
In(l1-I) 'IX time discussing each. 

The rate of change 
In calculus, we learn that a nonlinear function has an instantaneous rate of change, 
and this rate is equal to the derivative. For example, if we have a distance x ( t )  
measured from a fixed point on a line, then the rate at which x  changes with respect 
to time is the velocity v .  We know that 

f d x  v = x  =-. 
d t  

Similarly, the acceleration a is the rate of change of the velocity, so 

d v  d ' ~  a = v  = - = -  
d t  dt2 ' 

These facts about linear motion are reflected in many other fields. For example, 
in economics, the law of supply and demand says that the price of a product is 
determined by the supply of that product and the demand for it. If we assume that 
the demand is constant, then the price P is a function of the supply S,  or P  = 
P ( S ) .  The rate at which P changes with the supply is called the marginal price. In 
mathematical terms, the marginal price is simply the derivative P' = d P / d S .  We 
can also talk about the rate of change of the mass of a radioactive material, of the 
size of population, of the charge on a capacitor, of the amount of money in a savings 
account or an investment account, or of many more quantities.' 

'In all but one of the mentioned examples, the quantity changes with respect to time. Most of the 
applications of ordinary differential equations involve rates of change with respect to time. For this 
reason, t is usually used as the independent variable. However, there are cases where things change 
depending on other parameters, as we will see. Where appropriate, we will use other letters to denote the 
independent variable. Sometimes we will do so just for practice. 
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We will see all of these examples and more in this book. The point is that when 
any quantity changes, the rate at which it changes is the derivative of that quantity. 
It is this fact that starts the modeling process and makes the study of differential 
equations so useful. For this reason we will refer to the statement that the derivative 
is the rate of change as the modeling definition of the derivative. 

The slope of the tangent line 
This provides a good way to visualize the derivative. Look at Figure 1. There you 
see the graph of a function f ,  and the tangent line to the graph of f at the point 
(xo, f (x")). The equation of the tangent line is 

From this formula, it is easily seen that the slope of the tangent line is f ' (xo). 

Figure 1 The derivative is the slope of the tangent line to the 
graph of the function. 

Again looking at Figure 1, we can visualize the rate at which the function f is 
changing as x changes near the point xo. It is the same as the slope of the tangent 
line. 

We will refer to this characterization of the derivative as the geometric defini- 
tion of the derivative. 

The best linear approximation 
Let 

L is a linear (or affine) function of .r. Taylor's theorem says there is a remainder 
function R(x) ,  such that 

R ( x )  
f (x) = L ( x )  + R ( x )  and lirn - = 0. 

++xo X - X o  

The limit in (2.2) means that R ( x )  gets small as x -+ xo. In fact, it gets enough 
smaller than x - xo that the ratio goes to 0. It turns out that the function L defined in 
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(2. I) is the only linear function with this property. This is what we mean when we 
say that L is the best linear approximation to the nonlinear function f .  You will also 
notice that the straight line in Figure 1 is the graph of L. In fact, Figure 1 provides 
a pictorial demonstration that L ( x )  is a good approximation for f ( x )  for x near .yo. 

The formula in (2.1) defines L(.r) in terms of the derivative of f .  In this sense, 
the derivative gives us the best linear approximation to the nonlinear function f 
near .x = xo. [Actually (2.1) contains three important pieces of data, xo, f (x") ,  and 
f l ( . ro).  We are perhaps stretching the point when we say that it is the derivative 
alone that enables us to find a linear approximation to f ,  but it is clear that the 
derivative is the most important of these three.] 

Since the linear approximation is an algebraic object, we will refer to this as the 
algebraic definition of derivative. 

The limit of difference quotients 
Consider the difference quotient 

This is equal to the slope of the line through the two points (xo, f (xo)) and ( x ,  f ( x ) )  
as illustrated in Figure 2. We will refer to this line as a secant line. As .r approaches 
xo, the secant line approaches the tangent line shown in Figure 1. This is reflected 
in the fact that 

f '(xo) = lim f ( x )  - f (xo) 
"+To  X - . Y O  

Thus the slope of the tangent line, f ' ( xo ) ,  is the limit of the slopes of secant lines. 

Figure 2 The secant line with slope rn given by the 
difference quotient in (2.3). 

The difference quotient in (2.3) is also the average rate of change of the function 
f between xo and x .  As the interval between xo and x is made smaller, these average 
rates approach the instantaneous rate of change of f .  Thus we see the connection 
with our modeling definition. 

The definition of the derivative given in (2.4) will be called the limit quotient 
definition. This is the definition that most mathematicians think of when asked to 
- 
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define the derivative. However, as we will see, it is also very useful, even when 
attempting to find mathematical models. 

The table of formulas 
By memorizing a table of derivatives and a few formulas (especially the chain rule), 
we can learn the skill of differentiation. It isn't hard to be confident that you can 
compute the derivative of any given function. This skill is important. However, it is 
clear that this formulaic de$nition of derivative is quite different from those given 
previously. 

A complete understanding of the formulaic definition is important, but it does 
not provide any information about the other definitions we have examined. There- 
fore, it helps us neither to apply the derivative in modeling nature nor to understand 
its properties. For that reason, the formulaic definition is incomplete. This is not 
true of the other definitions. Starting with one of them, it is possible to construct a 
table that will give us the formulaic finesse we need. However, admittedly that is a 
big task. That was what was done (or should have been done) in your first calculus 
course. 

To sum up, we have examined five definitions of the derivative. Each of these 
emphasizes a different aspect or property of the derivative. All of them are impor- 
tant. We will see this as we progress through the study of differential equations. 
If your answer to the question at the beginning of the section was any of these 
five, your answer is correct. However, a complete understanding of the derivative 
requires the understanding of all five definitions. 

Even if your answer was not on the list of five, it may be correct. The famous 
mathematician William Thurston once compiled a list of over 40 "definitions" of the 
derivative. Of course many of these appear only in more advanced parts of math- 
ematics, but the point is made that the derivative appears in many ways in mathemat- 
ics and in its applications. It is one of the most fundamental ideas in mathematics 
and in its application to science and technology. 

We can start once more by aslung the question, "What is the integral?" This time 
our list of possible answers is not so long. 

1. The area under the graph of a function 

2. The antiderivative 

3. A table containing items such as we see in Table 1 

Let's look at each of them briefly. 

The area under the graph 
The first answer emphasizes the definite integral. The integral 
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Table 1 A table of integrals 

f ( x )  = I f (x) dx = f ( x ) =  l f ( x ) d x  = 

is interpreted as the area under the graph of the function f ,  between x = a and 
x = b. It represents the area of the shaded region in Figure I. 

This is the most fundamental definition of the integral. The integral was in- 
vented to solve the problem of finding the area of regions that are not simple rect- 
angles or circles. Despite its origin as a method to use in this one application, it has 
found numerous other applications. 

Figure 1 The area of the shaded region is the integral 
;n (3.1). 

The antiderivative 
This answer emphasizes the indefinite integral. In fact, the phrase indejinite inte- 
gral is a synonym for antiderivative. The definition is summed up in the following 
equivalence. If the function g is continuous, then 

f '  = g if and only if 1 g(x) d x  = f ( x )  + C .  (3 .2)  
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In (3.2), C refers to the arbitrary constant of integration. Thus the process of indefi- 
nite integration involves finding antiderivatives. Given a function g ,  we want to find 
a function f such that f '  = g. 

The connection between the definite and the indefinite integral is found in the 
fundamental theorem of calculus. This says that if f '  = g ,  then 

J h  g ( x )  d x  = f ( h )  - f ( a ) .  

The table of formulas 
This formulaic approach to the integral has the same features and failures as the 
formulaic approach to the derivative. It leads to the handy skill of integration, but it 
does not lead to any deep understanding of the integral. 

All of these approaches to the integral are important. It is very important to 
understand the first two and how they are connected by the fundamental theorem. 
However, for the elementary part of the study of ordinary differential equations, it 
is really the second and third approaches that are most important. In other words, it 
is important to be able to find antiderivatives. 

Solution by integration 
The solution of an important class of differential equations amounts to finding an- 
tiderivatives. A first-order differential equation can be written as 

Y' = f  ( t ,  y ) ,  (3.3) 

where the right-hand side is a function of the independent variable t  and the un- 
known function y. Suppose that the right-hand side is a function only of r and does 
not depend on y.  Then equation (3.3) becomes 

y' = f ( t ) .  

1 Comparing this with (3.2), we see immediately that the solution is 

y ( t )  = f ( t ) d t  

Let's look at an example. 

L E 3 . 5 + Solve the differential equation 
y1 = COS t  . 

h According to (3.4), the solution is 

) ( I )  = / COS(~)  d t  = sin t  + C. 
J 

where C is an arbitrary constant. That's pretty easy. It is just the process of integra- 
tion. It's old hat to you by now. Solving the more general equation in (3.3) is not so 
easy, as we will see. 

The constant of integration C makes (3.7) a one-parameter family of solutions 
solutions to of (3.6) defined on (-oo, w). This is an example of a general solution to a differ- 

ential equation. Some of these solutions are drawn in Figure 2. + 
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It is significant that the solution curves of equation (3.6) shown in Figure 2  are 
vertical translates of one another. That is to say, any solution curve can be obtained 
from any other by a vertical translation. This is always the case for solution curves 
of an equation of the form y' = f  ( t ) .  According to (3.2), if y ( t )  = F ( r )  is one 
solution to the equation, then all others are of the form y ( t )  = F ( t )  + C for some 
constant C. The graphs of such functions are vertical translates of the graph of 
y ( t )  = F ( t ) .  

The constant of integration allows us to put an extra condition on a solution. 
This is illustrated in the next example. 

E X A M P L E 3 . 8 + Find the solution to y l ( t )  = te' that satisfies y(0) = 2. 

This is an example of an initial valueproblem. It requires finding the particular 
solution that satisfies the itzitial condition y(0)  = 2. According to (3.2), the general 
solution to the differential equation is given by 

y(r)  = S tet  d t .  (3.9) 

This integral can be evaluated using integration by parts. Since this method is 
so useful, we will briefly review it. In general, it says 

S u d v = u v -  1 v d u ,  

where u  and v  are functions. If they are functions of t ,  then d u  = u l ( t )  d t  and 
d v  = v l ( t )  d t .  For the integral in equation (3.9), we let u ( r )  = t ,  and d v  = 
v l ( t )  d t  = etdt .  Then d u  = dt  and v(r)  = el, and equation (3.10) gives 

After evaluating the last integral, we see that 

This one-parameter family of solutions is the general solution to the equation -+z y' = tet .  Each member of the family exists on the interval (-oo, oo). The condition 
y(0)  = 2 can be used to determine the constant C. 

t 
2  = y(0)  = eO(O- 1) + C = -1  + C 

% Therefore, C = 3  and the solution of the initial value problem is 
- 

y ( t )  = et( t  - 1 )  + 3. (3.12) Figure 3 The solution of the 
initial value problem in It is important to note that the solution curve defined by equation (3.12) is the 

1 Example 3.8 Passes through the member of the family of solution curves defined by (3.1 1 )  that passes through the 
I 

point (0, 2). point ( 0 , 2 ) ,  as shown in Figure 3. 
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The use of initial conditions to determine a particular solution can be affected 
from the beginning of the solution process by using definite integrals instead of 
indefinite integrals. For example, in Example 3.8,  we can proceed using the funda- 
mental theorem of calculus: 

Hence, 

We will not always use the letter t to designate the independent variable. Any 
letter will do, as long as we are consistent. The same is true of the dependent 
variable. 

3 . 1 3 Find the solution to the initial value problem 

1 
y' = - with y (1 )  = 3 .  

X 

Here we are using x as the independent variable. By integration, we find that 

We are asked for the solution that satisfies the initial condition 

Thus, C = 3. 
A solution to a differential equation has to have a derivative at every point. 

Therefore, it is also continuous. However, the function y ( x )  = ln((x1) + 3 is not 
defined for x = 0 .  To get a continuous function from y ,  we have to limit its domain 
to ( 0 ,  oo) or ( - o o ,  0). Since we want a solution that is defined at x = 1 ,  we must 
choose ( 0 ,  oo ) .  Thus, our solution is 

y ( x )  = In(x) + 3 for x > 0 .  

The motion of a ball 
In Section 1 . 1 ,  we talked about the application of Newton's laws to the motion of a 
ball near the surface of the earth. The model we derived [in equation (1.3)]  was 
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where x ( t )  is the height of the ball above the surface of the earth and g is the 
acceleration due to gravity. If we measure x in feet and time in seconds, g = 32 
ft/s2. 

We can solve this equation using the methods of this section. First we intro- 
duce the velocity to reduce the second-order equation to a system of two first-order 
equations: 

d x  - d v  
- = u .  and - -  -g. (3 .14 )  d t  dr  

Solving the second equation by integration, we get 

Evaluating this at t = 0, we see that the constant of integration is CI = v ( 0 )  = UI), 

the initial velocity. Hence, the velocity is v ( t )  = -gt + v", and the first equation 
in (3 .14)  becomes 

Solving by integration, we get 

Once more we evaluate this at t = 0 to show that C2 = ~ ( 0 )  = xO, the initial 
elevation of the ball. Hence, our final solution is 

1 
~ ( t )  = --gt2 + Uot + Xo. 

2  (3 .15)  

E X A M P E 3 . 1 6 Suppose a ball is thrown into the air with initial velocity vg = 20 ft/s. Assuming the 
ball is thrown from a height of 6 feet, how long does it take for the ball to hit the 
ground? 

Since the initial height is xo = 6, equation (3 .15 )  becomes 

The ball hits the ground when x ( t )  = 0 .  We use the quadratic formula to solve 

The answer is 1.5 seconds. 
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EXERCISES 

In Exercises 1-8, find the general solution of the given differential equation. In each 
case, indicate the interval of existence and sketch at least six members of the family 
of solution curves. 

1. y' = 2t + 3 2. y' = 3t2 + 2t + 3 

3. y' = sin 2t + 2 cos 3t 4. j' = 2sin3r - cos5t 

In Exercises 1-8, each equation has the form y' = f (t,  y), the goal being to find 
a solution y = y(t). That is, find y as a function of t. Of course, you are free 
to choose different letters. both for the dependent and independent variables. For 
example, in the differential equation s' = xel ,  it is understood that s' = dsldx,  and 
the goal is to find a solution s as a function of x; that is, s = s(x). In Exercises 
9-14, find the general solution of the given differential equation. In each case, 
indicate the interval of existence and sketch at least six members of the family of 
solution curves. 

9. s' = e-2W sin w 10. y' = I sin 3x 

11. x' = s2p+ 12. s' = e-" cos u 

Note: Exercises 13 and 14 require a partial fraction decomposition. If you have 
forgotten this technique, you can find extensive explanation in Section 5.3 of this 
text. In particular, see Example 3.6 in that section. 

In Exercises 15-24, find the solution of each initial value problem. In each case, 
state the interval of existence and sketch the solution. 

12 17. x' = re- , ~ ( 0 )  = 1 18. r' = t / ( l  + t 2 ) ,  r(0) = 1 

19. s' = r2  cos 2r, s (0) = 1 20. P 1 = e - ' c o s ~ ~ ,  P ( O ) = l  

21. .r' = w, x ( 0 )  = 1 22. u ' =  l / (x  - 3 ,  u(0) = -1 

Tn Exercises 25-28, assume that the motion of a ball takes place in the absence of 
friction. That is, the only force acting on the ball is the force due to gravity. 

25. A ball is thrown into the air from an initial height of 3 m with an initial velocity 
of 50 mls. What is the position and velocity of the ball after 3 s? 

26. A ball is dropped from rest from a height of 200 m. What is the velocity and 
position of the ball 3 seconds later? 

- 
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27. A ball is thrown into the air from an initial height of 6 m with an initial velocity 

of 120 m/s. What will be the maximum height of the ball and at what time will 
this event occur? 

28. At r = 0, a ball is propelled downward from an initial height of 1000 m with an 
initial speed of 25 rnls. Calculate the time, t, that the ball hits the ground. 



First-Order Equations 
I n this chapter. we will undertake our study of first-order equations. We will begin 
in Section 1 by making some definitions and presenting an overview of what we 
will cover in this chapter. We will then alternate between methods of finding exact 
solutions and some applications that can be studied using those methods. For each 
application, we will carefully derive the mathematical models and explore the exis- 
tence of exact solutions. We will end by showing how qualitative methods can be 
used to derive useful information about the solutions. 

/tial Equations and Solutions 
In this section, we will give an overview of what we want to learn in this chapter. 
We will visit each topic briefly to give a flavor of what will follow in succeeding 
sections. 

Ordinary differential equations 
An ordinary differential equation is an equation involving derivatives of an un- 
known function of a single variable. For example, the equation 

is an ordinary differential equation. 
Most of the time in this chapter we will deal with differential equations of the 

form 
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Here y is the unknown function and t is the independent variable. The function 
f ( t ,  y) involves both the independent variable t and the unknown function y. For 
example, in equation ( l . l ) ,  f ( t ,  y) = y - t. 

Some other examples of ordinary differential equations are 

2 y = y  - 1  

yf=cos( ty) ,  and 
2 y = y .  

A differential equation is offirst order if it involves only the first derivative of 
the unknown function. All of the examples we have seen thus far are first order. The 
equation 

Y'/ = -4y 

is second order because it involves the second derivative of y. In general, we define 
the order of a differential equation to be the order of the highest derivative that 
occurs in the equation. In this chapter, we will concentrate solely on first-order, 
ordinary differential equations. 

The equation 

is not an ordinary differential equation, since the unknown function w is a function 
of two variables t and s. Because it involves partial derivatives of an unknown 
function of more than one independent variable, equation (1.3) is called a partial 
differential equation. 

Solutions 
A solution of the first-order, ordinary differential equation y' = f (t, p) is a differ- 
entiable function y(t) such that yl(t) = f (t, y(t)) for all t in the interval' where 
y(t) is defined. 

We can show that y(t) = t + I is a solution to equation (1.1) by substitution. 
It is only necessary to substitute this function into both sides of equation (1.1) and 
show that they are equal. We have 

y l ( t ) = l ,  and y ( t ) - t = t + l - t = l .  

Here is another example. 

E X A M P L E 1 . 4 Show that y(t) = cc t2  is a solution of the first-order equation 

I where C is an arbitrary real number. 
- 
' We will use the notation (a, b), [a, bl, (a, bl. [a, b), (a, oo), [a ,  co), (-co, b), (-w, b ] ,  and (-CQ, W) 
for intervals. For example, (a, b) = [ r  : a < t  < b], [a, b) = [t : a ( t  < b],  (-oo, b]  = [ t  : t  5 b ] ,  
and so on. 
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We compute both sides of the equation and compare them. On the left, we 
2 2 

have y f ( t )  = -2tCe-' , and on the right, -2ty( t )  = -2tCe-' , so the equation 
is satisfied. Both y ( t )  and y l ( t )  are defined on the interval (-oo, co). Therefore, 
for each real number C ,  y  ( t )  = Ce-" is a solution of equation (1.5) on the interval 
(-m, CO). 

+ 
Example 1.4 illustrates the fact that a differential equation can have lots of solu- 

tions. The solution formula y  ( t )  = C e t 2 ,  which depends on the arbitrary constant 
C ,  describes a family of solutions and is called a general solution. The graphs of 
these solutions are called solution curves, several of which are drawn in Figure 1. 

Initial value problems 

;elutions to In Example 1.4, we have found a general solution, as indicated by the presence of 
an undetermined constant in the formula. This reflects the fact that an ordinary dif- 
ferential equation has infinitely many solutions. In applications, it will be necessary 
to use other information, in addition to the differential equation, to determine the 
value of the constant and to determine the solution completely. Such a solution is 
called a particular solution. 

L E 1 . 6  + Given that 

I 
I is the general solution of y' = y2, find a particular solution satisfying y(0)  = 1. 

Because 

1 C  = 1. Substituting C  = 1 in equation (1.7) makes 

a particular solution of y' = y2, satisfying y  (0)  = 1. + 

DEFINITION 1.9 A first-order differential equation together with an initial 
condition, 

is called an initial value problem. A solution of the initial value problem is a 
differentiable function y ( t )  such that 

1. y l ( t )  = f ( t ,  y ( t ) )  for all t  in an interval containing to where y( t )  is de- 
fined, and 

2. y(t0) = yo. 
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Thus, in Example 1.6, the function y ( t )  = 1/(1 - t )  is the solution to the initial 
value problem 

y' = y2 , with y (0) = 1 

Normal form 
Consider the differential equation 

t + 4yy' = 0. 

Differential equations often arise naturally in the form 

@ ( t ,  Y .  y f )  = 0,  (1.12) 
illustrated by ( I .  I I ) .  We will frequently find that this form is too general to deal 
with, and we will find it necessary to solve equation (1 .l?) for y '  We will give the 
result a name. 

DEFINITION 1.1 3 A first-order differential equation of the form 

is said to be in normal form. 

E X A M P E 1 . 1 4 + Place the differential equation t  + 4yy' = 0  into normal form. 

This is accomplished by solving the equation 

for y'. We find that 
t  

y' = --. 
4y  

Note that the right-hand side of equation (1.1 5 )  is a function of t  and y, as required 
by the normal form y' = f ( t ,  y). + 
Using variables other than y and t 
So far all of the examples in this section have had a solution y that was a function of 
t .  This is not required. We can use any letter to designate the independent variable 
and any other for the unknown function. For example. the equation 

has the form yf  = f ( x ,  y),  making x the independent variable and requiring a 
solution y  that is a function of x .  This equation has general solution 

- 
This solution exists on any interval not i - 
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For another example, in the equation 

the independent variable is r and the unknown function is i. which must be a func- 
tion of r .  The general solution of this equation is 

I This general solution exists on the interval LO, oo). 

Interval of existence 
The interval of existence of a solution to a differential equation is defined to be 
the largest interval over which the solution can be defined and remain a solution. It 
is important to remember that solutions to differential equations are required to be 
differentiable, and this implies that they are continuous. The solution to the initial 
value problem in Example 1.6 is revealing. 

E 1 . 1 6 6 Find the interval of existence for the solution to the initial value problem 

).I = y 2  with y(O)= 1 .  

In Example 1.6. we found that the solution is 

-1 
y(l> = -. t - 1  

The graph of y  is a hyperbola with two branches, as shown in Figure 2 The func- 
tion y  has an infinite discontinuity at t  = 1. Consequently, this function cannot be 

I / considered to be a solution to the differential equation y' = y2 over the whole real 
line. 

Note that the left branch of the hyperbola in Figure 2 passes through the point 
(0, I), as required by the initial condition y ( 0 )  = I .  Hence, the left branch of 
the hyperbola is the solution curve needed. This particular solution curve extends 
indefinitely to the left, but rises to positive infinity as it approaches the asy~nptote 

,aph of t  = 1 from the left. Any attempt to extend this solution to the right would have 
to include t  = I ,  at which point the function y ( t )  is undefined. Consequently. the 
maximum interval on which this solution curve is defined is the interval (-m, 1). 
This is the interval of existence. 

6 

L E 1 . 1 7 6 Verify that y(r) = 2  - Ce-' is a solution of 

y 1 = 2 - y  

for any constant C .  Find the solution that satisfies the initial condition y(0)  = 1 .  
What is the interval of existence of this solution? 
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4 i  

We evaluate both sides of (1.18) for y  ( t )  = 2  - Cect .  

They are the same, so the differential equation is solved for all t  E (-oo, oo). In 
addition, 

0 y ( O ) = 2 - C e -  = 2 - C .  

To satisfy the initial condition g(0) = 1 ,  we must have 2 - C  = 1, or C  = 1. 
Therefore, v ( r )  = 2 - ec' is a solution of the initial value problem. This solution 
exists for all t  E (-oo, oo). Its graph is displayed in Figure 3. 

Finally, both y ( t )  and y f ( t )  exist and solve the equation on (-oo, ca). There- 
Figure 3 Solution of Y' = 2 - Yl fore, the interval of existence is the whole real line. 6 y(0) = 1. 

The geometric meaning of a differential equation and its solutions 
Consider the differential equation 

where the right-hand side f ( t ,  J )  is defined for ( t ,  y )  in the rectangle 

Let y ( t )  be a solution of the equation y' = f ( t ,  p), and recall that the graph of the 
function y  is called a solution curve. Because ' ( t o )  = yo, the point (to, yo) is on 
the solution curve. The differential equation says that yf(ro) = f (to, y o )  Hence 
J'(to, yo) is the slope of any solution curve that passes through the point (to, yo). 

This interpretation allows us a new, geometric insight into a differential equa- 
tion. Consider, if you can, a small, slanted line segment with slope f ( t .  y )  attached 
to every point (t  . p )  of the rectangle R. The result is called a directionjeld, because 
at each (t, y )  there is assigned a direction represented by the line with slope f ( t ,  y) .  

Even for a simple equation like 

it is difficult to visualize the direction field. However, a computer can calculate and 
plot the direction field at a large number of points-a large enough number for us to 
get a good understanding of the direction field. Each of the standard mathematics 
programs, Maple, Mathematica. and MATLAB have the capability to easily produce 
direction fields. Some hand-held calculators also have this capability. The stu- 
dent will find that the use of computer- or calculator-generated direction fields will 
greatly assist their understanding of differential equations. A computer-generated 
direction field for equation (1.19) is given in Figure 4. 

The direction field is the geometric interpretation of a differential equation. 
However, the direction field view also gives us a new interpretation of a solution. 
Associated to the solution v ( t ) ,  we have the solution curve in the ry-plane. At each 
point ( t ,  y  ( t ) )  on the solution curve the curve must have slope f ( t ,  y ( t ) ) .  In other 
words, the solution curve must be tangent to the direction field at every point. Thus 
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Figure 4 The direction field for y '=  y. 

finding a solution to the differential equation is equivalent to the geometric problem 
of finding a curve in 0-plane that is tangent to the direction field at every point. 

For example, note how the solution curve of 

in Figure 5 is tangent to the direction field at each point ( t ,  y)  on the solution curve. 

Figure 5 The solution curve is tangent to the direction field. 

Approximate numerical solutions 
The direction field hints at how we fight produce a numerical solution of an initial 
value problem. To find a solution curve for the initial value problem y' = f ( t ,  y ) ,  
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y(to) = yo, first plot the point Po(to, yo). Because the slope of the solution curve at 
Po is given by f (to, yo), move a prescribed distance along a line with slope f ( to,  yo) 
to the point PI  ( t l ,  y l ) .  Next, because the slope of the solution curve at PI is given by 
f ( t l ,  y l ) ,  move along a line with slope f ( t l  , y I )  to the point P2(t2, y2).  Continue in 
this manner to produce an approximate solution curve of the initial value problem. 

This technique is used in Figure 6 to produce an approximate solution of equa- 
tion (1.20) and is the basic idea behind Euler's method, an algorithm used to find 
numerical solutions of initial value problems. Clearly, if we decrease the distance 
between consecutively plotted points, we should obtain an even better approxima- 
tion of the actual solution curve. 

Figure 6 An approximate solution curve of y ' =  y, y(0)  = 1. 

Using a numerical solver 
We assume that each of our readers has access to a computer, either at work, at 
school, at home, or perhaps at the home of a friend. Furthermore, we also assume 
that this computer has software designed to produce numerical solutions of the ini- 
tial value problems encountered in an introductory differential equations course. For 
many purposes a hand-held calculator with graphics capabilities will suffice. 

There is a wide variety of software packages available for the study of differ- 
ential equations. Some of these packages are commercial, some are shareware, and 
some are even freeware. Some solvers are very easy to use, with well-designed 
graphical user interfaces that enable the user to interact easily with the solver. Other 
solvers require such obtuse command line syntax that you will find yourself easily 
frustrated, so care is needed in selecting a package suitable for your needs. 

The Preface contains a review of some of the more popular solvers. However, 
if your solver can 

draw direction fields, 
provide numerical solutions of differential equations and systems of differen- 
tial equations, and 



t,t-l)rder Equations 

plot solutions of differential equations and systems of differential equations, 

then your solver will be adequate for use with this text. 

Test drive your solver 
Let's test our solvers in order to assure ourselves that they will provide adequate 
support for the material in this text. 

1 . 2 1 + Use a numerical solver to compute and plot the solution of the initial value problem 

over the t-interval [-2, 101. 

Although solvers differ widely, they do share some common characteristics. 
First, you need to input the differential equation. After entering the equation, you 
might need to declare the independent variable, which in this case is t .  Most solvers 
require that you declare limits on the display window, a rectangle in which the 
solution will be drawn. Set bounds on t and y so that -2 _( t 5 10 and -4 5 y 5 4. 
This display window declares that solution curves will be contained in the rectangle 
R = {(t,  y) 1 -2 5 t 5 10, -4 5 y 5 4) in the ty-plane. 

Finally, you need to enter the initial condition y (4) = 0 and plot the solution. If 
your solver can superimpose the solution on a direction field, then your plot should 
look similar to that shown in Figure 7. + 

Figure 7 The solution curve for y '=  y2 - t, y(4) = 0. 

Qualitative methods 
We are unable at this time to find analytic, closed-form solutions to the equation 

Figure 9 The graph of 
f(y) = 1 - y2. 

Figure 10 Equilibrium solutions 
to the equation y l =  1 - y2.  
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This situation will be remedied in the next section. However, the lack of closed-form 
solutions does not prevent us from using a bit of qualitative mathematical reasoning 
to investigate a number of important qualities of the solutions of this equation. 

Some information about the solutions can be gleaned by looking at the direction 
field for the equation (1.23) in Figure 8. Notice that the lines y = 1 and y = -1 
seem to be tangent to the direction field. It is easy to verify directly that the constant 
functions 

y ~ ( t ) = - l  and y 2 ( t ) = 1  (1.24) 

are solutions to equation (1.23). 

Figure 8 The direction field for the equation y '=  1 - y2.  

To see how we might find such constant solutions, consider the function of y 
on the right-hand side of (1.23), 

The graph of f is shown in Figure 9. Notice that f (y) = 0 only for y = -1 and 
y = I .  Each of these points (called equilibrium poirlts) gives rise to one of the 
solutions we found in (1.24). These equilibrium solutions are the solutions that 
can be "seen" in the direction field in ~ i ~ u r e  8. They are shown plotted in color in 
Figure 10. 

Next we notice that f (y)  = I - y2 is positive if -1 < y < 1 and negative 
otherwise. Thus, if y(t) is a solution to equation (1.23), and -1 < y < 1, then 

Having a positive derivative, y is an increasing function. 
How large can y (t) get? If it gets larger than 1, then y' = 1 - y2 < 0, so y (t) 

will be decreasing. We cannot complete this line of reasoning at this point, but in 
Section 2.9 we will develop the argument, and we will be able to conclude that if 
y (0) = yo satisfies - 1 < yo < 1, then y (t) increases and approaches 1 as t + oo. 
- 
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On the other hand, if y(0) = yo > 1, then yl(t) = 1 - y2 < 0, so y(t) is 
decreasing, and we again conclude that y (t) + 1 as t i oo. Thus any solution to 
the equation y' = 1 - y2 with an initial value yo > -1 approaches 1 as t -+ oo. 

Finally, if we consider a solution y (r) with y(0) = yo - 1, then a similar 

analysis shows that yl(t) = 1 - y2 < 0, so y(t) is decreasing. As y(r) decreases, its 
derivative yl(t) = 1 - y2 gets more and more negative. Hence, y ( r )  decreases faster 
and faster and must approach -oo as t + cm. Typical solutions to equation (1.23) 
are shown in Figure 11. These solutions were found with a computer, but their 
qualitative nature can be found simply by looking at the equation. 

Figure 11 Typical solutions to the equation y l =  1 - y2.  

................ 
EXERCISES 

In Exercises 1 and 2, given the function 4, place the ordinary differential equation 
4 (r, y, y') = 0 in normal form. 

In Exercises 3-6, show that the given solution is a general solution of the differential 
equation. Use a computer or calculator to sketch members of the family of solutions 
for the given values of the arbitrary constant. Experiment with different intervals 
for t until you have a plot that shows what you consider to be the most important 
behavior of the family. 

3. y' = -ty, y(t) = ~ e - ( l l ' ) ' ~ ,  C = -3, -2.. . . . 3 

4. y' + y = 2t, y (t) = 2t - 2 + Ce-', C = -3, -2, . . . , 3  
-- 
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5. y' + (1/2)y = 2 cos t, y ( t )  = (415) cos t + (815) sin t + ~ e - ( ' / ~ ) ' ,  C = 
-5, -4, . . . . 5  

7. A general solution might not produce all solutions of a differential equation. In 
Exercise 6, show that y = 0 is a solution of the differential equation, but no 
value of C in the given general solution will produce this solution. 

8. (a) Use implicit differentiation to show that t2  + y2 = c2 implicitly defines 
solutions of the differential equation t + yyt = 0. 

(b) Solve t2 + y2 = c2 for y in terms of t to provide explicit solutions. Show 
that these functions are also solutions o f t  + yy' = 0. 

(c) Discuss the interval of existence for each of the solutions in part (b). 

(d) Sketch the solutions in part (b) for C = 1, 2 ,3 ,4 .  

9. (a) Use implicit differentiation to show that t2 - 4y2 = C2 implicitly defines 
solutions of the differential equation t - 4yy' = 0. 

(b) Solve t 2  - 4y2 = c2 for y in terms of t to provide explicit solutions. Show 
that these are also solutions o f t  - 4yy' = 0. 

(c) Discuss the interval of existence for each of the solutions in part (b). 

(d) Sketch the solutions in part (b) for C = 1,2,  3 ,4 .  

10. Show that y ( t )  = 3/(6t - 11) is a solution of y' = -2y2, y(2) = 3. Sketch 
this solution and discuss its interval of existence. Include the initial condition 
on your sketch. 

11. Show that y(t) = 4/(1 - 5ec4') is a solution of the initial value problem y' = 
y (4 - y), y (0) = -1. Sketch this solution and discuss its interval of existence. 
Include the initial condition on your sketch. 

In Exercises 12-15, use the given general solution to find a solution of the differ- 
ential equation having the given initial condition. Sketch the solution, the initial 
condition, and discuss the solution's interval of existence. 

13. ty' + .v = t2, y(t) = (1/3)t2 + C l t ,  y(1) = 2 

14. ty' + (r + l )y = 2teP', y(t) = r-'(t + C/t),  y(1) = l / e  

16. Maple, when asked for the solution of the initial value problem y' = a, 
y(0) = 1, returns two solutions: y(t) = (1/4)(t+212 and y(t) = (1/4)(t -2)2. 
Present a thorough discussion of this response, including a check and a graph of 
each solution, interval of existence, and so on. Hint: Remember that @ = (a ( .  

In Exercises 17-20, plot the direction field for the differential equation by hand. Do 
this by drawing short lines of the appropriate slope centered at each of the integer 
valued coordinates ( t ,  y), where -2 5 t 5 2 and - 1 5 y 5 1. 

17. y ' =  y + t 
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In Exercises 21-24, use a computer to draw a direction field for the given first-order 
differential equation. Use the indicated bounds for your display window. Obtain a 
printout and use a pencil to drdw a number of possible solution trajectories on the 
direction field. If possible, check your solutions with a computer. 

- 3 < t ( 3 ,  - 5 5 y ' S )  21. y' = -ty, R = {(t, V )  . - 

22. y' = y2 - t ,  R = { ( t ,  y) : -2 I t I 10, -4 5 y 5 4) 

23. y ' = t  - y + I, R = {(t, y ) :  -6 I t  1 6 ,  -6 I Y 5 6 )  

24. y' = (y + t)/(y - t), R = {(t, y) : -5 5 t 5 5, -5 I Y 5 51 

For each of the initial value problems in Exercises 25-28, use a numerical solver to 
plot the solution curve over the indicated interval. Try different display windows by 
experimenting with the bounds on y. Note: Your solver might require that you first 
place the differential equation in normal form. 

26. y' + ty = t2, y(0) = 3, t E [-4,41 

27. y' - 3y = sint, y(0) = -3, t E [-6~r, n/41 

28. v'  + (cos t)y = sin t ,  y (0) = 0, r E [-lo. 101 

Some solvers allow the user to choose dependent and independent variables. For 
example, your solver may allow the equation r' = -2sr + e-', but other solvers 
will insist that you change variables so that the equation reads y' = -2ty + e-'. or 
y' = -2xy + e-', should your solver require x as the independent variable. For 
each of the initial value problems in Exercises 29 and 30, use your solver to plot 
solution curves over the indicated interval. 

In Exercises 31-34, plot solution curves for each of the initial conditions on one 
set of axes. Experiment with the different display windows until you find one that 
exhibits all of the important behavior of your solutions. Note: Selecting a good 
display window is an art, a skill developed with experience. Don't become overly 
frustrated in these first attempts. 

31. y' = y(3 - y), y(0) = -2, -1,O, 1 ,2 ,  3 , 4 , 5  

32. x ' - x 2  =t ,x(O) = -2,0,2,x(2)  =O,x(4) = -3 ,0 ,3 ,x(6)  = O  
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In Exercises 35-38. the exact solution accompanies each initial value problem. 
(i) Verify that the y (t) is a solution of the initial value problem. 

(ii) Use your numerical solver to plot the solution of the initial value uroblem. 
(iii) Plot thz graph of y(t) and compare with the numerical solution found in part 

(ii). 

37. y' + 4y = cost + sint. y(0) = 1, y(t) = (3/17)cost + (5/17)sint + 
(14/17)e-~' 

38. y' = ty, y(O) = 2, y(1) = 2e('/2"2 

2.2 Solutions to Separable Equations 
Separable equations form a large class of differential equations that can be solved 
easily. An example is the equation y' = ty2. Its solution can be found as follows. 

First, we rewrite the equation using dy/dt instead of y', so 

Next we separate the variables by putting every expression involving y on the left 
and everything involving t on the right. This includes d y  and dt .  We get 

I 
-dy = t d t .  
y2 (2.2) 

It is important to note that this step is valid only if y # 0, since otherwise we would 
be dividing by zero. Then we integrate both sides of equation (2.2): 

C l .  f 
dt .  

1 1 1 1  1 ) - I !  1 1 1 1  

2 I I I I ~ l \ \  : / t I I I I I  When we perform the integrations. we get2 \ \ \ \ \ \ \ - / , , , / I ,  \\\..- //.,,, 
1 I 

I l l \ \  \-,- / / / I t  -- - - St2 + c. I I l \ i \ \ - / I I I I I I  
-2 l l l l l ! \ - ~ ! ! l l 1 1  

I I I I I I \  I I I I I I I  
l l I I I l 1 - l J  I I O  I 

-4 1 I I I - I I I I I Finally, we solve equation (2.3) for v .  The equation for the solution is 

Figure 1 Several solutions to 
Y ' =  t y 2 .  Several solutions are shown in Figure I 

- 
'Our understanding of integration first has us use two constants of integration, 

We get (2.3) by setting C = CZ - CI. This combining of the two constants into one works with any 

L solution of separable equations. 
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Treating dy  and d t  as mathematical entities, as we did in separating the vari- 
ables in equation (2.2), may be troublesome to you. If so, it is probably because you 
have learned your calculus very well. We will explain this step at the end of this 
section under the heading "Why separation of variables works." 

The general method 
Clearly the key step in this method is the separation of variables. This is the step 
going from equation (2.1) to equation (2.2). The method of solution illustrated here 
will work whenever we can perform this step, and this can be done for any equation 
of the two equivalent forms 

and 

Equations of either form are called separable differential equations. For both we 
can separate the variables; for example, for equation (2.6), we get 

(We must be careful here to avoid those points where f ( y )  = 0.) We can integrate 
both sides of this equation, 

Thus we can find the solution to separable equations by perfornling two integrations. 
An equation in the form of (2.5) can be handled in a similar manner. 

What about those points where f ( y )  = 0 in equation (2.6)? It turns out to 
be quite easy to find the solutions in such a case, since if f (yo) = 0 ,  then by 
substitution we see that the constant function y ( t )  = 4'0 is a solution 2 to (2.6). In 
particular, the function y ( t )  = 0 is a solution to the equation 3,' = tv . 

Let's look at some examples. 

I L E 2 . 7  + Consider the equation x' = r x ,  where r is an arbitrary constant and r is the assumed 
independent variable. 

This equation is perhaps the one that arises most in applications. We will see 
it often. Because of the form of its solutions, it is called the exponential equation. 
The equation is separable, so we rewrite it as 

dx 
- = r x ,  
dr 

(2.8) 
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and then we separate the variables to obtain 

1 - dx = r dt. 
X (2.9) 

In doing so we have to be cautious about dividing by zero, so for now we insist that 
x #O.  

We want to integrate (2.9), but there is a slight hitch with the left-hand side of 
the equation. If x > 0,  then / ( l  / x )  d x  = In x, but what if x < O? In this case, we 
have j ( l / x ?  dx  = In(-x). Hence, when we integrate both sides of equation (2.9), 
it becomes 

It remains to solve for x .  Taking the exponential of both sides of equation (2.10), 
we get 

I x ( t )  1 = er'+c = ecer'. 

Since eC and err are both positive, there are two cases 

We can simplify the solution by introducing 

eC, i f x > 0 ;  
-eC, i fx  ( 0 .  

Therefore, the solution is also described by the simpler formula 

where A is a constant different from zero, but otherwise arbitrary. 
In arriving at equation (2.9), we divided both sides of equation (2.8) by x, and 

this procedure is not valid when x = 0. However, as we pointed out before this 
example, t h s  means that n = 0 is a solution of the original equation, x' = r x .  
Consequently, the solution 

~ ( t )  = Aer', (2.12) 

where A is completely arbitrary, gives us the solution in all cases. + 
E X A M P L E 2 . 1 3 + Find a solution to the initial value problem y' = 0.3y with j(0) = 4. 

This is a special case of the equation in Example 2.7. Therefore, we know that 
the general solution is 

y ( t )  = ~ e ' . ~ ' .  

Substituting t = 0 and using the initial condition, we get 

4 = y (0 )  = A .  

Hence A = 4 and our solution is y ( t )  = 4e0.3'. + 
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Using definite integration 
Sometimes it is useful to use definite integrals when solving initial value problems 
for separable equations. 

E 2 . 1 4 + Solve the differential equation y' = ry with y(0) = 3. 

The equation is separable, so we first rewrite it as 

dy - = ty. 
dt  

Separating variables, we get 
dy - = t d t .  
Y 

The next step is to integrate both sides, but this time let's use definite integrals 
to bring in the initial condition y (0) = 3. Thus t = 0 corresponds to y = 3, and we 
have 

Notice that we changed the variables of integration because we want the upper limits 
of our integrals to be y and t. Performing the integration, we get 

We can solve for y by exponentiating, and our answer is 

Let's look back at equation (2.15). where we implemented the initial condition. 
In general, the initial condition is of the form y(to) = yo. Thust = to corresponds 
to y = yo. These are the initial points for our integrals, and equation (2.1 5) becomes 

This integrates to - - 

When we solve for y, we get 
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Implicitly defined solutions 
After the integration step, we need to solve for the solution. However, this is not 
always easy. In fact, it is not always possible. We will look at a series of examples. 

E X A M P E 2 . 1 6 + Consider the equation r' = (cos u)/r:  where u is the independent variable. We will 
be interested in the initial conditions r(0) = 1 and r (0)  = - 1 .  

We rewrite the equation and separate the variables, 

d r  cosu - or r d r = c o s u d u .  
clu r 

Integrating, we get 

1 
-r2 = sin 1~ + C or r 2  = 2 sin i r  + 2C. 
2 

To simplify things slightly, replace the constant 2C by D, so 

2 r = 2sinu + D. (2.17) 
r 

This is an implicit equation for the function r .  It can be easily solved by taking 
the square root; however, we have to be aware of two things. First, we need 2 sin u + 
D > 0 in order to have real square roots. This may affect the interval of existence 
of our solution. Second. under this assumption there are two possible solutions, 

. : r(u) = k2/2  sin u + D. 
-2 (2.18) 

Now consider the initial conditions. For the first condition, we get 

I = r(O) = k J2sin0 + D = k f i .  

-3 4 Consequently, we must have D = I .  Furthermore, because r(0) = I and 1 is 
Figure 2 r (u)  = 2 / Z E E i  positive. we must select the positive square root in (2.18), and our solution is 

passes through (0,1), and 
r ( u )  = - 2/- passes 
through (0,-1). The graph of this solution is the top half of the oval-shaped curve shown in Figure 2. 

What about the interval of existence? Solution (2.19) is defined only when 
2 sin u + 1 2 0. Therefore, it would seem that the interval containing u = 0 (our 
initial point) where solution (2.19) is defined is [-n/6,7n/6]. However, there is a 
small problem with this interval: r is zero at each of its endpoints, but the original 
equation, r '  = (cosu)/r,  does not permit the use of r = 0. Consequently, the 
maximally extended interval of existence is (-n/6. 7x16). 

In a similar manner, if r (0) = -1, then D still equals one. However, since r (0) 
is negative, we must choose 

as our solution. Again, this solution is defined on the interval (-n/6, 7n/6). It too 
is shown in Figure 2, but as the bottom half of the oval-shaped curve. + 
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Let's be sure we know what the terminology means. An explicit solution is one 
for which we have a formula that is a mathematical expression involving only the 
independent variable. Such a formula enables us, in theory at least, to calculate it. 
For example, (2.19) is an explicit solution to the equation in the previous example. 
In contrast, (2.17) is an implicit equation for the solution. In this example, the 
implicit equation can be solved easily, but this is not always the case. 

Unfortunately, implicit solutions occur frequently. Consider again the general 
problem in the form dyldr = g(r)/ h(y). Separating variables and integrating. we 
get 

If we let 

H(y) = \ My) dy and GO) = \ g(t) dl. 
l 

and then introduce a constant of integration, equation (2.20) can be rewritten as 

H(y) = G(t) + C. (2.21) 

Unless H(y) = y, this is an implicit equation for y(t). To find an explicit solution 
we must be able to compute the inverse function H - ' .  If this is possible, then we 
have 

Let's look at a slightly more complicated example. 

. E 2 . 2 2 + Find the solutions of the equation y' = e" / (1 + y), having initial conditions y (0) = 1 
and y(0) = -4. 

Separate the variables and integrate. 

1 2  ~ + ~ y  = e X + C  

t 
Rearrange equation (2.23) as 

y2 + 2y - 2(e-' + C) = 0. 

If \ This is an implicit equation for y (x) that we can solve using the quadratic formula. 

(0, 11, while - = -1 f J1 +2(ex + C) 
?ex passes 

Again we get two solutions from the quadratic formula, and the initial condition 
will dictate which solution we choose. If y(0) = 1, then we must use the positive 
square root and we find that C = 112. The solution is 

y(x) = -1 +&?G. (2.24) 
> -- .- ..- . - 
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On the other hand, if y(0) = -4, then we must use the negative square root and we 
find that C = 3. The solution in this case is 

Both solutions are shown in Figure 3. 
What about the interval of existence? A quick glance reveals that each solution 

is defined on the interval (-ca, oo). Some calculation will reveal that y'(x) is also 
defined on (-ca. ca). However, for each solution to satisfy the equation y' = 
eX/(l  + y), y must not equal -1. Fortunately, neither solution (2.24) or (2.25) can 
ever equal - 1. Therefore, the interval of existence is (-ca, ca). + 

Let's do one more example. 

E X A M P E 2 . 2 6 + Find the solutions to the differential equation 

having initial conditions x (0) = 1, x (0) = -2, and x (0) = 0. 

Figure 4 The direction field for x ' =  2 t x l ( 1  + x). 

The direction field for this equation is shown in Figure 4. This equation is 
separable since it can be written as 

When we separate variables, we get 

(1 + -!) dx = 2f df, L-- 
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assuming that x # 0 .  Integrating, we get 

where C is an arbitrary constant. For the initial condition x ( 0 )  = I ,  this becomes 
I = C. Hence our solution is implicitly defined by 

This is as far as we can go. We cannot solve equation (2.28) explicitly for 
x ( t ) ,  so we have to be satisfied with this as our answer. The solution x is defined 
implicitly by equation (2.28). 

For the initial condition x ( 0 )  = -2, we can find the constant C in the same 
manner. We get -2 + In(\ - 21) = C ,  or C = In 2 - 2. Hence the solution is defined 
implicitly by 

2 .r + ln(l.xJ) = t + In2 - 2 .  

Our initial condition is negative, so our solution must also be negative. Hence 1x1 = 
-.r, and our final implicit equation for the solution is 

For the initial condition x ( 0 )  = 0 ,  we cannot divide by x / ( l  + x) to separate 
variables. However, we know that this means that .r(t) = 0 is a solution. We can 
easily verify that by direct substitution. Thus we do get an explicit formula for the 
solution with this initial condition. 

Figure 5 Solutions to x ' =  2 t x / ( l  + x). 

The solutions sought in the previous example were computed numerically and 
are plotted in Figure 5. We will see in Chapter 6 that this is an easy process. Since 
the solutions are defined implicitly, it is a difficult task to visualize them without the 
aid of numerical methods. 
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Why separation of variables works 
If we start with a separable equation 

then separation of variables leads to the equation 

However, many readers will have been taught that the terms d y  and d t  have no 
meaning and so equation (2.30) has no meaning. Yet the method works, so what is 
going on here? 

To understand this better, let's start with (2.29) and perform legitimate steps 

Integrating both sides with respect to t ,  we get 

The integral on the left contains the expression y l ( t )  d t .  This is inviting us to change 
the variable of integration to y ,  since when we do that, we use the equation d y  = 
y ' ( t )  d t .  Making the change of variables leads to 

Notice the similarity between (2.30) and (2.31). Equation (2.30), which has no 
meaning by itself, acquires a precise meaning when both sides are integrated. Since 
this is precisely the next step that we take when solving separable equations, we can 
be sure that our method is valid. 

We mention in closing that the objects in (2.30), h ( y )  d y  and g ( t ) d t ,  can be 
given meaning as formal objects that can be integrated. They are called difSeren- 
tial forms, and the special cases like dy and d t  are called differentials. The basic 
formula connecting differentials d y  and d t  when y is a function of t is 

d y  = ~ ' ( t )  d t ,  

which is the change-of-variables formula in integration. These techniques will as- 
sume greater importance in Section 2.6, where we will deal with exact equations. 
The use of differential forms is very important in the study of the calculus of func- 
tions of several variables and especially in applications to geometry. 

................ 
EXERCISES 
In Exercises 1-12, find the general solution of each of the following differential 
equations. If possible, find an explicit solution. 

2. xy' = 2y  

4. y' = ( 1  + y2)eX 
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5. y' = xy + y 6. y' = ye' - 2e' + y - 2 

7. y' = x/(y + 2) 8. y '  = xyl(x - 1) 
1 r 9. s-y = y In y - y' 10. xy' - y = 2x2y 

11. y3y' = x + 2y' 12. "' = (2xy + 2x)/(x2 - I) 

In Exercises 13-18, find the exact solution of the initial value problem. Indicate the 
interval of existence. 

In Exercises 19-22, find exact solutions for each given initial condition. State the 
interval of existence in each case. Plot each exact solution on the interval of exis- 
tence. Use a numerical solver to duplicate the solution curve for each initial value 
problem. 

An unstable nucleus is radioactive. At any instant, it can emit a particle, trans- 
forming itself into a different nucleus in the process. For example, 2 3 x ~  is an alpha 
emitter that decays spontaneously according to the scheme 2 3 8 ~  4 2 3 4 ~ h  + ' ~ e ,  
where 'He is the alpha particle. In a sample of 2 3 x ~ ,  a certain percentage of the 
nuclei will decay during a given observation period. If at time t the sample contains 
N (t) radioactive nuclei, then we expect that the number of nuclei that decay in the 
time interval At will be approximately proportional to both N and At. In symbols, 

AN = N(t + At) - N(t) -hN(t)dt,  (2.32) 

where h is a constant of proportionality. Use this fact to solve Exercises 23-26. 

23. Show that N (t) satisfies the differential equation 

24. If No represents the number of 2 " ~  nuclei present at time t = 0, use equa- 
tion (2.33) to show that the number of 2 3 8 ~  present at time t is given by the 
equation 

N (r )  = ~oe-" .  (2.34) 
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25. The half--life of a radioactive substance is defined as the amount of time that 
it takes one-half of the substance to decay. Show that the half-life of the 
defined by equation (2.34), is given by the formula 

26. The half-life of 2 3 8 ~  is 4.47 x lo7 yr. 

(a) Use equation (2.35) to compute the decay constant h for 2 3 8 ~ .  

(b) Suppose that 1000 mg of '"u are present initially. Use equation (2.34) 
and the decay constant determined in part (a) to determine the time for this 
sample to decay to 100 mg. 

27. "P, an isotope of phosphorus, is used in leukemia therapy. After 10 hours, 615 
mg of a 1000-mg sample remain. Determine the half-life of 3 2 ~ .  

28. Tritium, 9, is an isotope of hydrogen that is sometimes used as a biochemical 
tracer. Suppose that 100 mg of % decays to 80 mg in 4 hours. Determine the 
half-life of 3 ~ .  

29. The isotope Technitium 99m is used in medical imaging. It has a half-life of 
about 6 hours, a useful feature for radioisotopes that are injected into humans. 
The Technitium, having such a short half-life, is created artificially on scene by 
harvesting it from a more stable Molybdenum isotope, 9 9 ~ b .  If 10 g of 9 9 ' n ~ c  
are "harvested" from the Molybdenum, how much of this sample remains after 
9 hours? 

30. The isotope Iodine 13 1 is used to destroy tissue in an overactive thyroid gland. 
It has a half-life of 8.04 days. If a hospital receives a shipment of 500 mg of 
I" I, how much of the isotope will be left after 20 days? 

In the laboratory, a more useful measurement is the decay rate R, usually measured 
in disintegrations per second, counts per minute, etc. Thus, the decay rate is de- 
fined as R = -dN/dt.  Using equation (2.33), it is easily seen that R = AN. 
Furthermore, differentiating (2.34) with respect to t reveals that 

in which Ro is the decay rate at t = 0. That is, because R and N are proportional, 
they both decrease with time according to the same exponential law. 

31. Jim, working with a sample of I3'l in the lab, measures the decay rate at the end 
of each day. 

Time Counts Time Counts 
(days) (countslday) (days) (countdday) 
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Taking the natural logarithm of both sides of equation (2.36) produces the result 

Therefore, plotting In R versus t should produce a line with slope -h. On a 
sheet of graph paper, plot the natural logarithm of the decay rates versus the 
time, and then estimate the slope of the line of best fit. Use this estimate to 
approximate the half-life of 13'1. 

32. A 1.0-g sample of Radium 226 is measured to have a decay rate of 3.7 x 
10'O disintegrationsls. What is the half-life of ' "~a  in years? Note: A chemical 
constant, called Avogadro's number, says that there are 6.02 x 10" atoms per 
mole, a common unit of measurement in chemistry. Furthermore, the atomic 
mass of 2 2 h ~ a  is 226 glmol. 

33. A substance contains two Radon isotopes, 2 ' 0 ~ n  [ t ~ , ~  = 2.42 h] and 2 1 1 ~ n  
[t1/2 = 15 h ]  At first, 20% of the decays come from "'Rn How long must one 
wait until 80% do so? 

34. Radiocarbon dating. Carbon 14 is produced naturally in the earth's atmo- 
sphere through the interaction of cosmic rays and Nitrogen 14. A neutron 
comes along and strikes a nucleus, knoclung off a proton and creating a 
I4c atom. This atom now has an affinity for oxygen and quickly oxidizes as 
a 14c02 molecule, which has many of the same chemical properties as regu- 
lar C02.  Through photosynthesis. the 14c02 molecules work their way into the 
plant system, and from there into the food chain. The ratio of to regular car- 
bon in living things is the same as the ratio of these carbon atoms in the earth's 
atmosphere, which is fairly constant, being in a state of equilibrium. When a 
living being dies, it no longer ingests "C and the existing "C in the now de- 
funct life form begins to decay. In 1949, Willard F. Libby and his associates 
at the University of Chicago measured the half-life of this decay at 5568 f 30 
years, which to this day is known as the Libby half-life. We now know that the 
half-life is closer to 5730 years, called the Cambridge half-life, but radiocar- 
bon dating labs still use the Libby half-life for technical and historical reasons. 
Libby was awarded the Nobel p r i ~ e  in chemistry for his discovery. 

(a) Carbon 14 dating is a useful dating tool for organisms that lived during a 
specific time period. Why is that? Estimate this period. 

(b) Suppose that the ratio of to carbon in the charcoal on a cave wall is 
0.617 times a similar ratio in living wood in the area. Use the Libby half- 
life to estimate the age of the charcoal. 

35. Newton's law of cooling asserts that the rate at which an object cools is propor- 
tional to the difference between the object's temperature (T) and the tempera- 
ture of the surrounding medium (A) .  
(a) Show that 

T = A + (To - A)ePk', 

where To is the temperature of the body at time t = 0 and k is the propor- 
tionality constant. 

(b) A murder victim is discovered at midnight and the temperature of the body 
is recorded at 3 1°C. One hour later, the temperature of the body is 29°C. 

Assume that the surrounding air temperature remains constant at 21°C. 
Calculate the victims' time of death. Note: The "normal" temperature of a 
living human being is approximately 37°C. 

36. Suppose a cold beer at 40°F is placed into a warm room at 70°F. Suppose 10 
minutes later, the temperature of the beer is 48°F. Use Newton's law of cooling 
to find the temperature 25 minutes after the beer was placed into the room. 

37. Referring to the previous problem, suppose a bottle of beer at 50°F is discov- 
ered on a kitchen counter in a 70°F room. Ten minutes later, the bottle is 60°F. 
If the refrigerator is kept at 40°F, how long had the bottle of beer been sitting 
on the counter when it was first discovered? 

38. Consider the equation 

y' = f ( a t  + by +c ) ,  
where a ,  0, and c are constants. Show that the substitution x = a t  + by + c 
changes the equation to the separable equation .wf = a +bf(x). Use this method 
to find the general solution of the equation y' = (y + t)2. 

39. Suppose a curve y = f (x) lies in the first quadrant and suppose that for each 
x,  the piece of the tangent line at (x, y(x)) which lies in the first quadrant is 
bisected by the point (x, y(.r)). Find y(x). 

40. Suppose the projection of the part of the line normal to the graph of y = y (x) 
from the point (x. y(x)) to the x-axis has length 2. Find y(.r). 

41. Suppose a polar graph r = r(8)  has the property that 6 always equals twice 
the angle from the radial line (i.e., the line from the origin to (8, r(8))) to the 
tangent. Find the function r(8). 

42. Suppose y(x) is a continuous, nonnegative function with y(0) = 0. Find y(x) 
if the area under the curve y = y(t) from 0 to x is always equal to one-fourth 
the area of the rectangle with vertices at (0.0) and (x, y(x)). 

43. A football, in the shape of an ellipsoid, is lying on the ground in the rain. Its 
length is 8 inches and its cross section at its widest point is a circular disc of 
radius 2 inches. A rain drop hits the top half of the football. Find the path 
that it follows as it runs down the top half of the football. Hint: Recall that 
the gradient of a function f (x, y)  points in the (x, y)-direction of maximum 
increase of f .  

44. From Torricelli's law. water in an open tank will flow through a hole in the 
bottom at a speed equal to that it would acquire in a free-fall from the level of 
the water to the hole. A parabolic bowl has the shape of v = x2, 0 5 x 5 1, 
(units are feet) revolved around the y-axis. This bowl is initially full of water 
and at t = 0. a hole of radius a is punched at the bottom. How long will it 
take for the bowl to drain? Hint: An object dropped from height h will hit the 
ground at a speed of v = J@i where g is the gravitational constant. This 
formula is derived from equating the kinetic energy of impact, (1/2)mv2, with 
the work required to raise the object, mgh. 

45. Refening to the previous problem, for what function f would the bowl defined 
by y = f (x) have the property that the water 1- 1 
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46. A destroyer is hunting a submarine in a dense fog. The fog lifts for a moment, 
disclosing that the submarine lies on the surface 4 miles away. The subma- 
rine immediately descends and departs in a straight line in an unknown direc- 
tion. The speed of the destroyer is three times that of the submarine. What 
path should the destroyer follow to be certain of intercepting the submarine? 
Hint: Establish a polar coordinate system with the origin located at the point 
where the submarine was sighted. Look up the formula for arclength in polar 
coordinates. 

if Motion 
One of the most intensively studied scientific problems is the study of motion. This 
is true in particular for the motion of the planets. The history of the ideas involved 
is one of the most interesting chapters of human history. We will start by giving a 
brief summary of the development of models of motion. 

A hrief history of models of motion 

The study of astronomy goes back 3000 years to the Babylonians. Their interest in 
the stars was furthered by the Greeks, who came up with a descriptive model of the 
motion of the planets. They assumed that the earth was the center of the universe 
and that everything revolved around the earth. At first they thought that the planets 
moved in circular paths around the earth, but as they grew more proficient in their 
measurements they realized that this was not true. They modified their theory by 
inventing epicycles. These were smaller circles, the centers of which moved along 
circular arcs centered at the earth. The planets moved along the epicycles as the 
epicycles moved around the earth. When this theory proved to be inadequate in 
some cases, the Greeks added epicycles to the epicycles. 

The theory of epicycles enabled the Greeks to compute and predict the motion 
of the planets. In many ways it was a highly satisfactory scientific theory. However, 
it left many questions unanswered. Most important, why do the planets have such 
a complicated motion as that suggested by the theory of epicycles? There was no 
causal explanation of why the use of epicycles predicted the motion of the planets. 
Their theory was only descriptive in nature. 

A major improvement on this theory came in 1543. when Copernicus made 
the radical suggestion that the earth was not the center of the universe. Instead, he 
proposed that the sun was the center. Of course this required a major change in 
the thinking of all humankind in matters of religion and philosophy as well as in 
astronomv. It did, however, make the theory of epicycles somewhat easier, because . 

fewer epicycles were needed to explain the motion of the planets. 
Starting in 1609, and based on extensive and careful astronomical observations 

made by Tycho Brahe, Kepler proposed that the planets moved in ellipses around the 
sun. This did away with the need for epicycles, but his theory remained descriptive. 
Kepler devised three experimental laws of planetary motion. He was able to show 
that the known planets satisfied his laws. However, his new theory still provided no 
causal explanation for the motion of the planets. 
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A causal explanation was provided by Isaac Newton. However he did much 
more. He made three major advances.' First, he proved the fundamental theorem 
of calculus, and for that reason he is given credit for inventing the calculus. The 
fundamental theorem made possible the easy evaluation of integrals. As has been 
demonstrated, this made possible the solution of differential equations. Newton's 
second contribution was his formulation of the laws of mechanics. In particular, his 
second law, which says that force is equal to mass times acceleration, means that 
the study of motion can be reduced to a differential equation or to a system of dif- 
ferential equations. Finally. he discovered the universal law of gravity, which gave a 
mathematical description of the force of gravity. A11 of these results were published 
in 1687 in his Philosophiae Naturalis Principia Marhenzatica (The Mcrthetnatical 
Principles of Natural Philosophy), commonly referred to as the Principiu. 

Using his three discoveries, Newton was able to derive Kepler's laws of plan- 
etary motion. This means that for the first time there was a causal explanation of 
the motion of the planets. Newton's results were much broader in application, since 
they explained any kind of mechanical motion. 

There were still difficulties with Newton's explanation. In particular, the force 
of gravity. as Newton described it, was a force acting at a distance. One body 
acts on any other without any indication of a physical connection. Philosophers and 
physicists wondered how this was possible. In addition, by the end of the nineteenth 
century, some anomalous phenomena had been observed. Although in most cases 
Newton's theory provided good answers, there were some situations in which the 
predictions of Newton's theory were not quite accurate. 

These difficulties were apparently resolved in 1919, when Albert Einstein pro- 
posed his general theory of relativity. In this theory, gravity is explained as being 
the result of the curvature of four-dimensional space-time. This curvature in turn is 
caused by the masses of the bodies. The space-time itself provided the connection 
between the bodies and did away with problems of action at a distance. Finally, the 
general theory seems to have adequately explained most of the anomalies. 

However, this is not the end of the story. Most physicists are convinced that 
all forces should be manifestations of one unified force. Early in the twentieth 
century they realized that there were four fundamental forces: gravity, the weak and 
strong nuclear forces, and electromagnetism. In the 1970s they were able to use 
quantum mechanics to unify the last three of these forces, but to date there is no 
generally accepted theory that unites gravity with the other three. There seems to 
be a fundamental conflict between general relativity and quantum mechanics. 

A number of theories have been proposed to unify the two, but they remain 
unverified by experimental findings. Principal among these is string theory. The 
fundamental idea of' string theory is that a particle is a tiny string that is moving in a 
10-dimensional space-time. Four of these dimensions correspond to ordinary space- 
time. The extra six dimensions are assumed to have a tiny extent, on the order of 
1 0  33 cm. This explains why these directions are not noticeable. It also gives a clue 
as to why string theory has no experimental verification. Nevertheless, as a theory 
it is very exciting. Hopefully someday it will be possible to devise an experimental 
test of the validity of string theory. 

- 
We have already discussed this briefly in Section 1 of Chapter 1. 
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What we have described is a sequence of at least six different theories or math- 
ematical models. The first were devised to explain the motion of the planets. Each 
was an improvement on the previous one, and starting with Newton they began to 
have more general application. With Newton's theory we have a model of all motion 
based on ordinary differential equations. His model was a complete departure from 
those that preceded it. It is his model that is used today, except when the relative 
velocities are so large that relativistic effects must be taken into account. 

The continual improvement of the model in this case is what should take place 
wherever a mathematical model is used. As we learn more, we change the model to 
make it better. Furthermore, changes are always made on the basis of experimental 
findings that show faults in the existing model. The scientific theories of motion are 
probably the most mature of all scientific theories. Yet as our brief history shows, 
they are still being refined. This skepticism of the validity of existing theories is an 
important part of the scientific method. As good as our theories may seem, they can 
always be improved. 

Linear motion 
Let's look now at Newton's theory of motion. We will limit ourselves for the mo- 
ment to motion in one dimension. Think in terms of a ball that is moving only up 
and down near the surface of the earth. Recall that we have already discussed this 
in Sections 1 and 3 of Chapter 1. 

To set the stage, we recall from Chapter 1 that the displacement x is the distance 
the ball is above the surface of the earth. Its derivative v = xi is the velocity, and 
its second derivative a = v' = x" is the acceleration. The mathematical model for 
motion is provided by Newton's second law. In our terms this is 

where F is the force on the body and m is its mass. The gravitational force on a 
body moving near the surface of the earth is 

where g is the gravitational constant. It has value g = 32 ftls2 = 9.8 d s 2 .  The 
minus sign is there because the direction of the force of gravity is always down, 
in the direction opposite to the positive .r-direction. Thus, in this case, Newton's 
second law (3.1) becomes 

We solved equation (3.2) in Section 3 of Chapter 1, and the solution is 

where cl and c2 are constants of integration. 
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Air resistance 
In the derivation of our model in equation (3.2), we assumed that the only force 
acting was gravity. Now let's take into account the resistance of the air to the motion 
of the ball. If we think about how the resistance force acts, we come up with three 
simple facts. First, if there is no motion, then the velocity is zero, and there is no 
resistance. Second, the force always acts in the direction opposite to the motion. 
Thus if the ball is moving up, the resistance force is in the down direction, and if the 
ball is moving down, the force is in the up direction. From these considerations, we 
conclude that the resistance force has sign opposite to that of the velocity. We can 
put this mathematically by saying that the resistance force R has the form 

R ( x ,  v )  = - r ( x ,  v ) v ,  (3.4) 
where r  is a function that is always nonnegative. 

Beyond these considerations, experiments have shown that the resistance force 
is somewhat complicated and it does not have a form that applies in all cases. Physi- 
cists use two models. In the first, resistance is proportional to the velocity, and in the 
second. the magnitude of the resistance is proportional to the square of the velocity. 
We will look at each of these cases in turn. 

In the first case, r  is a positive constant. Our total force is 

Using Newton's second law, we get 

Notice that equation (3.5) is separable. Let's look for solutions. We separate 
variables to get 

d v = -dt .  

g + r v l m  
When we integrate this and solve for v,  we get 

where C is a constant of integration. 
We discover an interesting fact if we look at the limit of the velocity for large t .  

The exponential term in (3.6) decays to 0, so the velocity reaches a limit 

mg lim v ( t )  = --. 
t - + ~  r 

Thus the velocity does not continue to increase as the ball is falling. lnstead i t  
approaches the velocity 

UL,,, = -nzg/r, 

which is called the terminal velocity. 
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We still have to solve for the displacement and for this we use equation (3.6), 
which we rewrite as 

dx - - - u = ~ e - ~ ' ' " '  - rng/r. 
dt  

This equation can be solved by integration to get 

! where A is another constant of integration. 
! 
I 

1 L E 3 . 8  4 Suppose you drop a brick from the top of a building that is 250 m high. The brick 
I 

has a mass of 2 kg, and the resistance force is given by R = - 4 u  How long will it 
take the brick to reach the ground? What will be its velocity at that time? 

The equation for the velocity of the brick is given in (3.6). Since we are drop- 
ping the brick, the initial condition is u  (0) = 0, and we can use (3.6) to find that 

Then 
2r d" = v ( f )  = 4.9 (e- - 1).  

d t  

Integrating, we get 

,x(t) = 4.9 (- f e 2 t  - t )  + A 

The initial condition x(0) = 250 enables us to compute A, since evaluating the 
previous equation at t = 0 gives 

Thus the equation for the height of the brick becomes 

We want to find t such that x(t) = 0. This equation cannot be solved using alge- 
bra, but a hand-held calculator or a computer can find a very accurate approximate 
solution. In this way we obtain t = 5 1.5204 seconds. 

For a time this large the exponential term in (3.6) is negligible, so the brick has 
reached its terminal velocity of v,,, = -4.91111s. 

4 

Now let's turn to the second case, where the magnitude of the resistance force 
is proportional to the yuare of the velocity. Given the form of R in (3.4) together 
with the fact that r >_ 0, we see that the magnitude of R is 
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for some non-negative constant k .  Since v2  = (v12, we conclude that r = k ( v l ,  and 
the resistance force is R ( v )  = - k ( v  1 v .  In this case, Newton's second law becomes 

Again, (3.9) is a separable equation. Let's look for solutions. Because of the 
absolute value, we have to consider separately the situation when the velocity is 
positive and the ball is moving upward and when the velocity is negative and the 
ball is descending. We will solve the equation for negative velocity and leave the 
other case to the exercises. When v  < 0, J v J  = -v, so (3.9) becomes 

Scaling variables to ease computation 
We could solve (3.10) using separation of variables, but the constants cause things 
to get a little complicated. Instead, let's first introduce new variables by scaling the 
old ones. We introduce 

v = a w  and t = B s ,  

where the constants a and B will be determined in a moment. Then 

so equation (3.10) becomes 

Now we choose a and ,9 to make both coefficients equal to 1. This means that 

sB kab' 
- = 1  a and - = I  m 

and requires that 

ksB2 a = gB and - - - 1. 
m 

Thus 

B = g  and a = R .  
As a reward for all of this, our differential equation in (3.1 1) simplifies to 
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The separable equation (3.12) can be solved in the usual way. We first get 

Next we use partial fractions to write this as 

This can be integrated to get 

where C is an arbitrary constant. When we exponentiate, we get 

By allowing A to be negative or 0, we see that in general 

Solving for w ,  we find that 

In terms of our original variables u and t .  this becomes 

We want to observe the limiting behavior of o ( t )  as r - m. From (3.13), we 
see that the exponential term decays to 0. and the velocity approaches the terminal 
velocity 

- -m. Uterm - 

This should be compared to equation (3.7), which gives the terminal velocity when 
the air resistance is proportional to the velocity instead of to its square. 

................ 
EXERCISES 

1. The acceleration due to gravity (near the earth's surface) is 9.8 m/s2. If arocket- 
ship in free space were able to maintain this constant acceleration indefinitely, 
how long would it take the ship to reach a speed equaling (1/5)c, where c is 
the speed of light? How far will the ship have traveled in this time? Ignore air 
resistance. Note: The speed of light is 3.0 x lo8 d s .  

2. A balloon is ascending at a rate of 15 mis at a height of LOO m above the ground 
when a package is dropped from the gondola. How long will it take the package 
to reach the ground? Ignore air resistance. 
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3. A stone is released from rest and dropped into a deep well. Eight seconds later, 
the sound of the stone splashing into the water at the bottom of the well returns 
to the ear of the person who released the stone. How long does it take the stone 
to drop to the bottom of the well? How deep is the well? Ignore air resistance. 
Note: The speed of sound is 340 d s .  

4. A rocket is fired vertically and ascends with constant acceleration a = 100 m/s2 
for 1.0min. At that point, the rocket motor shuts off and the rocket continues 
upward under the influence of gravity. Find the maximum altitude acquired by 
the rocket and the total time elapsed from the take-off until the rocket returns to 
the earth. Ignore air resistance. 

5. A body is released from rest and travels the last half of the total distance fallen 
in precisely one second. How far did the body fall and how long did it take to 
fall the complete distance? Ignore air resistance. 

6. A ball is projected vertically upward with initial velocity vo from ground level. 
Ignore air resistance. 

(a) What is the maximum height acquired by the ball? 

(b) How long does it take the ball to reach its maximum height? How long does 
it take the ball to return to the ground? Are these times identical? 

(c) What is the speed of the ball when it impacts the ground on its return? 

7. A particle moves along a line with x ,  v ,  and a representing position, velocity, 
and acceleration, respectively. The chain rule states that 

Assuming constant acceleration a and the fact that dv ld t  = a ,  show that 

where xo and L I ~  are the position and velocity of the particle at time t = 0, re- 
spectively. A car's speed is reduced from 60 m i h  to 30 milh in a span covering 
500 ft. Calculate the magnitude and direction of the constant deceleration. 

8. Near the surface of the earth, a ball is released from rest and its flight through 
the air offers resistance that is proportional to its velocity. How long will it take 
the ball to reach one-half of its terminal velocity? How far will it travel during 
this time? 

9. A ball having mass m = 0.1 kg falls from rest under the influence of gravity 
in a medium that provides a resistance that is proportional to its velocity. For a 
velocity of 0.2 d s ,  the force due to the resistance of the medium is - 1 N. [One 
Newton (N) is the force required to accelerate a 1 kg mass at a rate of 1 m/s2. 
Hence, 1 N = 1 kg m/s2.] Find the terminal velocity of the ball. 

10. An object having mass 70 kg falls from rest under the influence of gravity. The 
terminal velocity of the object is -20 d s .  Assume that the air resistance is 
proportional to the velocity. 

(a) Find the velocity and distance traveled at the end of 2 seconds. 
(b) How long does it take the object to reach 80% of its terminal velocity? 

- - 
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A ball is thrown vertically into the air with unknown velocity vo at time t = 0. 
Assume that the ball is thrown from about shoulder height, say ?lo = 1.5 m. 
The ball reaches a maximum height of 15 m. If you ignore air resistance. then 
it is easy to show that du/dt  = -8, where g = 9.8 m/s2 is the acceleration due 
to gravity. Follow the lead of Exercise 7 to show that v dv = -g dy. Further, 
because the velocity of the ball is zero when it reaches its maximum height, 

Find the initial velocity of the ball if the ball reaches a maximum height of 
15 m. 

Next, let's include air resistance. Suppose that R(v) = -ru and show that 
the equation of motion becomes 

If the mass of the ball is 0.1 kg and r = 0.02 N/(ds) ,  find the initial velocity 
if the ball is again released from shoulder height (yo = 1.5 m) and reaches a 
maximum heiiht of 15 m. -- - - 

12. A mass of 0.2 kg is released from rest. As the object falls, air provides a re- 
sistance proportional to the velocity (R(v) = -0. lv). where the velocity is 
measured in d s .  If the mass is dropped from a height of 50 m, what is its 
velocity when it hits the ground? 

13. An object having mass rn = 0 1  kg is launched from ground level with an initial 
vertical velocity of 230 d s .  The air offen resistance proportional to the square 
of the object's velocity (R(v) = -O.O5uu]), where the velocity is measured in 
mls. Find the maximum height acquired by the object. 

14. One of the great discoveries in science is Newton's universal law of gravitation, 
which states that the magnitude of the gravitational force exerted by one point 
mass on another is proportional to their masses and inversely proponional to . - 
the square of the distance between them. In symbols, 

GMm 
I F (  = - 7  

r2  

where G is a universal gravitational constant. This constant. first measured by 
Lord Cavendish in 1798, has a currently accepted value approximately equal to 
6.6726 x LO-" ~ m ~ l k g ~ .  Newton also showed that the law was valid for two 
spherical masses. In this case, you may assume that the mass is concentrated at 
the point at the center of each sphere. 

Suppose that an object with mass m is launched from the earth's surface 
with initial velocity vo. Let y represent its position above the earth's surface, as 
shown in Figure 1. 

(a) If air resistance is ignored, show that 

dv G M  
' ; 7 ; ; = - ( ~ + ~ ) 2 '  
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(b) Assuming that y(0) = 0 (the object is launched from earth's surface) and 
v(0) = vo, solve equation (3.15) to show that 

(c) Show that the maximum height reached by the object is given by 

(d) Show that the initial velocity 

is the minimum required for the object to "escape" earth's gravitational 
field. Hint: If an object "escapes" earth's gravitational field, then the maxi- 
mum height acquired by the object is potentially infinite 

. . - - - - . 
15. Inside the Earth, the surrounding mass exerts a gravitational pull in all direc- 

tions. Of course. there is more mass towards the center of the Earth than any 
other direction. The magnitude of this force is proportional to the distance from 
the center (can you prove this?). Suppose a hole is drilled to the center of the 
Earth and a mass is dropped in the hole. Ignoring air resistance, with what ve- 
locity will the mass strike the center of the Earth? As a hint, write down the 
second order differential equation for the distance, x(t),  from the surface of the 
Earth to the mass m; let v = d.r/dt and convert the differential equation into 
one involving v and .K by using the following equation 

d2x dv d v d x  dv 
-- - - - - -- - - -u. 
dt2 d t  d x  d t  dx  

.Y 16. An object with mass m is released from rest at a distance of a meters above the 
earth's surface (see Figure 2). Use Newton's universal law of gravitation (see 

- - Exercise 14) to show that the object impacts the earth's surface with a velocity 
determined by 

where g is the acceleration due to gravity at the earth's surface and R is the 
radius of the earth. Ignore any effects due to the earth's rotation and atmosphere. 

Figure 2 The object in Exercise Hint: On the earth's surface, explain why mg = GMrn/R2, where M is the 16. mass of the earth and G is the universal gravitational constnnt .----. 
17. A 2-foot length of a 10-foot chain hangs off the end of a high table. Neglecting 

friction, find the time required for the chain to slide off the table. Hint: Model 
this problem with a second order differential equation and then solve it using the 
following reduction of order technique: if x is the length of the chain hanging 
off the table and v = dx ld t  then dvld t  = (dvldx) (dxldt)  = v(dv/dxl. 
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quations 

18. A skydiver of mass 60 kg free-falls from an airplane at an altitude of 5000 
meters. He is subjected to an air resistance force that is proportional to his 
speed. Assume the constant of proportionality is 10 (kglsec). Find and solve 
the differential equation governing the altitude of the skydiver at time t seconds 
after the start of his free-fall. Assuming he does not deploy his parachute, find 
his limiting velocity and how much time will elapse before he hits the ground. 

19. In our models of air resistance the resistance force has depended only on the 
velocity. However, for an object that drops a considerable distance, such as the 
parachutist in the previous exercise, there is a dependence on the altitude as 
well. It is reasonable to assume that the resistence force is proportional to air 
pressure, as well as to the velocity. Furthermore, to a first approximation the air 
pressure varies exponentially with the altitude (i.e., it is proportional to e?"', 
where n is a constant and .r is the altitude). Present a model using Newton's 
second law for the motion of an object in the earth's atmosphere subject to such 
a resistence force. 

A first-order linear equation is one of the form 

X' = N ( ~ ) x  + f ( t ) .  

I f f  (t) = 0, the equation has the form 

X I  = a(t)x,  

and the linear equation is said to be homogeneous. Otherwise it is inhomogeneous. 
The functions a ( t )  and f (t) in (4.1) are called the coeficients of the equation. 

We will sometimes consider equations of the more general form 

These are still linear equations, and they can be put into the form (4.1) by dividing 
by b(t)-provided b(t) is not zero. The important point about linear equations is 
that the unknown function x and its derivative X'  both appear alone and only to first 
order. This means that we do not allow x', (x')" ,.rxl, ex, cos(x'), or anything more 
complicated than just .r and .s' to appear in the equation. Thus the equations 

X I  = sin(t).r. 
21 y ' = e  y + c o s t ,  and 

2 x' = (3t + 2)x + t - 1 

are all linear. while 

x' = t sin(.r), 

y '=yy ' ,  and 

y1 = 1 - y2 

are all nonlinear. 

Solution of the homogeneous equation 
Linear equations can be solved exactly, and we will show how in this section. We 
stan with the ho~nogeneous equation (4.2). You will notice that this is a separable 
equation. Following our method for separable equations, we have 

The constant e' is positive. We will replace it with the constant A and we will allow 
it to be positive or negative so that we can get rid of the absolute value. Hence the 
general solution is 

E X A M P L E  4 . 5  + Solve 

Using the method for separable equations, 

In 1x1 = - COS(~)  + c 
JX(t) 1 = e-C(l"+C = cos t  

Solution of the inhomogeneous equation 
We will illustrate the solution method with an example. 

E  X  A M  P  E 4 . 6 + The principal P( t )  in a bank account earns interest at a rate r .  Deposits are made 

at the rate of D dollars per year. which we treat as being made continuously. The 
principal can be shown to satisfy the linear equation 

P' = r P +  D. 

Solve this equation. 

If we rewrite this as 
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then the left-hand side looks like the formula for the derivative of a product. In fact, 
if we multiply equation (4.7) by e-'.', the left-hand side becomes the derivative of a 
product 

(e-rt  P ) I  - - e - r ~  P' - P = De-". (4.8) 

We can now integrate both sides of this equation to get 

This is the general solution to our linear equation. + 
That worked pretty well. Can we always do this'? Let's start with the general 

linear equation in (4.1) and go through the same steps. First we rewrite it as 
X' - a x  = f ,  (4.10) 

in analogy to (4.7). Next, in analogy to (4.8), we want to find a function u( t ) .  like 
e-" in the previous example, such that 

u ( X I  - a x )  = (ux) ' .  (4.1 1 )  

We will call such a function an integrating factor. 
Assume for the moment that we have found an integrating factor u.  Multiplying 

(4.10) by u ,  and using (4.1 I ) ,  we get 

(ux)' = u (x' - a x )  = u f .  

As we did for equation (4.8) in Example 4.6, we can integrate this directly to get 

which is the general solution to (4.1). 
Thus, the key to the method is finding an integrating factor, a function u that 

satisfies equation (4.11); that is, 

u(x' - a x )  = (ux) ' .  

If we expand both sides, this becomes 
I I u,xt - aux = ux  + u x .  

Clearly these will be equal if and only if 
u1 = -au. 

But this is a linear homogeneous equation, and, as we saw earlier in (4.4), a solution 
is given by 

u ( t )  = e - J ' a ( t ) d t .  (4.14) 

(Notice that we do not need the constant A that appears in (4.4) because we only 
need one particular solution. Any solution to (4.13) will do for the present purpose.) 

E X A M P L E  4 . 1 7  + 
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Summary of the method 
We have found a general method of solving arbitrary linear equations 

X' = ax + f .  

Let's list the steps. 

1. Rewrite the equation as 

X I  - ax = f. 
2. Find an integrating factor, which is any function u for which 

The integrating factor will be any solution to the homogeneous equation u' = 
-au. A solution is given by 

After you have found the integrating factor u,  it is always a good idea to check 
that equation (4.16) is satisfied. 

3. Multiply both sides of (4.15) by the integrating factor. Then using (4.16) we 
have 

(ux)'  = u f. 
4. Integrate this equation to obtain 

u(t)+x(t) = u( t )  f ( t )  dt + C, 1 
whence 

Let's look at some examples. 

Find the general solution to the equation 

Let's go about this very carefully. The first thing to do is to bring the term 
involving x to the left-hand side, 

Next we find an integrating factor u. Since a ( t )  = 1, we find u by solving the 
equation u' = -u. A solution is given by 

~ ( t )  = e - J l d t  = e-'. 

Multiply equation (4.18) by the integrating factor, getting 

e-t (x'  - x )  = e-2t. 



* 
0
 

9
 m

 

0
 

0
 

3
,g

 

5'
 "
, 

9
 %

 
0
 

0
 

El
- 

E
. 

0
8

 
5 

a
 

0
 
m

 
5 

$ 
m

 
0
 

R
 5'
 0

 

3
 

%
 

F
 
'
 

I1 
3
-
 

F
 

11 
h
 

".
 

I 
'

N
 

w
 
k

 

s 
3

 
X 

II 

a 
g 

5 
0
 

0
 

0
 s.
 

l
 e

, 
e,
 
3
 

.EL 
g 

g 
l
 

?
a

 
r 

g 
R

 0
 

CJ
l 

a
 

X 
0
 

e
. 2

 
3

0
,

 
5.

 s
. 

5
$

 
E 

g 
0
 

0
 

X
 
e,
 

e,
 
- 

3 
0
 

z.
%

 
?
 

%
 g. V

)
 

R
 

E
l- %
 

Y
 

0
 

C
 2. m
 

E
l- - 5 a 0
 E.
 

l
 
6
 



Finally, this last result into equation (4.28) to obtain the general We can proceed either as we did in Example 4.26, or we can use (4.33) and 
of equation (4.27). (4.34). We choose the latter technique. The associated homogeneous is 

which has solution 
Notice that the denvation in (4.29) left US with a f0IXlllla for u', which we xh ( t )  = 1/ cos t. 

needed to integrate to find IJ. It is fair to ask if this always happens- Letfs look at 
the general case. Hence we look for a solution of the form x = v.xh. According to (4.341, we have 

We want to solve the linear equation f  sin t  
~ ' ( t )  = - = --- = sin t  cos t .  

y' = a ( t ) y  + f  (f). xh l / cos t  

We start by solving the associated homogeneous equation Hence 

y;, = a(t)yh. 

According to (4 .4 ,  a solution is Finally. our solution is 

~ ( t )  d t  yh(t) = eJ . 
~ ( t )  = u ( ~ ) x ~  ( t )  = --- cost C ( C0;21 + C )  / C O S I  = -- + --, 

 ti^^ that this is a particular solution to the homogeneous equation. In addition, 2 cost 
notice that because of its exponential fonn the function yh ( t )  is never to which agrees with our previous answer. 
Hence we can safely divide by it. If p(t) is any ~0lUtion to (4.30), we can define 

Structure of the solution 
' ( ' )  so that y ( t )  = u(t)yh(t).  v ( t )  = - 
yh ( t )  ' In (4.33) we wrote an arbitrary solution to the inhomogeneous linear equation 

This is the key idea. We write an arbitrary ~ 0 l ~ t i o n  to (4.30) in the form Y'  = ay + f  

y( t )  = u ( t ) ~ h ( t ) .  in the form 

The function is as yet unknown. It is what is sometimes called a variable parame- ~ ( t )  = IJ(t)y,,(t), 

ter, and this method is called variation of parameters. To solve for 7~ we substitUte where 

the expression for JJ  in (4.33) into the differential equation (4.30). We get yh ( t )  e S ~ ( ' )  d t  

( z I Y ~ ) '  a(vyh) + f Or is a particular solution to the associated homogeneous equation and where, accord- 
ing to (4.34), 

vy;, + V ' Y ~  = avyh + f '  
~ ' ( t )  = f ( t ) / yh  ( t )  = f ( t )e-JQ(')dt .  

Remember that yh is a solution of the homogeneous equation (4.31). Y ;  = Performing the integration, we see that 
ayh, and proceeding, we get 

avyh + V ' Y ~  =avYh + f ~  
u'yh = f, 

f  We have added the constant C to this formula to emphasize the presence of a con- 
IJ = -. stant of integration. 

Y h  Hence, we can write an arbitrary solution as 
From this, we can compute v by integration. 

Y ( ~ I  = V(t)) 'h( t)  

E 4 . 3 5 6 Use variation of parameters to find the general solution of 

X' = x tan t  + sin t ,  

which we solved in Example 4.24. 



lirst-Order Equations 

If we pick a particular solution y,,(r). i t  will be associated with a ~anicular  
value of the constant C, say C,, so that 

Comparing (4.37) and (4.38). we see that the difference of the two solutions to the 
inho~nogeneous equation is 

Thus, the difference y - y,, is a constant multiple of y,, and is itself a solution to 
the homogeneous equation. Furthemore, if we set A = C - C,,, we see that an 
arbitrary solution y can be written as 

Thus, we have demonstrated the following result, showing how the constant of in- 
tegration appears in the general solution to a linear equation. - 

HEOREM 4.39 Suppose that y,, is a particular solution to the inhomogeneous equation 

and that yh is a particular solution to the associated homogeneous equation. Then 
every solution to the inhomogeneous equation is of the form 

y(t) = ?'/,(t) + Ayh(t), (4.40) 

where A is an arbitrary constant. - 

I In Exercises 1-12, find the general solution of each first-order, linear equation. 

1. y 1 + y = 2  2. y' -3y  = 5 

3. y' + (2/x)y = (cos x)/x2 4. y' + 2ty = 5r 

6. tx' = 4x + t -I 5. x' - 2x/(t + I) = (t  + 112 
2 5 

7. ( I  + x)yl + y = COSX 8. (1 + x"yl = 3x2y + x + x 

9. L(di/dt)  + Ri = E ,  L, R ,  E real constants 

I 10. = my + clemx,  m. cl real constants 

11. y' = cosx - ysecx.  

12. x' - (n/ t)x = ef tn ,  n a positive integer 

13. (a) The differential equation y' + y cos r = cosx is linear. Use the technique 
of this section (integrating factor) to find the general solution. 

(b) The equation y' + y c0s.r = cosx is also separable. Use the separation of 
variables technique to solve the equation and discuss any discrepancies (if 
any) between this solution and the solution found in part (a). 
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In Exercises 14-17, find the solution of each initial value problem. 

14. y' = y + 2xe2", y (0) = 3 
15. (.u2 + l )y1+3xy = 6x, y(0) = -1 
16. (1 + t2)y' + 4ty = (1 + t2)-2. y ( I )  = O 
17. x' + x cos t = sin 2t, .r (0) = 1 

In Exercises 18-21, find the solution of each initial value problem. Discuss the 
interval of existence and provide a sketch of your solution. 

18. xy' + 2y = sin x ,  y (7712) = O 

19. (2x + 3)y' = y + (2x + 3)'/', ))(-I) = 0 
20. y l = c o s x - y s e c - r ,  y(O)= 1 

21. ( 1  + t ) s l + s  =cos t ,  x(-7712) = 0  
22. The presence of nonlinear terms prevents us from using the technique of this 

section. In special cases. a change of variable will transform the nonlinear 
equation into one that is linear. The equation known as Bernoulli's equation, 

was proposed for solution by James Bernoulli in December 1695. In 1696, 
Leibniz pointed out that the equation can be reduced to a linear equation by 
taking XI-" as the dependent variable. Show that the change of variable, z = 
x ' ~ " .  will transform the nonlinear Bernoulli equation into the linear equation 

Hint: If z = XI-", then dz/dt = (dz/dx)(clx/dt) = (1 - n)x-"(d-rldt). 

In Exercises 23-26, use the technique of Exercise 22 to transform the Bernoulli 
equation into a linear equation. Find the general solution of the resulting linear 
equation. 

23. y' + x-'y = xy2 24. y' + Y = y2 
25. xyl + y = x4y" 26. P' = aP - bp '  
27. The equation 

where @, 4, and x are functions of t ,  is called the generalized Riccati equation. 
In general, the equation is not integrable by quadratures. However, suppose that 
one solution, say y = yl, is known. 

(a) Show that the substitution y = + z  reduces the generalized Riccati equa- 
tion to 

dz 
- + (2y,@ + $12 + @z2 = 0, 
d t  

which is an instance of Bernoulli's equation (see Exercise 22). 



irst-Order Equations 

(b) Use the fact that yl = l l t  is a particular solution of 

to find the equation's general solution. 

28. Suppose that you have a closed system containing 1000 individuals. A flu epi- 
demic starts. Let N ( z )  represent the number of infected individuals in the closed 
system at time r .  Assume that the rate at which the number of infected individu- 
als is changing is jointly proportional to the number of infected individuals and 
to the number of noninfected individuals Furthermore, suppose that when 100 
individuals are infected, the rate at which individuals are becoming infected is 
90 individuals per day. If 20 individuals arc infccted at time t = 0,  when will 
90% of the population be infected? Hint: The assumption here is that there are 
only healthy individuals and sick individuals. Furthermore, the resulting model 
can be solved using the technique introduced in Exercise 22. 

29. In Exercise 35 of Section 2, the time of death of a murder victim is determined 
using Newton's law of cooling. In particular, it was discovered that the pro- 
portionality constant in Newton's law was k = ln(514) % 0.223 Suppose we 
discover another murder victim at midnight with a body temperature of 31°C. 
However, this time the air temperature at midnight is 0°C. and is falling at a 
constant rate of I "C per hour. At what time did the victim die? (Remember that 
the normal body temperature is 37°C.) 

In Exercises 30-35. use the variation of parameters technique to find the general 
solution of the given differential equation. 

30. y' = -3y + 4 31. y' + 2y = 5 

32. y' + (2/x)y = 8x 33. tv' + y = 4t2 

34. x' + 2x = t 35. JJ' + 2xy = 4x 

In Exercises 3 6 4 1 ,  use the variation of parameters technique to find the general SO- 

lution of the given differential equation. Then find the particular solution satisfying 
the given initial condition. 

36. y' - 3y = 4. ~ ( 0 )  = 2 37. y 1 + ( 1 / 2 ) y = t ,  y (O)=I  

38. y ' + y = e t ,  y ( O ) = l  39. + 2 . ~ ~  = 2 ~ ~ .  ~ ( 0 )  = -1 

40. x' - (2/r2)x = l / t 2 ,  x(1) = 0 41. (t2 + 1)x' + 4tx = t .  x(0) = I 

I 
roblems 

Consider a lake that has a volume of V = 100 km3. It is fed by a river that flows 
into the lake, and another that is fed by the lake at a rate which keeps the volume of 
the lake constant. The flow of the input river is r ( t ) ,  which we assume varies with 
time. We will measure time in years. The units for the input flow are h3/year .  In 
addition, there is a factory on the lake that introduces a pollutant into the lake at the 
rate of 2 km3/year. 
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Using the methods we discuss in this section, we can model how the amount of 
pollutant in the lake varies with time. We can then make intelligent decisions about 
the danger involved in this situation. 

The problems we will discuss are called miking probleras. They employ tanks, 
beakers, and other receptacles that hold solutions, mixtures usually containing water 
and an additional element such as salt. While these examples might appear to be 
inane, they should not be underestimated. Thcy take on an urgency when the tanks 
and beakers are replaced with the heart, stomach, or gastrointestinal systems, or 
indeed by the lake mentioned earlier. We will return to the lake in the exercises. 

We will illustrate the principles involved in a series of three examples. 

E X A M P L E 5 . 1 + A tank currently holds 100 gal of pure water. A solution containing 2 lh of salt per 
gallon of solution enters the tank at a rate of 3 gal/min. A drain is opened at the 
bottom of the tank so that the volume of solution in the tank remains constant. How 
much salt is in the tank after 60 min? 

Let us begin by letting x(t) represent the number of pounds of salt in the tank 
after t min. Consequently, dx/dt represents the rate at which the amount of salt is 
changing with respect to time. It is very important to note that this rate is measured 
in pounds per minute (lblmin). Paying close attention to the units will increase your 
success rate with mixture problems. 

The rate at which salt is changing inside the tank is increased by the rate at 
which salt is entering the tank and decreased by the rate at which salt is leaving 
the tank. This idea leads to a classical balance law, which says that the net rate of 
change of salt in the tank equals the rate at which salt enters the tank, minus the rate 
at which salt is leaving the tank. 

dx 
- = rate in - rate out 
dt  

Of course, the units must match on each side of this balance law, so dxld t ,  the rate 
in, and the rate out must each be measured in pounds per minute (Iblmin). 

Let's examine the rate at which the solution enters the tank. Solution enters the 
tank at a rate of 3 gallmin. This is theflow rate. The concentration of salt in this 
solution is 2 Ib/gal. Consequently, 

rate in = flow rate x concentration 

= 3 gal/min x 2 lb/gal 

= 6 1 b/min. 

The rate at which salt leaves the tank is a little trickier. We still have 

rate out = flow rate x concentration. 

Since the volume is kept constant, we know that the solution leaves through the drain 
" 4 at the bottom of the tank with a flow rate of 3 gal/rnin, but what is the concentration 3 gaVnliri 

of salt in the water leaving the tank? 
Figure 1 The tank in At this point, the modeler must make some assumptions in order to continue. 
Example 5.1. Often, these first assumptions are pretty crude, but they do allow the modeler to 
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continue toward a "solution" of the problem. The modeler must then examine how 
well his results match the reality of the problem situation. If he is dissatisfied with 
the results, then he must return to the problem, revise his assumptions, and try again, 
repeating this cycle until he constructs a model that adequately reflects the reality 
of his problem situation. 

So, for our first assumption, we will assume that the mixture in the tank is 
"instantaneously mixed" at all times. Granted, this is probably not an accurate as- 
sumption, but it is a good starting point and simplifies the model enough so that we 
can begin to get some results. If the solution is perfectly mixed, then the concentra- 
tion of salt in the tank at any time t is calculated by dividing the amount of salt in 
the tank at time r by the volume of solution in the tank. The concentration at time t ,  
c ( t ) ,  is given by 

We can now determine thc rate at which salt is leaving the tank. 

( t )  3 x  ( t )  
rate out = 3 gallmin x - lbtgal = --- lblmin 100 100 

Our discussion has led us to the differential equation 

d x - = rate in - rate out 
d t  

d x  
- - 

3 x 
= 6 - -. 

dt  100 

This equation is linear, having the for111 d x l d t  = a ( t ) x  + f ( I ) ,  SO we can use 
the technique of Section 2.4 to find its solution. First, we find an integrating factor, 

Next we multiply both sides of dxlcit  + 3x/100 = 6 by the integrating factor and 
note that the left-hand side of the resulting equation is the derivative of a product 
(check this). 

We integrate both sides of this equation to get 

e3r/100 
600 = 1 6e3'/11"dr = -e3'/l" + (2. 

3 

To get the general solution, we solve for x:  

x ( t )  = 200 + CU-""~O. 

Recall that 100 gal of pure water were present initially. Therefore, there was no 
salt present in the tank initially, so x ( 0 )  = 0. This initial condition is used to find 
our integration constant. 

0 = x(O) = 200 + ~ e - ~ ( ~ ) l ' ~ ~  = 200 + C .- -- -- - - 
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E X A M P L E  

Consequently, C = -200 and our final solution i 4  

x ( r )  = 200 - 2 0 0 e ~ ~ ~ " ~ " .  

To find the amount of salt present 111 the tank after 60 min, 

x ( 6 0 )  = 200 - 200r -'("'/"'" % 167 lb. 

A 600-gal tank is filled with 300 gal of pure water. A spigot is opened above the 
tank and a salt solution containing 1.5 Ib of salt per gallon of solution begins flowing 
into the tank at a rate of 3gallmin. Simultaneously, a drain is opened at the bottom 
of the tank allowing the solution to leave the tank at a rate of I gallmin. What will 
be the salt content in the tank at the precise moment that the volume of solution in 
the tank is equal to the tank's capacity (600 gal)? 

This problem differs from Example 5.1 in that the volume of solution in the tank 
is not constant Indeed, because the solution enters the tank at a rate of 3 gallmin and 
leaves the tank at a rate of 1 gallmin, the tank begins to fill at a net rate of 2 gallmin. 
Remember that the initial amount of solution in the tank is 300 gal. Consequently, 
the volume of solution in the tank, at any time t ,  is given by V ( r )  = 300 t 2t. 

This said, the solution of this example now parallels that of Example 5 . 1  The 
rate at which the salt enters the tank is given by 

rate in = 3 gaVmin x 1.5 Iblgal = 4.5 Iblmin. 

If we again assume that the solution is "instantaneously mixed," then the concentra- 
tion of the solution in the tank is given by 

~ ( 0  
- c ( t )  = - - Iblgal. 

V ( t )  300 + 2t 
Therefore, the rate at which salt leaves through the drain at the bottom of the tank is 
given by 

rate out = 1 gallmin x x ( r )  
Iblgal = 

300 + 2t 
X ( t )  

Iblmin. 
300 + 2t 

Figure 2 The tank rn The balance law now yields 

Example 5.2. d x  
- = rate in - rate out, 
dt 

This last equation is linear, and the technique of Example 5.1 and Section 2.5 can 
be brought to bear to calculate the following solution. 

Again, the tank is filled with pure water initially, so the initial salt content is zero. 
Thus, ~ ( 0 )  = 0 and 
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I Consequently, C = - 4 5 0 0 a  and 

We are left with the business of finding the salt content at the moment that the 
solution in the tank reaches the tank's capacity of 600 gal. The equation V ( t )  = 
300 + 2t will produce the time of this event. 

600 = 300 + 2t 
t = 150 min 

1 Hence the final salt content is 

) L E 5 . 3 4 Consider two tanks, labeled tank A and tank B. Tank A contains 100 gal of solution 
in which is dissolved 20 lb of salt. Tank B contains 200 gal of solution in which is 
dissolved 40 Ib of salt. Pure water flows into tank A at a rate of 5 gaVs. There is 
a drain at the bottom of tank A. Solution leaves tank A via this drain at a rate of 5 
gays and flows immediately into tank B at the same rate. A drain at the bottom of 
tank B allows the solution to leave tank B, also at a rate of 5 gal/s. What is the salt 
content in tank B after 1 minute? 

If we let x(t) represent the number of pounds of salt in tank A after t seconds, 
then dx ld t  represents the rate at which the salt content is changing in tank A (in 
lbls). We again reference the balance law, 

nx - = rate in - rate out. 
dt  

Because pure water flows into tank A, the rate at which salt enters tank A is 

5 gaVs b rate in = flow rate x concentration 
= 5 gaVs x 0 lblgal 

= 0. 

Solution enters and leaves tank A at the same rate (5 galls), so the volume of solution 
in tank A remains constant (100 gal). Once more we assume "perfect mixing," so 
the concentration of the salt in tank A at time t is given by 

x(t> 
CA (t) = - lblgal. 

100 

I Consequently, the rate at which salt is leaving tank A is given by 

x( t>  1 
rate out = 5 gays x --- lblgal = -x(t) lbls. 

100 20 

Substituting the rate in and the rate out into the balance law yields a differential 
equation defining the rate at which the salt content is changing in tank A. 

Because there is initially 20 Ib of salt present in the solution in tank A, x(0) = 20. 
Now, let's turn our attention to tank B. The rate at which salt enters tank B is 

equal to the rate at which salt is leaving tank A. Consequently, 

1 
rate in = -x lbls. 

20 

Solution enters and leaves tank B at the same rate (5 gaVs), so the volume of solution 
in tank B remains constant (200 gal). Assuming "perfect mixing," the concentration 
of salt in tank B at time t is given by 

Consequently, the rate at which salt is leaving tank B is given by 

v(t> 1 rate out = 5 galls x I-- Iblgal = - y (t) lbls. 
200 40 

Substituting the rate in and the rate out into the balance law yields a differential 
equation defining the rate at which the salt content is changing in tank B. 

Because there is initially 40 lb of salt present in the solution in tank B, y (0) = 40. 
Our discussion has led us to the system of first-order differential equations 

with initial conditions x(0) = 20 and y(0) = 40. Systems of equations will be a 
major topic in the remainder of this book. However, because of the special nature 
of this particular system, we do not need any special knowledge to find a solution. 
We can solve equation (5.4) for x, then substitute the result into equation (5.5). This 
will allow us to solve (5.5) with a minimum of difficulty. 

Equation (5.4) is separable, so we can separate the variables 

integrate, and solve for x, finding 

The initial condition x(0) = 20 yields C1 = 20, so 

x ( t )  = 20e-'Iz0. 



We now substitute equation (5.6) into equation (5.5) and simplify to obtain the 
equation 

This equation is linear, and u ( t )  = et/" is an integrating factor. Multiplying both 
sides of equation (5.7) by u ,  we get 

lntegrating and solving for Y, we get 

et/40y = -40e-'/~' + C2 or 

y(t) = -40c-'/~' + ~ ~ e - ~ / ~ ~ ' .  

The initial condition y (0) = 40 yields C2 = 80 and 

y (t) -40e-'/~' + 80e~ ' /~ ' .  

Finally, we can use equation (5.8) to find the salt content in tank B at t = 
1 min = 60 seconds, finding that 

~1(60) = -40e-("O'l'' + 80e-'~''" % 15.9 1b. 

................ 
EXERCISES 
1. A tank contains 100 gal of pure water. At time zero, a sugar-water solution 

containing 0.2 lb of sugar per gallon enters the tank at a rate of 3 gal per minute. 
Simultaneously, a drain is opened at the bottom of the tank allowing the sugar- 
solution to leave the tank at 3 gal per minute. Assume that the solution in the 
tank is kept perfectly mixed at all times. 

(a) What will be the sugar content in the tank after 20 minutes? 

(b) How long will it take the sugar content in the tank to reach 15 Ib? 

(c) What will be the eventual sugar content in the tank? 

2. A tank initially contains 50 gal of sugar water having a concentration of 2 lb 
of sugar for each gallon of water. At time zero, pure water begins pouring into 
the tank at a rate of 2 gal per minute. Simultaneously, a drain is opened at the 
bottom of the tank so that the volume of the sugar-water solution in the tank 
remains constant. 

(a) How much sugar is in the tank after 10 minutes? 

(b) How long will it take the sugar content in the tank to dip below 20 lb? 
\ ,  - 

(c) What will be the eventual sugar content in the tank? 

3. A tank initially contains 100 gal of water in which is dissolved 2 lb of salt. A 
salt-water solution containing 1 lb of salt for every 4 gal of solution enters the 
tank at a rate of 5 gal per minute. Solution leaves the tank at the same rate, 
allowing for a constant solution volume in the tank. 
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(a) Use an analytic method to determine the eventual salt content in the tank. 

(b) Use a numerical solver to determine the eventual salt content in the tank and 
compare your approximation with the analytical solution found in part (a). 

4. A tank contains 500 gal of a salt-water solution containing 0.05 lb of salt per 
gallon of water. Pure water is poured into the tank and a drain at the bottom of 
the tank is adjusted so as to keep the volume of solution in the tank constant. 
At what rate (gallmin) should the water be poured into the tank to lower the salt 
concentration to 0.01 lblgal of water in under one hour? 

5. A 50 gal tank initially contains 20 gal of pure water. Salt-water solution con- 
taining 0.5 lb of salt for each gallon of water begins entering the tank at a rate of 
4 gallmin. Simultaneously, a drain is opened at the bottom of the tank, allowing 
the salt-water solution to leave the tank at a rate of 2 gallmin. What is the salt 
content (lb) in the tank at the precise moment that the tank is full of salt-water 
solution? 

6. A tank initially contains 100 gal of a salt-water solution containing 0.05 Ib of 
salt for each gallon of water. At time zero, pure water is poured into the tank 
at a rate of 2 gal per minute. Simultaneously, a drain is opened at the bottom 
of the tank that allows salt-water solution to leave the tank at a rate of 3 gal per 
minute. What will be the salt content in the tank when precisely 50 gal of salt 
solution remain? 

7. A tank initially contains 100 gal of pure water. Water begins entering a tank 
via two pipes: through pipe A at 6 gal per minute. and pipe B at 4 gal per 
minute. Simultaneously, a drain is opened at the bottom of the tank through 
which solution leaves the tank at a rate of 8 gal per minute. 

(a) To their dismay, supervisors discover that the water coming into the tank 
through pipe A is contaminated, containing 0.5 lb of pollutant per gallon 
of water. If the process had been running undetected for I0 minutes, how 
much pollutant is in the tank at the end of this 10-minute period? 

(b) The supervisors correct their error and shut down pipe A, allowing pipe B 
and the drain to function in precisely the same manner as they did before the 
contaminant was discovered in pipe A. How long will it take the pollutant 
in the tank to reach one half of the level achieved in part (a)? 

8. Suppose that a solution containing a drug enters a bodily organ at the rate a 
cm"/s, with drug concentration K glcm". Solution leaves the organ at a slower 
rate of b cmqs. Further. the faster rate of infusion causes the organ's volume to 
increase with time according to V(t) = Vo + r t ,  with Vo its initial volume. If 
there is no initial quantity of the drug in the organ, show that the concentration 
of the drug in the organ is given by 

9. A lake, with volume V = 100 km3, is fed by a river at a rate of r km31yr. In 
addition, there is a factory on the lake that introduces a pollutant into the lake at 
the rate of p km3/yr. There is another river that is fed by the lake at a rate which 
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keeps the volume of the lake constant. This means that the rate of flow from the 
lake into the outlet river is (p  + r )  km31yr. Let x(t) denote the volume of the 
pollutant in the lake at time t, and let c(t) = x(t) /V denote the concentration 
of the pollutant. 

(a) Show that, under the assumption of immediate and perfect mixing of the 
pollutant into the lake water, the concentration satisfies the differential 
equation 

(b) It has been determined that a concentration of over 2% is hazardous for the 
fish in the lake. Suppose that r = 50 krdlyr, p = 2 km31yr, and the initial 
concentration of pollutant in the lake is zero. How long will it take the lake 
to become hazardous to the health of the fish? 

10. Suppose that the factory in Exercise 9 stops operating at time t = 0 and that 
the concentration of pollutant in the lake was 3.5% at the time. Approximately 
how long will it take before the concentration falls below 2%, and the lake is no 
longer hazardous for the fish? 

11. Rivers do not flow at the same rate year-around. They tend to be full in the 
spring when the snow melts, and to flow more slowly in the fall. TO take this 
into account, suppose the flow of the input river in Exercise 9 is 

Our river flows at its maximum rate one-third into the year (i.e., around the first 
of April) and at its minimum around the first of October. 

(a) Setting p = 2, and using this flow rate, use your numerical solver to plot 
the concentration for several choices of initial concentration between 0% 
and 4%. (You might have to reduce the relative error tolerance of your 
solver, perhaps to 5 x 10-12.) How would you describe the behavior of the 
concentration for large values of time? 

(b) It might be expected that after settling into a steady state, the concentra- 
tion would be greatest when the flow was smallest (i.e., around the first of 
October). At what time of year does it actually occur? 

12. Consider two tanks, labeled tank A and tank B for reference. Tank A contains 
100 gal of solution in which is dissolved 20 lb of salt. Tank B contains 200 gal 
of solution in which is dissolved 40 lb of salt. Pure water flows into tank A at a 
rate of 5 galls. There is a drain at the bottom of tank A. Solution leaves tank A 
via this drain at a rate of 5 galls and flows immediately into tank B at the same 
rate. A drain at the bottom of tank B allows the solution to leave tank B at a 
rate of 2.5 galls. What is the salt content in tank B at the precise moment that 
tank B contains 250 gal of solution? 

13. Lake Happy Times contains 100 km3 of pure water. It is fed by a river at a 
rate of 50 km31yr. At time zero, there is a factory on one shore of Lake Happy 
Times that begins introducing a pollutant to the lake at a rate of 2 km3Iyr. There 
is another river that is fed by Lake Happy Times at a rate which keeps the 
volume of Lake Happy Times constant. This means that the rate of flow from 
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Lake Happy Times into the outlet river is 52 km31yr. In turn, the flow from this 
outlet river goes into another lake, Lake Sad Times, at an equal rate. Finally, 
Lake Sad Times feeds another outlet river at a rate that keeps the volume of 
Lake Sad Times at a constant 100 km3. 

(a) Find the amount of pollutant in Lake Sad Times at the end of 3 months. 

(b) At the end of 3 months, observers close the factory due to environmental 
concerns and no further pollutant enters Lake Happy Times. How long will 
it take for the pollutant in Lake Sad Times (found in part (a)) to be cut in 
half? Hint: Plot the solution of pollutant versus time for positive time. 

14. Two tanks, tank 1 and tank 11, are filled with V gal of pure water. A solution 
containing a lb of salt per gallon of water is poured into tank I at a rate of b gal 
per minute. The solution leaves tank I at a rate of b gallmin and enters tank 11 
at the same rate (b gallmin). A drain is adjusted on tank I1 and solution leaves 
tank I1 at a rate of b gallmin. This keeps the volume of solution constant in both 
tanks (V gal). Show that the amount of salt solution in tank 11, as a function of 
time t, is given by a V - ~ b t e - ( ~ / " ) ~  - a ~e-(~!") ' .  

2.6 Exact Differential Equations 
In this section, we will consider differential equations that can be written as 

dy P(x,  y) + Q(x, y)- = 0, 
dx  (6.1) 

where P and Q are functions of both the independent variable x and the dependent 
variable y. This is a very general class of differential equations. As usual, a so- 
lution will be a differentiable function y ( ~ )  defined for x in an interval, such that 
equation (6.1) is satisfied at each point in the interval. 

E X A M P L E 6 . 2 + The differential equation 

has the function y(x) = as a solution on the whole real line. This can be 
verified by direct computation, since y'(x) = -.xe--'Li2 = -xy. + 
Differential forms and differential equations 
It will be convenient when dealing with differential equations of the generality cov- 
ered by equation (6.1) to use the language of differential forms. A differential form 
in the two variables x and y is an expression of the type 

where P and Q are functions of x and y. The simple forms dx and dy are called 
differentials. 

Suppose that Y = y(x). Then dy = y1(x) dx. If we substitute this into the 
differential form w in (6.3), we get 
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Thus, if y is a solution to the differential equation 

we also have 

P ( x ,  y ) d x  + Q ( x ,  y )dy  = 0. (6.5) 

For this reason, we will consider (6.5) as another way of writing the differential 
equation in (6.4). The differential form variant of a differential equation will be 
used systematically in this section. 

Solution curves and integral curves 
Consider the differential equation 

This equation has solutions defined implicitly by the equation 
x 2  + y2 = C .  (6.6) 

This can be verified by differentiating formula (6.6) with respect to x ,  getting 

Of course, we can solve (6.6) for y ,  obtaining two solutions 

defined for ( x  ( 5 z. 
This example illustrates some features that we want to point to because they 

apply more generally. First, the level set defined by x 2  + y2 = C is the circle with 
center at the origin and radius z. (See Figure I ) This level set is not the graph of a 
function, but it contains the graphs of both of the solutions in (6.7). This means that 
the level set contains two solution curves, which motivates the following definition. 

Figure 1 The integral curve defined by (6.6) and the solution curves in (6.7). , ' .  . 
- - 
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DEFINITION 6.8 Suppose that solutions to the differential equation (6.1) or 
(6.4) are given implicitly by the equation 

Then the level sets defined by F ( x ,  y )  = C are called integral curves of the 
differential equation. 

Thus, we have shown that an integral curve can contain two or more solution 
curves as illustrated in Figure 1. 

Exact differential equations 
To be as general as possible in our approach, we will look for general solutions 
to (6.4) or (6.5) that are defined implicitly by equations of the form 

where C is a constant. Setting y = y ( x )  in (6.9) and differentiating with respect to 
x ,  we get4 

Thus, functions defined implicitly by the equation F ( x ,  y )  = C are all solutions 
of the differential equation in (6.10). We will give equations of this type a formal 
definition. 

DEFINITION 6.1 1 The diflerential of a continuously differentiable function 
F is the differential form 

A differential form is said to be exact if it is the differential of a continuously 
differentiable function. 

Let's point out explicitly that the differential form P d x  + Q d y  is exact if and 
only if there is a continuously differentiable function F ( x ,  y )  such that 

a F  a F  
d F  = - d x  + - d y  = P d x  + Q d y .  

ax ay 

This means that the coefficients of d x  and d y  must be equal, or 

a F  a F  
- = P ( x ,  y )  and - = Q ( x ,  y ) .  
ax  ay  

41n this section, we will frequently use results and methods of multivariable calculus. This is the only 
section in this chapter where that is true. 
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E 6 . 1 3 4 Solve the equation 2x dx + 4y3 dy = 0. 
Because the variables are separated in the equation, it is not difficult to discover 

that 

Consequently, the differential form 2x dx + 4y3 dy is exact. Furthermore, the gen- 
eral solution to the equation 2x d r  + 4y3 dy = 0 is given by 

Example 6.13 illustrates that it is quite easy to solve an exact differential equa- 
tion. However, two questions come to mind. 

I. Given a differential form w = P dx + Q dy, how do we know if it is exact? 

2. If a differential form is exact, is there an easy way to find F such that d F = 
P d x  + Qdy? 

Both of these questions are answered in the next result. 

w-- 

Let w = P dx + Q dy be a differential form where both P and Q are continuously 
I-- differentiable. 

(a) If w is exact, then 

in a rectangle R ,  then w is exact in R. More precisely, o = d~ in R ,  where 
F (x . y ) is defined for (x, y )  in R by the formula 

and @ satisfies 

Proof To prove (a), suppose that w = d F .  Then 

a F aF - = P  and -- - Q .  
ax a y  

Both P and Q are continuously differentiable. so F is twice continuously differen- 
tiable. This means that the mixed second-order derivatives of F are equal. Conse- 
quently, 
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To prove (b), we need to find a function F satisfying both equations in (6.17). If 
we integrate the equation a F l ax  = P ,  then by the fundamental theorem of calculus, 
we must have 

F(x,  Y) = P(x,  Y) dx  + @(y), S 
where 4 is a function of y only. This is equation (6.15). In this formula 1 P(x ,  y) dx 
represents a particular indefinite integral, and @(y) represents the constant of inte- 
gration. Since we are integrating with respect to x,  this "constant" can still depend 
on y.  

To discover what @ is, we differentiate F as given in (6.15) with respect to y 

The second formula in (6.17) says that a F l ay  = Q, so we see that @ must satisfy 

This is equation (6.16), and it can be solved by integration provided that the function 
on the right does not depend on the variable x. The hypothesis of our theorem 
guarantees that this is true. To see this, it suffices to show that the derivative of the 
function on the right with respect to x is zero. We have 

The statement of Theorem 6.14 gives us a method for solving exact equations. 
Let's look at an example. 

E X A M P 1 E 6 . 1 8 4 Show that the equation eY dx + (xey - sin y) dg = 0 is exact and find a general 
solution. 

Since 

we know the equation is exact. To find a general solution, we need to find a function 
F(x,  y )  such that 

aF aF 
- = eY and - = xeY - sin y .  ax ay 
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We solve the first equation by integrating, getting 

Differeiaiating with respect to y ,  and using that a f  /ay = xe' - sin Y ,  we get 

xe' - sin y  = r e '  + 4 ' ( y ) .  

Therefore. d l ( y )  = - sin x. which has solution 4 ( y )  = COS y. Finally. F(-r. .?') = 
+ cosy, and solutioils are given implicitly by 

E 6 . 1 9 4 l a  the equation -?. dx  + x  d y  = 0 exact? 

In this case, P ( x  . x )  = - y and Q ( X  , y  ) = x  . Hence 

a p  a Q  - = -1 and - = 1, 
n y  ax 

I Since these are not equal, the equation is not exact. 
4 

Solutions and integrating factors 
NOW let's look at a differential equation 

P ( x .  y )  dx  + Q(.r. y )  dx  = 0. 

which niay or may not be exact. Again we will look for general solutions that are 
defined implicitly by equations of the form 

where C is a constant. 
Suppose y  = f i x )  is defined by (6.21). Differentiating (6.21) with respect to 

.r, we get 

i3F aF d y  tly - -- a F / a x  
; I , + ~ Z = O ~  Or --  d x  a F / a y  

On the other hand, notice that if y ( x )  is a solution to (6.20), we have 

Comparing (6.23) with (6.22). we see that y  is a solution provided that 

If we let p  = p ( x ,  y )  be defined as this common factor, we have 

a F  a F  
- = p P  and - - a x  a y - PQ. 

Then 

This shows that pw is exact. Let's make a definition. 

DEFINITION 6.25 An integrating factor for the differential equation 
w = P d.u + Q d y  = O is a function p ( x ,  y )  such that the form p(r., = 
p ( x ,  y ) P ( x ,  y ) d x  + M x ,  .y)Q(x,  y ) d y  is exact. 

We have shown that every differential equation for which there is a general 
solution of the form F ( x ,  y )  = C has an integrating factor. This suggests a strategy 
for finding a general solution to a differential equation 

1. Find an integrating factor p ,  so that pP d x  + W Q  d v  is exact. 

2. Find a function F such that d F  = p P  d x  + p Q  d y .  

Then a general solution is given implicitly by F ( x ,  y )  = C 

E X A M P L E 6 . 2 6 + Consider the equation ( x  + y )  d x  - x  d y  = 0. Show that the equation is not exact 
and that 1 / x 2  is an integrating factor. Find a general solution. 

Since 

the equation is not exact. On the other hand, after we multiply the equation by 1 / x 2 ,  
we get the equation 

( x + y ) d x  d y  --  = 0. 
x 2  X 

For this equation. we have 

so the equation is exact and 1 / x 2  is an integrating factor. To solve it, we set 

To find 4 ,  we differentiate this with respect to y ,  using the fact that a F l a y  = - l l x .  
We get 



This can be easily solved for y , so we write Our ~olufion as 

y(x)  = x ln  1x1 - C x .  

We will exploit this strategy in what follows. It is reassuring to know that 
integrating factors always exist, but as we will see, it is not always easy to find one. 
Even in Example 6.26, the choice of l / x 2  is not at all obvious. 

Separable equations 
A differential equation of the form 

P ( x )  dx + Q ( Y )  dy = 0 

is said to have its variables separated. The coefficient P depends only on x ,  so we 
have a P/By = 0. For the same reason a Q /ax  = 0.  Thus we see that any equation 
with separated variables is exact. Therefore, by Theorem 6.14, the solution is given 
implicitly by the equation F (x , y )  = C,  where 

and 

Hence $ ( y )  = Q ( y )  dy and 

A differential equation is said to be separable if there is an integrating factor 
that will separate the variables. Most important are equations of the type 

In differential notation, t h s  becomes 

Multiplication by the integrating factor q ( y )  yields 

... ~ ; , - h  has its variables separated. 

E X A M P L E 6 .2 8 4 Solve the equation - 
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In Example 6.19, we showed that the differential equation -g d x  f x  dy  = 0 
is not exact. However, this equation is separable. If we multiply this equation by 
I / xy ,  we get 

Consequently, we can write down the solution using (6.27). To avoid problems with 
division by zero, we must stay away from where x  = 0 or y = 0. Let's stay in the 
first quadrant where both x  and y are positive. Then (6.27) becomes 

Thus, our general solution is I n ( y / x )  = C. 
This can be written more conveniently by exponentiating. Then with A = eC 

we get y = Ax as our general solution. Of course, this solution is only valid where 
both .x and y are positive, but we can redo the analysis in each quadrant and we get 
the same formula. Hence y = A x  is indeed the general formula, and the solution 
curves are simply the straight half-lines through the origin. 4 

Separable equations are dealt with in some detail in Section 2.2, so we will not 
spend any more time on them here. 

Finding integrating factors 
Although an integrating factor exists whenever there is a general solution, this fact 
and its proof do not give us any insight into finding an integrating factor. In fact, 
there is no general procedure for finding integrating factors. Finding them is a 
genuine mathematical art. 

One general way to search for an integrating factor starts from the criterion for 
exactness that we found in Theorem 6.14. Suppose u = P d x  + Q  dy and we want 
to find p such that pu = p P  dx + p Q  dy is exact. According to Theorem 6.14, p  
must satisfy 

This is a partial differential equation for p. However, we only need to find one 
solution, and sometimes we can make assumptions about ,u that make this equation 
simpler. Here's an example where this process is successful. 

E X A M P L E 6 . 3 1 4 Solve the equation 
(xy - 2)  dx + (x2 - x y )  dy = 0. 

In this case, a Play  = x  and a Q/ax = 2x - y,  so the equation is not exact. 
Multiply both sides of the equation by an undetermined integrating factor. 

p(xy - 2) dx + p(x2  - xy)  dy = 0 
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Homogeneous equations 
A function G(x, y) is homogeneous of degree n if 

G(tx, ty) = tnG(x, y) 

for all t > 0 and all x # 0 and y # 0. Thus the functions 

I 
l n ( x )  2x3 - 3x2y + 2xy2 - y3, and 

x2 + v2 ' 

are homogeneous of degrees -2,0,3, and 1, respectively. The functions 

x + x y ,  sin(x). l n ( x + y + l ) .  and x - y - 2  

are not homogeneous. 
A differential equation 

P d x + Q d y  = O  

is said to be homogeneous5 if both of the coefficients P and Q are homogeneous of 
the same degree. Homogeneous equations can be put into a form in which they can 
be solved by using the substitution y = XU, where u is a new variable. Let's look at 
an example first and then we will examine the general case. 

L E 6 . 3  5 + Verify that (x2 + y2) dx + xy dy = 0 is homogeneous and find a solution. 

Both x2 + y2 and xy are homogeneous of degree 2. so the equation is ho- 
mogeneous. To solve the equation, we make the substitution y = xu. Then 
d Y = u dx + x du, so the equation becomes 

I (x2 + x2u2) d~ + X ~ U ( L ~  dx + x du) = 0. 

After canceling out the common factor x2 and collecting terms, this becomes 

(1 + 2v2) dx + xu dv = 0. 

Although this is not immediately solvable, it is separable. The integrating factor 
I 

transforms the equation into the equation 
dx vdv - +-=o. 
x 1 + 2v2 

Integrating, we get 
l n ~ x l +  In( l+  2 7 ~ ~ ) " ~  = k ,  

where k is a constant. If we multiply by 4 and exponentiate, this becomes 

x4(1 +2v2) = e4k = C .  

Substituting v = y/x, we get our final answer 
x4 + 2x2y2 = C. 

- 
We have used the term homogeneous differential equation with a completely different meaning in Sec- 

tion 2.4. Unfortunately. both usages have become standard. The meanings are sufficiently different that 
you should not have any difficulty, but keep your eyes open. 
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In working this example, we did two things. First we made the substitution 
y = xu, and then we looked for an integrating factor that will separate the variables. 
These two steps will serve to find the solution for any homogeneous equation. To 
see this, let's start with 

where P and Q are both homogeneous of degree n.  We make the substitution 
y = xu, and we get 

P(x, X U )  dx + Q(x, xu) (vd.r + x du) = 0. 

The homogeneity means that P(x.xu) = x n P ( l .  o) and Q(x, xu) = x U Q ( l ,  u). 
Using this, dividing out the common term x" ,  and collecting terms, our differential 
equation becomes 

(P(1, v) + uQ(1. u)) dx + xQcl,  u)  dv = 0. 

We recognize that the integrating factor 

x(P(1, v) + vQ(1. u>> 

will separate the variables, leaving us with the equation 

This equation has separated variabIes, so it can be solved. Finally. we substitute 
u = v/x to put the answer in terms of the original variables. This verifies that 
the method works in general. However, when working problems of this type, it is 
usually better to make the substitution y = ux and then compute with the result, 
rather than remember the formula in (6.36). 

................ 
EXERCISES 
In Exercises 1-8, calculate the total differential d F  for the given function F. 

In Exercises 9-21, determine which of the equations are exact and solve the ones 
that are. 

9. (2x + y) dx + (X - 6y) dy = 0 

10. (1 - y sinx) dx  + (cosx) dy = 0 



In Exercises 22-25. the equations are not exact. However, if you multiply by the 
given integrating factor, then you can solve the resulting exact equation. 

y 4 - 1  
24. 3 ( y + l ) d x - 2 x d y = O ,  @ ( x , y ) = -  x4 

1 
25. ( ,x2+y2 - x ) d x  - y d y  = 0,  @(s,  y )  = - 

x2 + .Y2 

26. Suppose that y dx  + (x2 y  - x )  dy  = 0 has an integrating factor that is a function 
of x alone [i.e., p = ~ ( x ) ] .  Find the integrating factor and use it to solve the 
differential equation. 

27. Suppose that ( x y  - 1) dx + (x2 - x y )  dy = 0 has an integrating factor that is 
a function of x alone [i.e., p = ~ ( x ) ] .  Find the integrating factor and use it to 
solve the differential equation. 

28. Suppose that 2v dx  + ( x  + y )  dy = 0 has an integrating factor that is a function 
of y alone [i.e., p = ~ ( g ) ] .  Find the integrating factor and use it to solve the 
differential equation. -- 

29. Suppose that (y2 + 2xy)  dx  - x2 dy = 0 has an integrating factor that is a 
function of y alone [i.e., P = p ( y ) ] .  Find the integrating factor and use it to 
solve the differential equation. 

30. Consider the differential equation 2y d a  + 3.x dy  = 0. Determine conditions 
on n and b so that p ( x ,  v )  = x0y" is an integrating factor. Find a particular 
integrating factor and use it to solve the differential equation. 

The equations in Exercises 31-34 each have the form P(x ,  y )  dx  + Q ( u ,  y )  dv = 0.  
In each case, show that P and Q are homogeneous of the same degree. State that 
degree. 

32. ( x2  - xy  - y 2 ) d x  + 4xy dy  = 0 

33. ( x -  J m ) d x - y d y  = O  

34. ( I n x - I n y ) d x + d y = O  

Find the general solution of each homogeneous equation in Exercises 35-40, 

35. ( x2  + v 2 )  rix - 2xy dy  = 0 36. (x + y ) d x  + ( y  - x ) d y  = 0 

nv y(.r2 + y2 )  37. (3x + y )  d x  + .x dy  = 0 38. - = 
d x  zy2  - 2x3 

39. x2 y' = 2y2  - x2  40. ( v  + 2xe-HX)  dx - x dy = 0 
41. In Figure 2, a goose starts in flight u miles due east of its nest. Assume that 

the goose maintains constant flight speed (relative to the air) so that it is always 
flying directly towards its nest. The wind is blowing due north at ul miles per 
hour. Let ( x ,  .Y) denote the position of the goose in the coordinate frame shown 
in Figure 2. It is easily seen (but you should verify it yourself) that 

- = w - vo sin 0. 
d t  

Figure 2 The geometry in  Exercise 41. 
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(a) Show that 

where k = w/uO, the ratio of the wind speed to the speed of the goose. 

(b) Solve equation (6.37) and show that 

(c) Three distinctly different outcomes are possible, each depending on the 
value of k. Find and discuss each case and use a graphical program to 
depict a sample flight trajectory in each case. 

An equation of the form F ( r ,  y )  = C defines a family of curves in the plane. Fur- 
thermore, we know these curves are the integral curves of the differential equation 

A family of curves is said to be orthogonal to a second family if each member of 
one family intersects all members of the other family at right angles. For example, 
the families y  = rnx and x 2  + y2 = c2 are orthogonal. For a curve y  = y ( x )  to be 
everywhere orthogonal to the curves defined by F ( x ,  )I) = C. its derivative must be 
the negative reciprocal of that in (6.38), or 

The family of solutions to this differential equation is orthogonal to the family de- 
fined by F ( x ,  y )  = C. 

42. Find the family of curves that is orthogonal to the family defined by the equation 
y2 = c x  and provide a sketch depicting the orthogonality of the two families. 

43. The equation x 2  + y2  = 2cx defines the family of circles tangent to the y-axis 
at the origin. 

(a) Show that the family of curves orthogonal to this family satisfies the differ- 
ential equation 

d j j -  2.ry - -  
d x  m. 

( b )  Find the orthogonal family and provide a sketch depicting the orthogonality 
of the two families. 

Knowing an integrating factor exists and finding one suitable for a particular equa- 
tion are two completely different things. Indeed, as stated previously, finding an 
integrating factor can be a genuine mathematical art. However, certain differential 
forms can remind us of differentiation techniques that may aid in the solution of the 
eauation at hand. For example, seeing .u d y  + y  d s  reminds us of the product rule, 

as in d ( x y )  = x  d x  + y  d y ,  and x  d y  - v  d x  might bring to mind a similarity to the 
quotient rule, d ( x / y )  = ( y  d x  - x d y ) / y 2 .  In the equation 

x d y  + y d x + 3 x . ~ ~ d ~  = 0 ,  
we are again reminded of the product rule. In fact, if you multiply the equation by 
1  / ( x  p) , then 

L 
In Exercises 44-49, use these ideas to find a general solution for the given differen- 
tial equation. Hints are provided for some exercises. 

44. x  d.r + y  d y  = y2(x2  + y2)  d y  Hint: Consider d( ln ( r2  + Y ~ ) ) .  
45. x  d y  - y  d r  = y 3 ( x 2  + y2)  d y  Hint: Consider d(tanp' ( y l r ) ) .  
46. x  d y  + y  d x  = xmy"d.r, rn # n - 1 
47- x  d ~  - Y  d x  = ( x 2  + y2)'(x d x  + y  d g )  Hint: Consider d ( x 2  + J I ' ) ~ .  

48- ( x y  + l ) ( x  d . ~  - .Y d x )  = y 2 ( x  d y  + y  d x )  Hint: Consider d(ln(.rv + 1)). 
49. (s2 - y 2 ) ( x  d y  + y  d x )  = 2.ry(x d y  - y  d x )  

50. A light situated at a point in a plane sends out beams of light in all directions. 
The beams in the plane meet a curve and are all reflected parallel to a line in the 
plane, as shown in Figure 3. The light is reflected so that the angle of incidence 
a equals the angle of reflection ,6. 

Figure 3 The reflector in Exercise 50. 

(a) Show that tan 8 = tan 28,  then use trigonometry to show that 

Y  
- - - 2yr  
x 1 - ( y o 2 .  (6.39) 

(b) Use the quadratic formula to solve equation (6.39), then solve the resulting 
first-order differential equation to find the equation of the reflecting curve. 
Hint: You may want to try some of Exercises 4 4 4 9  before attempting this 
solution. 
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;e and Uniqueness of Solutions 
We have now discovered how to solve a few differential equations explicitly. We 
have also seen a few equations that cannot be solved explicitly, and we will discover 
that, unfortunately, most differential equations are of this type. In this section, we 
begin the study of methods to discover properties of solutions when we do not know 
the solution explicitly. We will start with two very basic questions about an initial 
value problem. 

When can we be sure that a solution exists at all? 

How many different solutions are there to a given initial value problem? 

These are the questions of existence and uniqueness. 

Existence of solutions 
We will start with an example. 

p L E 7 . 1 + Consider the initial value problem 

tx' = x + 3t2, with x(0) = 1. 

The equation is linear and we find using Theorem 4.39 that every solution is of 
the form 

X 

A ~ ( t )  = 3t2 + C t ,  (7.3) 

for some constant C .  Notice that these solutions are defined for all values of t ,  
including t = 0, and that x ( 0 )  = 0 for every solution. Furthermore, they are 
solutions to (7.2) even for t = 0. Consequently, if we want to solve (7.2) with the 
initial condition x(0) = I ,  we are out of luck. There is no solution to this initial 

d t  value problem! (See Figure 1 .) 
6 

Initial value problems like that in Example 7 1 are anomalies. We recall that an 
equation of the form 

x ' =  f ( t , x )  (7.4) 

4i is said to be in normal form. The reason for the nonexistence in Example 7.1 begins 
llutions of (7.2) to appear if we put the differential equation into normal form by dividing by t .  The 
0,O).  resulting equation, 

makes no sense at t = 0, since the coefficient l /  t has an infinite discontinuity there. 
Most of the equations that we deal with are in normal form. It is extremely rare that 
an equation that arises in applications cannot be put into normal form. It turns out 
that for equations in normal form there is little problem with existence. 

We will assume that the function f ( t ,  x )  is defined in a rectangle R defined by 
a i t < b, and c < x < d .  Given a point ( to, xo) E R,  we want to know if there is 
a solution to (7.4) that satisfies the initial condition 

x (to) = xo . 
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THEOREM 7.6 (Existence of solutions) Suppose the function f ( t ,  x )  is defined and continu- 
ous on the rectangle R in the tx-plane. Then given any point (to, xo) E R, the initial 
value problem 

X I =  f ( t , x )  and x ( t o ) = x 0  

has a solution x ( t )  defined in an interval containing to. Furthermore, the solution 
will be defined at least until the solution curve t -, ( t ,  x ( r ) )  leaves the rectangle R. 

The results of Theorem 7.6 are illustrated in Figure 2. 
Notice that it is required that the equation be written in normal form as displayed 

in (7.4). Thus, in order to apply the theorem to an equation like that in (7.2), we first 
have to put it into normal form, as we did in (7.5). For the case in (7.5) the function 
on the right-hand side is 

Figure 2 A solution to x i=  f ( f ,  x) Since f is &scontinuous when r = 0, the existence theorem does not apply in any 
with x(to) = xo exists in both rectangle including points ( t ,  x )  with t = 0. Hence, the nonexistence of a solution 
directions until it leaves the to the initial value problem does not contradict the theorem. 
rectangle R. On the other hand, according to the theorem the only condition on the right- 

hand side is that the function f ( t ,  x )  be continuous. This is a very mild condition, 
and it is satisfied in most cases. 

The interval of existence of a solution 
We defined the interval of existence of a solution in Section 2.1 to be the largest 
interval in which the solution can be defined. Let's examine what Theorem 7.6 has 
to say about this concept. 

E X A M f' L E 7 . 7 + Consider the initial value problem 

x' = 1 + x2 with x(0) = 0. 

Find the solution and its interval of existence. 

The right-hand side is 

f ( t ,  x )  = 1 + x2, 

which is continuous on the entire tx-plane. Hence we can take our rectangle to be 
the entire plane (a = -oo, b = oo, c = - m ,  d = m ) .  Does this mean that the 
solutions are defined for -oo < t < oo? 

Unfortunately it is not true, as we see when we find that the solution to the 
initial value problem is 

x ( t )  = tan t .  (7.9) 

Notice that x ( t )  = tan t is discontinuous at t = f n / 2 .  Hence the solution to the 
initial value problem given in (7.8) is defined only for - n / 2  < t < 1~12,  so the 
interval of existence of the solution is the interval ( -n /2 , r r /2 ) .  6 
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The last sentence in the existence theorem says that solutions exist until the 
1 solution curve leaves the rectangle R. In this case the solution curve leaves through 

\ the top of R as t + n / 2  from below, since x ( t )  + m there In addition, it Leaves 
I through the buttom as t + - n / 2  from above, since x ( r )  + -m. The theorem 
I allows that solution curves can leave the rectangle R through any of its four sides, 
I but that is the only thing that can happen. Nevertheless, it is important to realize that 

t solutions to very nice equations, such as that in (7.8), can approach &CQ in finite 

n(2 time. It cannot be assumed that solutions exist for all values of the independent 
i variable. These facts are illustrated in Figure 3. 
I As Example 2 shows, the interval of existence of a solution cannot usually be I 

I found from the existence theorem. The only really reliable way to discover the 
I 

I interval of existence of a solution is to find an explicit formula for the solution. 
v At best, the existence theorem gives an interval that is a subset of the interval of 
ution to existence. 

) = 0 becomes 
n/2. Existence for linear equations 

Linear equations have the special form 

x' = a(t)x + g(t).  

This means that the right-hand side is of the special form 

If a ( t )  and g( t )  are continuous on the interval b c t < c, the function f is contin- 
uous on the rectangle R defined by b < t < c and -m < x < w. In this case, 
a stronger existence theorem can be proved, which guarantees that solutions exist 
over the entire interval b < t  < c. 

Existence when the right-hand side is discontinuous 
There are times when the right-hand side of the equation in (7.4) is discontinuous, 
yet we will want to talk about a solution to the initial value problem. Some of these 
examples are important in applications as well. 

L E 7 . 1 0 + Consider the initial value problem 

y' = -2y + f ( t )  

y(0) = 3 ,  

where 

Here f ( t )  has a discontinuity at t  = 1. Nevertheless we will seek a "solution" 
to the initial value problem. For 0 ( t  < 1, the equation is y' = -2y with the initial 
condition y (0) = 3. The solution in this smaller interval is y( t )  = 3eC2*. At t  = 1, 

1 we have y ( I )  = 3e-2. 
. - 
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Having found the solution up to t  = 1, we now are left with a new initial value 
problem for t > 1, namely 

This is a perfectly respectable initial value problem and can be solved easily. The 
solution is g(t) = 512 + ( 3  - 5e2/2) r" .  Thus the initial value problem has a 
piecewise defined "solution" 

The function defined in (7.12) solves the differential equation in (7.1 1) every- 

& where except at t  = 1, and it is continuous everywhere. The solution is shown in 
Figure 4. As might be gathered from the sharp peak in Figure 4, y fails to have a 
derivative at t  = I .  Example 7 10 shows that there are cases when the hypothesis of 
Theorem 7.6 are not satisfied, yet solutions to initial value problems are desirable. 
In cases that arise in applications, the equation is linear, 

0 1 
3 x' = a(t)x + f ( t ) ,  

Figure 4 The solution to the and the only discontinuity is in the J ( t )  term. In situations like this. we will agree 
initial value problem in 

to accept as a solution a continuous function x ( t )  that satisfies the equation except Example 7.10. where f is discontinuous. 
4 

Uniqueness of solutions 
It is interesting to contemplate the existence theorem in con.junction with the phys- 
ical systems that are modeled by the differential equations. The existence of a so- 
lution to an ordinary differential equation (ODE) simply reflects the fact that the 
physical systems change according to the relationships modeled by the equation. 
We would expect that solutions to equations that model physical behavior would 
exist. Next we turn to the question of the number of solutions to an initial value 
problem. If there is only one solution, then the physical system acts the same way 
each time it is started from the same set of initial conditions. Such a system is there- 
fore deterministic. If an equation has inore than one solution, then the physical 
response is unpredictable. Thus the uniqueness of solutions of initial value prob- 
lems is equivalent to the system being deterministic. It is not too much to say that 
the success of science requires that solutions to initial value problems be unique. 

Before we state our uniqueness theorem, we present an example that shows that 
we must restrict the right-hand side of the equation 

more than we did in the existence theorem in order to have uniqueness. Consider 
the initial value problem 

= x 1 / 3  , with x(0) = 0. 
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This is a separable equation, and you are encouraged to find a solution. First we 
notice that 

x(t) = 0 

is a solution. Next we define 

It is easily verified by direct substitution that y is also a solution to (7.14) (although 
technically it is necessary to use the definition of derivative to calculate that y'(0) = 
0). 

Figure 5 Two solutions to the initial value problem in  (7.14) 

Thus. we have two solutions to the initial value problem (7.14) (see Figure 5) .  
Notice that the function f (t. x)  = x'/ '  is continuous and therefore satisfies the hy- 
pothesis of the existence theorem. Consequently, we will need a stronpr condition 
on the right-hand side of (7.13) to ensure uniqueness. 

The uniqueness theorem will follow easily from the following theorem. which 
we will find useful in other ways. 

3 f  
ose the function f (t,  x) and its partial derivative - a ,l- are both continuous on 

the rectangle R in the t-r-plane and let 

B f 
M =  max 1 -  1 .  

( I . x ) E R  

Suppose (to, so)  and (to, yo) are in R and that 

xl(t) = f (t, x (t)), and x (to) = xo 

y'(t) = f (t, y(t)), and y(to) = yo. 

Then as long as (t, x(t)) and (t, y (t)) belong to R, we have 
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The theorem provides an estimate of how much two solutions, x(t)  and y(t), 
to the same differential equation can differ depending on how close together their 
initial values are-this is the 1x0 - yo1 term-and on how far we are from the initial 
points-this is the eMl'-'~l term. The special case when the initial values are equal is 
of most interest to us at the moment. In this case, we have xo = yo, SO JxO - yo/ = 0. 
Hence the theorem implies that Ix (t) - y (t) 1 ( 0 for all t .  Since the absolute value 
is always nonnegative, we must have .u(t) - y (t) = 0, or x(t) = y ( t )  for all t. This 
is the uniqueness theorern, and we will state it separately. 

T H E O R E M  7.16 (Uniqueness of solutions) Suppose the function f (t. x) and its partial deriva- 
tive a f /ax are both continuous on the rectangle R in the tx-plane. Suppose (to, xu) E 

R and that the solutions 

x' = f (t, x )  and y' = f ( t ,  p) 

satisfy 

Then as long as ( t ,  x(t)) and (t, y(t)) stay in R,  we have 

There are several ways to look at the uniqueness theorem. The simplest is 
just to rephrase the statement of the theorem. Roughly it says that, under suitable 
hypotheses, two solutions to the same equation that start together stay together. The 
upshot of this is that through any point (to, xo) E R ,  there is only one solution curve. 

It is important to realize that any point in R can be the starting point. For 
example, suppose we have two solutions x(t)  and y(t) to the same equation in our 
rectangle R and at some point tj the two agree, so x( t l )  = y (tl). We can take ti as 
our starting point (relabel it to if you wish), and the uniqueness theorern says that 
the two solutions must agree everywhere. 

E X A M P E 7 . 1 7 + Consider the equation 

and suppose we have a solution x( t )  that satisfies x(0) = 1. We claim that x(t)  = 1 
for all t. How do we prove it? 

The key fact is the observation that y(t) = 1 is also a solution to the equation as 
we see by direct substitution. We have x(0) = y(0) = 1, so the uniqueness theorem 
implies that x(t) = y ( t )  = 1 for all t. + 

This example illustrates a very typical use of the uniqueness theorem. The 
tricky part of the example was the solution y (t) = 1, which we apparently pulled 
out of a hat. This particular hat is available to everyone. The trick is to look for 
solutions to a differential equation that are constant functions. In this case, we 
looked for a constant c such that 

-. A -  

(c - 1) cos ct = 0 for all t .  
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Clearly we want c = 1. Then the constant function x ( t )  = c (in our case, x ( t )  = 1) 
is a solution to the differential equation. 

Let's go over the more general case. We are looking for constant solutions 
x ( t )  = c to the equation 1 
On the left-hand side we have x' = 0, since x ( t )  = c is a constant function. To have 
equality in (7.18). the right-hand side must also be equal to 0. Hence we need 

,f ( t ,  r )  = 0 for all t .  (7.19) 

Thus, to find constant solutions x ( t )  = c, we look for constants that satisfy (7.19). 

Geometric interpretation of uniqueness 
The uniqueness theorem has an important geometric interpretation. Let's look at the 
graphs of the solutions-the solution curves. If we have two functions x ( t )  and y ( r )  
that satisfy x  (to) = y(to) = .KO at some point, then the graphs of x  ( t )  and y  ( t )  meet 
at the point (to, x u )  If in addition we know that x ( t )  and y( t )  are solutions to the 
same differential equation, then the uniqueness theorem implies that x ( t )  = y( t )  
for all t .  In other words, the graphs of x ( t )  and y ( t )  coincide. Stated in a different 
way, two distinct solution curves cannot meet. This means they cannot cross each 
other or even touch each other. 

L E 7 . 2 0 The geometric view of the uniqueness theorem illustrates how knowledge of one 
solution to a differential equation can give us information about another solution 
that we do not know as well. In Example 7.17, we discovered that y(t)  = 1 is a 
solution to 

= ( y  - 1) cos y t .  

Now consider the solution x  of the initial value problem 

Is it possible that s ( 2 )  = O? 

If x(2) = 0, then since x(0) = 2  there must be some point to between 0  and 
2  where x(to) = 1. This is an application of the intermediate value theorem from 
calculus, but it is most easily seen by looking at the graphs of x and y in Figure 6. 
Thus, to get from the initial point (0 ,2 )  to (2.0). the graph of r must cross the graph 
of v. The uniqueness theorem says this cannot happen. Consequently, we conclude 
that x(2)  # 0,  

In fact, the same reasoning implies that we cannot have n ( t )  <_ 1 for any value 
of t ,  and we conclude that 

x ( t )  > 1 foral l t .  

Geometrically we see that the graph of x  must lie above the graph of the solution y .  
Thus, knowledge of the solution y(t)  = 1, together with the uniqueness theorem, 
gives us information about the solution .r, or about any other solution. 

In Figure 6, the numerical solution for the solution x  is shown, verifying that 
its solution curve lies above the graph of y ( t )  = 1 .  

Figure 6 The solutions to the initial value problems in 
Example 5. Solution curves cannot cross, so x(2) # 0. 

The geometric fact that solution curves cannot meet will be important in what 
follows. A curve in the plane divides the plane into two separate pieces, so any 
solution curve limits the space available to any other. This simple fact will be ex- 
ploited in a remarkable variety of ways. When we study higher order equations and 
systems of more than one equation, this geometric interpretation cannot be made, 
simply because curves in dimensions bigger than two do not divide space into sep- 
arate pa.rts. If there is a third dimension available, it is always possible to move into 
that direction to get around any curve, 

Computer-drawn pictures can sometimes be misleading with regard to unique- 
ness. Consider the solution curves in Figure 7. Here we are looking at solutions of 
the equation x' = x2 - t .  It seems as though three solution curves merge in the lower 
right-hand part of the figure. However, they are only getting very close. In fact, they 

Figure 7 Sometimes solution curves seem to run together. 

I 
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are getting exponentially close. It happens frequently that solution curves get ex- 
ponentially close, but the uniqueness theorem assures us that they never actually 
meet. 

In Figure 8, we magnify a portion of Figure 7 where the curves seemed to 
overlap. Notice that with this magnification, the solution curves are distinct. as 
uniqueness requires. 

Figure 8 The solution curves can 
be separated by magnification. 

................ 
EXERCISES 
Which of the initial value problems in Exercises 1-6 are guaranteed a unique solu- 
tion by the hypotheses of Theorem 7.16? Justify your answer. 

1. y' = 4 + Y2, y(0) = 1 2. y ' = a ,  y ( 4 ) = 0  

For each differential equation in Exercises 7-8, perform each of the following tasks. 
(i) Find the general solution of the differential equation. Sketch several members 

of the family of solutions portrayed by the general solution. 
(ii) Show that there is no solution satisfying the given initial condition. Explain 

why this lack of solution does not contradict the existence theorem. 

7. ty! - y = t2 cost, y(0) = -3 8. ty' = 2y - t ,  y(0) = 2 

9. Show t h a  y (t) = 0 and y (1) = t b r e  both solutions of the initial value prob- 
lem y' = 3y2I3, where y(0) = 0. Explain why this fact does not contradict 
Theorem 7.16. 

10. Show that y(t) = 0 and y(t) = ( I /  16)t4 are both solutions of the initial value 
problem y' = ty1I2, where y(0) = 0. Explain why this fact does not contradict 
Theorem 7.16. 

In Exercises 11-16, use a numerical solver to sketch the solution of the given initial 
value problem. 
(i) Where does your solver experience difficulty? Why? Use the image of your 

sn1ution-Q estimate the interval of existence. 

2.7 Existence and Uniqueness of sdutions 99 

(ii) For 11-14 only, find an explicit solution. then use your formula to deterlnine 
the interval of existence. How does it compare with the approximation found in 
part (i)'? 

An electric circuit, consisting of a capacitor, resistor, and an electromotive force can 
be modeled by the differential equation 

where R and C are constants (resistance and capacitance) and q = q(r) is the 
amount of charge on the capacitor at time t For simplicity in the following analy- 
sis, let R = C = I, forming the differential equation dq/dr  + q = E(t).  In Ex- 
ercises 17-20, an electromotive force is given in piecewise form, a favorite among 
engineers. Assume that the initial charge on the capacitor is zero [q(O) = 01. 
(i) Use a numerical solver to draw a graph of the charge on the capacitor during 

the time interval [0,4]. 
(ii) Find an explicit solution and use the formula to determine the charge on the 

capacitor at the end of the four-second time period. 

, 
21. Consider the initial value problem 

y' = 3y2I3, y(0) = 0. (7.22) 
It is not difficult to construct an infinite number of solutions. Consider 
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where to is any positive number. It is easy to calculate the derivative of y(t). 
when t # to, 

but the derivative at to remains uncertain. 

(a) Evaluate both 

showing that 

i f t  5 to, 
y'(r) = iff > to .  

(b) Finally, show that y (t) is a solution of (7.22). Why doesn't this example 
contradict Theorem 7.16? 

22. Consider again the "solution" of equation (7.1 1) in Example 3, 

I 3e-2', for t  < 1, 
y(t) = 512 + (3 - 5e2/2)eP2' for t >_ 1. 

(a) Follow the lead in Exercise 21 to calculate the derivative of y (t). 

(b) In the sense of Definition 1 from Section 2.1, is y(t) a solution of (7.11)? 
Why or why not? 

(c) Show that y (t) satisfies equation (7.11) for all t except t = 1. 

23. Show that 

0, for t < 0, 

is a solution of the initial value problem ty' = 4y, where y (0) = 0, in the sense 
of Definition 1 from Section 2.1. Find a second solution and explain why this 
lack of uniqueness does not contradict Theorem 7.16. 

24. Uniqueness is not just an abstraction designed to please theoretical mathemati- 
cians. For example, consider a cylindrical drum filled with water. A circular 
drain is opened at the bottom of the drum and the water is allowed to pour out. 
Imagine that you come upon the scene and witness an empty drum. YOU have 
no idea how long the drum has been empty. Is it possible for you to determine 
when the drum was full? 
(a) Using physical intuition only, sketch several possible graphs of the height 

of the water in the drum versus time. Be sure to mark the time that you 
appeared on the scene on your graph. 
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(b) It is reasonable to expect that the speed at which the water leaves through 
the drain depends upon the height of the water in the drum. Indeed, Tori- 
celli's law predicts that this speed is related to the height by the formula 
v2 = 2gh, where g is the acceleration due to gravity near the surface 
of the earth. Let A and a represent the area of a cross section of the 
drum and drain, respectively. Argue that A Ah = av  At, and in the limit, 
A dh ld t  = av.  Show that dh ld t  = - ( a / A ) a .  

(c) By introducing the dimensionless variables o = a h  and s = fit and then 
choosing parameters 

1 
a = -  and /3 = (z) /$, 

11 0 

where ho represents the height of a full tank, show that the equation dh ld t  = 
-(a/A)&$ becomes dwlds  = - fi. Note that when w = 0. the tank 
is empty, and when w = 1, the tank is full. 

(d) You come along at time s = so and note that the tank is empty. Show that 
the initial value problem, dwlds  = -fi, where ul(so) = 0, has an infi- 
nite number of solutions. Why doesn't this fact contradict the uniqueness 
theorem? Hint: The equation is separable and the graphs you drew in part 
(a) should provide the necessary hint on how to proceed. 

25. Is it possible to find a function f ( t ,  x) that is continuous and has continuous 
partial derivatives such that the functions x 1 (t) = t and x2 (t) = sin t are both 
solutions to x' = f (t, x) near t = O? 

26. Is it possible to find a function f (t, x )  that is continuous and has continuous 
partial derivatives such that the functions XI (t) = cos t and x2(t) = 1 - sin t 
are both solutions to x' = f (t, x)  near t = n/2?  

27. Suppose that x is a solution to the initial value problem 

x ' = x c o s 2 t  and x(O)= 1. 

Show that x(t) > 0 for all t for which x is defined. 

28. Suppose that y is a solution to the initial value problem 

yf = ( y  - 3)ecos(t~) and y ( l )  = l 

Show that y (t) < 3 for all t for which y is defined. 

29. Suppose that y is a solution to the initial value problem 

2 yr = (y - l)etY and y ( l )  = 0. 

Show that -1 < y(t) < 1 for all t for which y is defined. 

30. Suppose that x is a solution to the initial value problem 

x 3 - x  
x =- 

1 + t2x2 and x (0 )=1 /2 .  

Show that 0 < x ( t  ) < 1 for all t for which x is defined. 
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31. Suppose that x is a solution to the initial value problem 
2 . r l = x - r  + 2 t  and x ( 0 ) = 1 .  

Show that x( t)  > t2 for all r for which x is defined. 

32. Suppose that y is a solution to the initial value problem 
2 y ' = y 2 - c o s  t - s i n t  and y ( 0 ) = 2 .  

1 Show that y(t) > cost for all t for which y is defined. 

ence of Solutions on Initial Conditions 
Suppose we have two initial value problems involving the same differential equa- 
tion, but with different initial conditions that are very close to each other. Do the 
solutions stay close to each other? This is the question we will address in this 
section. The question is important, since in many situations the initial condition 
is determined experimentally and therefore is subject to experimental error. If we 
use the slightly incorrect initial condition in an initial value problem. instead of the 
correct one, how accurate will the solution be at later times? 

There are two aspects to the problem. The first question is, Can we ensure that 
the solution with incorrect initial data is close enough to the real solution that we 
can use it to predict behavior? This is the problem of continuity of the solution 
with respect to initial data. The second aspect looks at the problem from the other 
end. Given that we have an error in the initial conditions, just how far from the true 
situation can the solution be? This is the problem of sensitivity to initial conditions. 

Everything we do in this section will follow from Theorem 7.15 in the previous 
section. We will analyze its implications when the initial conditions of the two solu- 
tions are not equal (i.e., when xu # yo). In this case, Theorem 7.15 provides limits 
on how far apart the corresponding solutions can be as the independent variable 
changes. It provides an upper bound on how the initial error propagates. 

Continuity with respect to initial conditions 
Let's look at a specific example. 

P L E 8 . 1 + Examine the behavior of solutions to 

x' = (x - 1) cos I. (8.2) 

a f 
In this case, f ( t ,  x) = (x - 1) cost,  and - = cost. Hence ax 

I af  
M =  mar 1-/51 

( t . x ) ~ R  a , ~  
regardless of which rectangle R we choose. Therefore, we may as well take M = 1. 
Suppose that we have two solutions x(t) and y(t) of (8.2) with initial conditions 
x(to) = xo, and y(to) = yo. According to Theorem 7.15, with M = 1, 

( ~ ( t )  - y(t)l 5 1x0 - vo(e't-tO' for all t. 
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This is illustrated in Figures I and 2. The black curve in each is the solution to 
( 8 2 )  with initial condition x(0) = 0. The colored curves in Figure I show the 
limits in (8.3) when lxo - yo1 i 0. I, while those in Figure 2 show the limits when 
1x0 - yo1 ( 0.01. 

Figure 1 A solution to (8.2) with Figure 2 A solution to (8.2) with 
Ix(0)I 1 0 . 1  must lie between the Ix(O)I 1 0.01 must lie between the 
colored curves. colored curves. 

To take a concrete example, suppose to = 0 and the t-dimension of the rectangle 
R is -1 5 t 5 I. (In this case, the x-dimension of R is not important.) Then if 
(t. x )  E R ,  we have It - tol = It1 i I .  and (8.3) becomes 

(x(t)  - y(t)l i el.xo - yo1 if It1 5 1 .  (8.4) 
If we wanted to ensure that Ix(t) - y(t)l i 0.01 for It ( 5 1 ,  we should insist that 
the initial difference satisfies (xu - yoJ 5 0.01/e. It is clear that we can ensure that 
Ix(t) - y(t)I is as small as we wish simply by making sure that Ixo - y[)l is small 
enough. + 

Theorem 7 15 of the previous section implies that what is seen in the example 
is true in general. If R = {(t, x)lu i t 5 b and c 5 x 5 ( I } ,  and if 

M = max -(r.xj , 
( r  ) ) E K  l a f  ax I 

then for two solutions x(t ) and y (t) we have 

Ix(t) - y(t)J  5 Ixo - voleMtpt(lI (8.5) 
as long as (r. x( t))  and (t, ~ ( r ) )  stay in the rectangle R. In particular, since It -to/ 5 
b - u, we have 

(x(t) - p(t)l i e"(hp") 1x0 - yol, 
E provided that ( t ,  x(t)) and (t. ~ ( r ) )  stay in R.  As we did in the example. we can 

ensure that Ix(t) - !(r)l < 6 by taking 1x0 - yo] < e-M(hp"'e. Thus we can be 
sure that the two solutions stay very close (to be precise, within 6 of each other) 
over the interval (a, b) by ensuring that the initial conditions are very close (within 
e - ~ ( b - ~ )  c of each other). 

We sum up these thoughts by saying that the solutions to an ODE are continuous 
with respect to the initial conditions. 
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Sensitivity of solutions to the initial condition 
While our deliberations in the preceding section are reassuring, the exponential term 
in (8.5) is a cause for concern. This term can get extremely large if It - to1 is large. 
For example, if M = 2 and It - to1 = 3, then 

while if It - to1 = 10, then 

Thus, we see that as It - tot gets large, the control given by equation (8.5) on the 
difference of the solutions rapidly gets weaker. 

Of course, equation (8.5) is an inequality and therefore provides an upper bound 
to the difference between the solutions. Does such "worst case" behavior actually 
occur'? The next example shows that it does, and in some of the simplest examples. 

P L E 8 . 6  + Consider the exponential equation 
I x = x.  

The solutions with initial values x(to) = xo and y(to) = yo are 

~ ( t )  = x ~ ~ ~ ~ - ~ O  and y(t) = yoe'-'O. 

Hence 

x(t) - y(t) = (xo - yo)e'-'O 

Since for the exponential equation x' = x the right-hand side is 

we have af / a .  = 1. Hence M = 1. We see therefore that the two solutions to 
the exponential equation give precisely the worst case behavior predicted by the 
inequality in equation (8.5). The difference between the two solutions becomes 
exponentially larger as t increases. 

+ 

Although this example shows that the worst case behavior does occur, it does 
not always occur. Quite the opposite phenomenon occurs with the exponential equa- 
tion if we let t decrease from to. Then (8.7) shows that the Qfference between the 
solutions actually decreases exponentially. If we are predicting physical phenomena 
from initial conditions, this is the best case scenario. 

As these examples show, the sensitivity of solutions to initial conditions is lim- 
ited by the inequality in Theorem 7.15, but beyond that not much can be said. It can 
be as bad as allowed by Theorem 7.15, but in some situations it can be much better. 

Let's look at a more visual example. 
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E X A M P L E 8 . 8  Consider the equation 

x' = x sin(x) + t .  
Figure 3 shows solutions to three initial value problems with initial values differing 
by 2 x l0-I. The solution curves remain very close for 0 5 t 5 2. Nevertheless, 
they diverge pretty quickly after that, indicating sensitivity to initial conditions. 4 

Figure 3 Sensitivity to initial conditions for solutions to 
x' = x sin(x) + t. 

Sensitivity to initial conditions is the idea behind the theory of chaos, which 
has developed over the past 20 years. In chaotic situations, solutions are sensitive 
to initial conditions for a large set of possible initial conditions. In the situations we 
have examined, the sensitivity occurs only at a few isolated points. Such equations 
do not give rise to truly chaotic behavior. 

................ 
EXERCISES 
Sensitivity to initial conditions is well illustrated by a little target practice with your 
numerical solver. In Exercises 1-12, you are given a differential equation x' = 
f (t, x) and a "target." In each case, enter the equation into your numerical solver, 
then experiment with initial conditions at the given value of to until the solution of 
x' = f ( t ,  x), with x(t0, xo), "hits" the given tareet. - " We will use a simple linear equation, x' = x - t in Exercises 1 4 .  The initial 
conditions should be at to = 0. The target is 

In Exercises 5-8, we use a slightly more complicated nonlinear equation, x f  = 
x2 - t. Again the initial conditions should be at to = 0. The target is 

5. (390) 6. (4,O) 

7. (590) 8. (6.01 
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For Exercises 9-12, we use the equation in Example 8.8, x' = ,x sinx + t. Again the 
initial conditions should be at to = 0. The target is 

9. (3,O) 10. (4,O) 

11. (5,O) 12. (6,O) 

13. This exercise addresses a very cornmon instance of a motion that is sensitive to 
initial conditions. Flip a coin with your thumb and forefinger, and let the coin 
land on a pillow. The motion of the coin is governed by a system of ordinary 
differential equations. It is not immediately important what that system is. It is 
only important to realize that the motion is governed entirely by the initial con- 
ditions (i.e., the upward velocity of the coin and the rotational energy impded 
to it when it is flipped). If the motion were not sensitive to initial conditions, it 
would be possible to learn how to Rip ten heads in a row. Try to learn how to 
do this, and report the longest chain of heads you are able to achieve. 

The flipping of a coin is often considered to have a random outcome. In 
fact the result is determined by the initial conditions. It is the sensitivity of the 
result to the initial conditions that gives the appearance of randomness. - - 

Let's plot the error bounds shown in Figure 1. First, solve x' = (x - 1) cos t .  
x(0) = 0, and plot the solution over the interval [-4.41. Next, as we saw in 
Example 8.1. if y(t) is a second solution with 1,x (0) - y(O)I 5 0.1. then the 
inequality (8.3) becomes lx(t) - y(t)l 5 0.lelC'. Solve this inequality for x(t). 
placing your final answer in the form eL(t) 5 x (t) 5 e~ (I); then add the graphs 
of eL(t) and eH(t) to your plot. How can you use Theorem 7.15 to show that 
no solution starting with initial condition lx(0) - y(O)( 5 0.1 has any chance ..- - - 
of rising as far as indicated by eH (t)'! 

15. Draw the enor bounds shown in Figure 2. See Exercise 14 for assistance. 

16. Consider the equation x'  = (x - 1) cos t . 
(a) Let x(t) and y (1) be two solutions. What is the upper bound on the separa- 

tion Ix (t) - y(t)l predicted by Theorem 7.15? 

(b) Find the solution x(t) with initial value x(0) = 0, and the solution y(t) 
with initial value y(0) = 1/10. Does the separation x(t) - y(t) satisfy the 
inequality found in part (a)'? 

(c) Are there any values of t where the separation achieves the maximum pre- 
dicted? 

17. Consider x' + 2x = sin t. 

(a) Let x(t) and y(t) be two solutions. What is the upper bound on the separa- 
tion Ix(t) - y(t)( predicted by Theorem 7.15? 

(b) Find the solution x (t ) with initial value .x (0) = - 115, and the solution y (t) 
with initial value y(0) = -3110. Does the separation x(t) - y(t) satisfy 
the inequality found in part (a)? 

(c) Are there any values of t where the separation achieves the maximum pre- 
dicted? 
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18. Let x, (t) and xi@) be solutions of x' = x2 - r having initial conditions x1 (0) = 
0 and ~ ( 0 )  = 314. Use Theorem 7.15 to determine an upper bound for 
1x1 ( t )  - xl(t)l, as long as the solutions x l ( t )  and x ? ( t )  remain inside the rect- 
angle defined by R = ((t, x )  : - 1 5 t 5 1, -2 < x 2). Use your numerical - 
solver to draw the solutions xl (1) and xz(t), restricted to the rectangular region 
R. Estimate m a x ~  1x1 (1) - x2 (1) 1 and compare with the estimated upper bound. 

2.9 Autonomous Equations and Stability 
A first-order autonomous equation is an equation of the special form 

x' = f (x). (9.1) 

Notice that the independent variable, which we have usually been denoting by t,  
does not appear explicitly on the right-hand side of equation (9.1). This is the defin- 
ing feature of an autonomous e~uation. 

In Section 2.3, we derived the differential equation for the velocity of a weight 
dropping near the surface of the earth. It is 

where g is the acceleration due to gravity, m is the mass of the body, and k is a 
proportionality constant. This is an autonomous equation. Other examples are 

XI = sin(x), y' = y2 + 1, and zt  = e z .  

The equations 

are not autonomous. The presence of the independent variable on the right-hand 
side of each equation implies that the equation is not autonomous. 

Autonomous equations occur very frequently in applications. A differential 
equation model of any physical system that is evolving without external forces will 
be autonomous. It is usually the external forces that give rise to terms that depend 
explicitly on time. 

The direction field and solutions 
Since the function f (t, x )  on the right-hand side of (9. I) does not depend on t,  the 

I 

r slopes of the direction lines have the same feature. This is illustrated by the direction 
field for equation (9.2) shown in Figure I. The slopes do not change as we move 1 
from right to left in this figure. 

Because of this fact, we would expect the same behavior for the solution curves. 
We would expect that one solution curve translated to the Ieft or right would be 
another solution curve. We can see this analytically. 
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Figure 1 The direction field for equation (9.2). 

Notice that an autonomous equation x' = f (x) is separable and therefore it is 
solvable, at least in principle. If we separate variables, we get 

dx  - = d t .  
f (.u) 

Hence the solution is given by 

If we let G ( x )  be an antiderivative of 1 / f ( x ) ,  then the solutions to (9.1 ) are defined 
implicitly by the equation 

G(.u) = t + C. 

To solve this equation, we need an inverse G-' of G, and then our solutions are of 
the form 

x ( t )  = ~ - ' ( t  + C). 

Notice how the arbitrary constant C occurs in this formula. We get different so- 
lutions simply by translating the independent variable t .  This means that we get 
different solution curves by translating one curve left and right. See Figure 2 ,  which 
displays several solutions to equation (9.4). 

In this section, we will describe ways to discover the qualitative behavior of 
solutions to autonomous equations, without actually finding the solutions. Although 
autonomous equations are in principle solvable, finding the solutions explicitly may 
be difficult and the results may be so complicated that the formula does not reveal 
the behavior of the solutions. In contrast, qualitative methods are so easy that it 
will be useful to study the solutions qualitatively in addition to finding the solutions 
explicitly, when that is possible. In some cases, it might be sufficient to do the 
qualitative analysis without finding exact solutions. 

rl/ln 

. U 

I). 
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? 

Figure 2 Several solutions to equation (9.4). 

Equilibrium points and solutions 
The starting point to the qualitative analysis of an autonomous equation is the dis- 
covery of some easily found particular solutions. If f ( x g )  = 0, then the constant 
function x ( t )  = xo satisfies 

Hence this constant function is a particular solution to (9.1). We will call a point 
xo such that f (xo) = 0 an equilibrium point. The constant function x ( t )  = ro is 
called an equilibrium solution. 

Find the equilibrium points and equilibrium solutions for the equation for the veloc- 
ity of a falling body, 

/ 
v  = - g - k  v lv l lm.  

The right-hand side is the function 

f ( v )  = -g - k t l ( v ( / m .  

Unraveling the absolute value, we have 

-g - k v 2 / m  for v  L 0, f (u )  = 
-6 + k v 2 / m  for v  i 0. 

The graph of f is shown in Figure 3. If we compute the derivative. we see that 

f ' ( v )  = -2klvl/m < 0 for 211 9 1  
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Hence f is nonincreasing, and for u  # 0 it is decreasing. Therefore. it can be equal 
to 0 at only one point. Since j ( v )  is negative when the velocjty is positive. there are 
no equilibrium points in that range. However. when the velocity is neglive. we get 
an equilibrium point when 

F - H  1 v  = -Ja. 
This is the only equilibrium point, and consequently 

r--- t ) , ( t )  = -v m g / k  

i s  the only equilibrium solution. The graph of this solution is shown in Figure 4. 4 .- - - 

The next step is to use the equilibrium solution in conjunction with the unique- 
!quilibrlum so'ution ness theorem. For example, if we look at the solution to (9.4) with initial value 
).4). "(0)  = uo, where un > -,/*. the unique~~ess theorem tells us that its graph 

cannot cross the line u = ,/m. since this line is also a solution curve. Hence 
we must have 

,(t) > - JG for all t .  

Now we go back to equation (9.4) and notice that because the right-hand side f ( a )  
is nondecrcasing, when v ( t )  satisties (9.5). we have f ( u ( t ) )  < 0, or 

vl(r) = -g - kulvl/m < 0 for all t .  

Because it has a negative derivative. u( t )  is a monulone decreasing function. 
Since u(r) is monotone decreasing and u( t )  > - Js for all t .  we know 

that a(t)  approaches a limit as t -+ m It can be shown that this limit must be 
- A similar tram of thought shows that v ( t )  4 ca as t  -r -03. Hence 
without solving the initial value problem, we know that the solution curvea have the 
appearance shown in Figure 2. 

Notice that we only learned threc things about the solution I ) ( [ ) :  

1. v ( t )  is monotone decreasing 

2. v ( t )  -+ -,I* as t  -+ oo 
3. tl(t) -+ cc as t -+ -cc 

We cannot say how fast r ( t )  -+ -Ja as t 4 w, or L J ( ~ )  4 ~o as 
t -+ -oo. For this reason, we have not included any tick marks along the r axis in 
Figure 2. 

The same reasoning shows that ~f v(0)  = ua < - d s ,  then u ( t )  is increas- 
ing to -e as f + w ,  and tends to -oc as t  -t -CQ. 

Let's take a moment and discuss the physical implications of our qualitative 
analysis. We hake shown that as t Increases, the velocity always tends to 

We reached the same result at the end of Section 2.3. Because of this fact, we called 
a,,,, the terminal velocity. However, it is interesting to compare the amount of work 
involved in the two different methods used. Qualitative analysis is almost always 
easier when we want to discover the limiting behavior of solutions. 

The analysis camed out above for equation (9.4) can be done for any au- 
4 n - - m n ~ ~ ~  eauation. Let's illustrate this with another example. 
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E X A M P L E 9 . 6 + Discover the behavior as t -+ oc of all solutions to the differential equation 

First we find the zeros of f ( x ) .  Since f ( x )  = ( x  - 1)(x + l ) ( x  - 2). we have 
zeros X I  = -1, xi  = I .  and x? = 2. As a consequence, we have three equilibrium 
solutions 

~ ( t )  = -1,  x ( t )  = 1 ,  and x ( t )  = 2. 
These are plotted in Figure 5, along with the direction field. 

Figure 5 The direction field and the equilibrium solutions for 
the equation x ' =  ( x2  - 1 ) ( x -  2 ) .  

The uniqueness thcorem is one of the keys to the qualitative analysis of solu- 
f ( x )  = (x? - I ) ( X  - 2 tions. Since solution curves cannot cross. the graph of a solution x ( t )  with initial 

value between - 1 and 1 cannot take on those values. Consequently, 

Thus. x ( t )  is a nlonotone increasing function of t .  It can be shown that 1-11 x(t) --t 1 as t --t oo, and 
Figure 6 The graph of the ( t -  as t - - t -oc .  
right-hand side of (9.7). 

By the samc argument, we can analyze the solution to (9.7) with any initial 
condition x(0) = q. Everything is determined by the location of xo with respect to 
the equilibrium points. We have four cases. First, 
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Next, 

+ xf(t) = f (x(f)) < 0 for all t 

x (t) is decreasing 
x ( t ) + - 1  a s t - + - m  
x(t)  -. -CC, as t w. 

- l < x o < l + - I < x ( t ) r l  forallt  
3 x' (t) = f (x(t)) > 0 for all t 

x (t) is increasing 
x(t) -t -1 as t  4 -oo 
x ( t ) - + l  a s t 4 X .  

Then, 

1 < x o < 2 j  1 < x ( t ) < 2  foral l t  

j ~ ' ( t )  = f (x(t)) < 0 for all t 

x (t ) is decreasing 
x ( t ) - 2  a s t -  -02 

x )  a s t - m .  

Finally, 

xo > 2 j x ( t )  > 2  forallt  
j x r ( t )  = f ( s ( t ) )  > 0 foral l t  

x (t) is increasing 
x ( t ) + 2  a s t + - o o  
x(t) 4 CC, as t  + oo. + 

Thus. for equation (9.7), we can qualitatively predict the behavior of all solu- 
tions. In Figure 7, the equilibrium solutions are plotted in color and several other 
solutions are plotted in black. 

The phase line 
The behavior of the solutions to (9.7) can be graphically displayed using what is 
called the phase line. This is simply a number line on which the key facts about 
the solutions are indicated (see Figure 8). First, the equilibrium points x = - 1, 1, 
and 2 an plotted. Between equilibrium points the solutions are monotone, and the 
direction is indicated by an armw For example, if 1 < x < 2, then x' = f (x) = 
(x2 - 1 - 2) c 0, so x is decreasing, and this fact is indicated by an arrow 
minting to the left. In the interval -1 < x < I. x' = f (x) > 0, so x is increasing 
Bnd thearrow points to the right. 

The phase line for any autonomous equation 
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Figure 7 Some solutions of x ' =  (x2  - l ) ( x -  2 ) .  

Figure 8 The phase line for the equation x'= ( x 2  - l ) ( x -  2 ) .  

can be drawn easily if the pertinent information about f is available. What is needed 
is the location of the equilibrium points and the sign of f in the intervals between 
equilibrium points. A11 of this information can be easily obtained from a graph 
of f .  See Figure 9 for an example. From the graph of f ,  we locate the equi- 
librium points, which are the zeros of f .  In an interval between successive equilib- 
rium points the qualitative behavior of solutions is determined by the sign of f .  If 
f is positive. solutions are increasing and we insert an arrow pointing to the right. 
I f f  is negative, the arrow points to the left. 

The phase line incorporates enough information about the solutions to enable 
us to visualize solution curves. Consider Figure 10. Here we have transferred the 
phase line information from Figure 9 to a vertical line superimposed to the left of 
a tx-plane on which we have plotted the graphs of the equilibrium solutions and of 
several other solutions. Although the solution curves in Figure 10 were drawn by 
a computer, we can predict the general pattern without the aid of a computer. The 
arrows on the phase line show whether solutions increase or decrease. In any case, 
we know that the solutions are asymptotic to the equilibrium solutions as t + f w. 

The phase line is a number line, which can be realized in at least three different, 
useful ways. The first is illustrated in Figure 9, where the phase line is shown as 
the horizontal axis, because x is the variable in the function f (x). The second is in 
Figure 8, where it appears by itself. Finally, the third way is depicted in Figure 10, 
where it is the vertical axis, since x is the dependent variable as a solution to the 
differential equation x' = f (x). 
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Figure 9 The graph of f ( x )  and Figure 10 The phase line and 

the associated phase line. graphs of solutions. 

It is important to understand the difference between these three uses of the phase 
line, and why each of them is important. We use the graph of f (x) to discover 
the properties of the phase line, as shown in Figure 9 We can then transfer this 
information to an isolated phase line, as shown in Figure 8 Finally. we transfer the 
nhaqe line information to the vertical axis of a ix-plot and use the information to - 

sketch the graphs of solutions, as shown in Figure 10. 

M P L E 9 . 9 + Sketch the solutions of x' = x' - 2x2 + X.  

We can factor the right-hand side as f (x) = .x(x - I)'. Hence 0 and 1 are 
equilibrium points. We need to find the phase line for f .  In Figure 1 I, we show 
the three versions of the phase line. Figure l l (a )  shows the graph of f turned 
90" counterclockwise. This makes the x-axis the vertical axis, so it has the same 
appearance as the phase line all by itself, which is shown in Figure 1 l ( b )  Finally. 
Figure 1 l(c) shows several solutions plotted in the tx plane. In this plot, the x-axis 
u 

is a copy of the phase line. 

(a) (b) 

Figure 11 The three versions of the phase line. 
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With all three realizations of the phase line arranged as in Figure 11, the rela- 
tionships between them should be more obvious. + 
Stability 
Some equilibrium points have the property that solution curves which start near 
them approach the equilibrium point as r + co. These are called asymptotically 
stable equilibrium points. There are also equilibrium points where some solutions 
move away. These are called u n ~ t a b l e . ~  If we focus our attention on the phase line 
near an equilibrium point, then we see that it is an asymptotically stable equilibrium 
point if and only if both adjacent arrows point toward the point. In fact, since each 
arrow can have only two directions, there are a total of four possibilities, only one 
of which represents an asymptotically stable equilibrium point. 

Figure 12 Possible configurations of equilibrium 
points. 

These possibilities are shown in Figure 12, together with an indication of what 
the graph of f looks like near the associated equilibrium point. Notice that only 
Figure 12(b) depicts an asymptotically stable equilibrium point. Examining the 
possibilities, we see that an equilibrium point x o  for x' = f (x) is asymptotically 
stable if and only if f is decreasing at xo. We can use this fact to derive afirst 
derivative test for stability. In the figures in this section, we have systematically 
indicated asymptotically stable equilibrium points with solid points, and unstable 
equilibrium points with open circles. 

'Consider the equation y' = 0. For this equation. every point is an equilibrium point, and every solution 
is a constant function. These solutions do not move nearer to the equilibrium points, nor do they move 
away. The property of "not moving away" is described by saying that the equilibrium points are stable. 
In dimension I ,  the equation y' = 0 provides essentially the only example of stable equilibrium points 
that are not asymptotically stable. In higher dimensions, the concept of stability is more interesting. 
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EOREM 9.10 Suppose that xo is an equilibrium point for the differential equation x' = f (x), 

where f is a differentiable function. 
I 

1. If fl(xo) < 0,  then f is decreasing at no and xo is asymptotically stable. 

2. If f '(no) > 0, then f i s  increasing at no and xo is unstable. 

3. If f '(xo) = 0, no conclusion can be drawn. 
,- 

, E 9 . 1 1 + Classify the equilibrium points for the equation 

from Example 9.6. 

We saw in Example 9.6 that the equilibrium points are -1, 1, and 2. We can 
analyze these by looking at Figure 7 and noticing that the solutions starting near - 1 
or near 2 are driven away from these values. Hence these are unstable points. On 
the other hand, the solutions starting near 1, either above or below, are drawn toward 
1 as t -+ CQ. Thus 1 is an asymptotically stable equilibrium point. 

We could have also classified these equilibrium points by looking at the graph 
on the right-hand side in Figure 6. The right-hand side f (x) = (x2  - l)(x - 2) is 
decreasing when it passes through 1, but increasing as it passes through the other 
two. Hence 1 is asymptotically stable and the others are unstable. 

Finally, a third way is to use Theorem 9.10. We compute that f '(x) = 3x2 -4x. 
At the equilibrium points, we have f '(- I )  = 7 .  f '(1) = - 1, and f '(2) = 4. Thus 
- 1 and 2 are unstable and 1 is asymptotically stable. + 

1 L E 9 . 1 2 6 Classify the equilibrium points for the equation 

from Example 9.9. 

In Example 9.9, we found that the equilibrium points are 0 and 1. Looking at 
Figure 11, we see that n3 - 2x2 + x is increasing through 0. It has a local rnini- 
mum at 1, so it is not decreasing there. Hence both of these equilibrium points are 
unstable. + 
................ 
EXERCISES 
In Exercises 1-6, if the given differential equation is autonomous, identify the equi- 
librium solution(s). Use a numerical solver to sketch the direction field and super- 
impose the plot of the equilibrium solution(s) on the direction field. Classify each 
equilibrium point as either unstable or asymptotically stable. 

1. P' = 0.05P - 1000 

2. y' = 1 - 2y  + y2 
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4. P' = 0.13 P ( l  - P/200) 

5. 9' = ( 2  - q )  sin q 

6. y' = (1 - y )  cos t 

In Exercises 7-10, the graph of the right-hand side of g' = f (g)  is shown. Identifl 
the equilibrium points and sketch the equilibrium solutions in the tv plane. Classifi 
each equilibrium point as either unstable or asymptotically stable. 

7. f 
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fir each initial value problem presented in Exercises 23-26. perform each the 

following tasks. 
(i) Solve the initial value problem analytically. 

(ii) Use the analytical solution from part (i) and the theory of limits to find the 
behavior of the function as t -+ 4-00. 

(iii) Without the aid of technology. use the thcoly of qualitative analyds ~rewnted 
in this senion to predict the long-tern behavior of the solution. Does Your 
answer agree with that found in part (ii)? Which is the easier method? 

23. y' = 6 - y ,  y(0) = 2 24. y' + 2y = 5 ,  y (0) = 0 

25. v' = (1 + y ) ( 5  - y).  ~ ' ( 0 )  = 2 
Y (0) = 2 26. y' = (3 i- y)(l - Y ) .  . 

In Exercises 27-28, use the calculus technique suggesed in Theorem 9.10 to deter- 
mine the stability of the equilibrium solutions. -, 

27. x' = 4 - x 
2 28. x'  = x(x - l)(x + 2 )  

29. In Theorem 9.10, if f ' (re) = 0, no conclusion can be drawn about the equi- 
librium point xo of r' = f  ( x ) .  Explain this phenomenon by providing several 

(a) f ' ( x o )  = 0 and xu is unstable, and 
(b) f '(x,,) = 0 and xo is asymptotically stable. 

30. A skydiver jumps from a plane and opens her chutc. One possible model of her 
velocity u is given by dv 

m y  =mg - k v ,  
d t  

where m is the combined mass of the skydiver and her parachute. g is the ac- 
celeration due to gravity, and 1 is a proportionality constant. Assuming that 
nl, a, and k are all positive constants, use qualitative analysis to determine the 
skydiver's "terminal velocity." 

- 

31. A tank contains 100 gal of pure water. A salt solution with concentration 3 
lblgal enters the tank at a rate of 2 gallmin. Solution drains from the tank at a 
rate of 2 gallmi*. Use qualitative analysis to find the eventual concentration of 
the salt solution in the tank. 

.I0 The Daredevil Skydiver 

A skydiver jumps out of an airplane at a11 altitude of 1200 m. The person's mass, 
including gear, is 75 kg. Assume that the force of air resistance is proportional 
to the velocity, with a proportionality constant of ki = 14 kgls during free fdl. 
After rd seconds, the parachute is opened, and the propurtionrlity constant becomes 
1. = If50 kg/s Assume, for the moment, that the chute deploys instantaneousl~ 
'L' - - -  ~ u 

whcn the skydiver pulls his ripcord. 
It will be helpful to review Section 2.3. 

1. Use your physical intuition to sketch three graphs: the distance the skydiver 
~ - -  - -  : +he ~ ~ l o c i t ~  versus time, and the acceleratio~l versus time. 
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HWt: Do not use technology, do not solve any differential equations. Simply 
rely on your understanding of the phyacal model to craft your sketches. You 
might find qualitative analysis useful. Keep in mind that you do not have to 
draw the graphs in the order listed. This is much harder than it hoks. Once 
your drawings are complete, put them aside and save them for comparison once 
you've completed item #4. 

2. In order to establish time limits on the problem, examine the two extreme cases. 
In the first, the skydiver never pulls the ripcord, and in the second, the ripcord 
is pulled immediately, so t d  = 0. An intelligent skydiver would avoid each 
of these strategies, but they serve to put upper and lower limits on the general 
problem. 

For each of these cases use a numerical solver to estimate the time it takes 
the skydiver to impact the ground. You should verify this result analytically 
(you will have to solve an implicit equation to find the time). What is the 
velocity at this moment? How close is this velocity to the terminal velocity? 

3. Suppose that the skydiver deploys the chute by pulling the ripcord td = 20 s 
after leaving the airplane. Use a numerical solver to find an estimate of thc time 
when the person hits the ground. What is the velocity at this moment? Verify 
thesc rcsults al~alytically. Compare the final velocity with the terminal velocity. 
H i n t :  You will get better numerical results if td is one of the points at which the 
solver computes an approximate solution. 

4. Using the numerical data from item #3, plot three graphs: the distance the sky- 
diver falls versus time. the velocity versus time, and the acceleration versus 
time. Compare these graphs with those you created in item #l. 

5. Recall that we made the assumption that the parachute deploys instantaneously. 
In aviation parlance, the unit of accclcration is a "g", which is equal to the 
acceleration due to gravity near the surface of the earth. How many "g"s does 
the skydiver experience at the instant the chute opens? You can use the plot of 
the accelcration made in item #4 or you can compute this analytically. Do you 
think a skydiver could withstand such a jolt? Do some research on this question 
before answering. 

6. Special gear allows the skydiver to land safely provided that the impact veloc- 
k ( r )  ity is below 5.2 d s .  Do some numerical experimentation to discover approxi- 

mately thc last possible moment that the ripcord can be pulled to achieve a safe 

/--- landing. 
7. Let's change our assumption about chute deployment. Suppose that the chute 

14 actually takes r = 3 s to deploy. Moreover, suppose that during deployment, 
t the proportionality constant varies linearly from ki = 14 kg/s to kz = 160 kgis 

from the time t d  that the ripcord is pulled to the time td + r when the chute 
I Figure 1 Linear interpolation. 

is fully deployed (see Figure 1). Repeat the numerical parts of items 3, 4. 5, 
and 6 with this new assumption. (The analytical parts are not so easy with this 
assumption about the proportionality constant.) 

There are a number of fascinating adaptations you can make to this model. 
For example, suppose that k varies between td and td + r according to some cubic 
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interpolation. Or, suppose that the skydiver started at a higher altitude and you take 
the density of the air into account when determining the force of resistance. 

Finally, there are a number of useful articles that will aid in your pursuit of this 
model. . Drucker, I., Minimal time of descent, The College Mathematics Journal, 26 . ~ 

(1995), pp. 252-235. 
~ ~ ~ d ~ .  D.B., ODE Models for the Parachute Problem, SIAM Review, 40 - A . - . . - , 

(1998), pp. 327-332. . Melka and Famior, Explorution of the parachute problem with STELLA. 
Newsletter for the Consortium for Ordinary Differential Equations Ex~ef i -  
ments, Sumrner-Fall, 1995 

Modding and Applications 
T h e  discovery of the calculus occurred at the beginning of the scientific revolution 
in the seventeenth century. This discovery was not a side issue in the revolution. 
Rather, it was the linchpin on which much of what followed was based. For the first 
time, humanlund had a systematic way to study how things changed. In many cases, 
the study of change has led to a differential equation, or to a system of differential 
equations through the process known as modeling. 

We have explored a few applications, and we have constructed the correspond- 
ing models in Chapter 2. In this chapter, we will look carefully at the modeling 
process itself. The process will then be used in several applications. Along the way, 
we will also consider some examples of modeling that are faulty. 

The main idea in the modeling process is explained easily. Suppose x is a 
quantity that varies with respect to the variable t .  We want to model how it changes. 
From the mathematical point of view, the rate of change of x is the derivative 

Building a model of the process involves finding an alternate expression for the rate 
of change of x as a function of t and x ,  say f ( t ,  x) .  This leads us to the differential 
equation 

This equation is the mathematical model of the process. 
The problem, of course, is discovering how the rate of change varies, and this 

means discovering the function f ( t ,  x ) .  Let's look at some examples. 


