Section 2.1 version September 29, 2011 at 09:45
Assigned problems: $3,4,5,6,7,10,13,14,15,17,18,20,(21,22,24,31,32)$.
Selected solutions:
3. The differential equation is

$$
y^{\prime}=-t y
$$

The proposed general solution is

$$
y(t)=C e^{-(1 / 2) t^{2}}
$$

The derivative of the proposed general solution is

$$
y^{\prime}(t)=C e^{-(1 / 2) t^{2}}(-t)=-t\left(C e^{-(1 / 2) t^{2}}\right)=-t y(t)
$$

Hence, the proposed general solution satisfies the differential equation. Choosing $C=$ $-3,-2,-1,0,1,2,3$ we get Figure 1

Figure 1: Problem 3
4. The differential equation is

$$
y^{\prime}+y=2 t .
$$

The proposed general solution is

$$
y(t)=2 t-2+C e^{-t}
$$

The derivative of the proposed general solution is

$$
y^{\prime}(t)=2-C e^{-t}
$$

Thus

$$
y^{\prime}(t)+y(t)=2-C e^{-t}+2 t-2+C e^{-t}=2 t .
$$

Hence, the proposed general solution satisfies the differential equation. Choosing $C=$ $-3,-2,-1,0,1,2,3$ we get we get Figure 2

Figure 2: Problem 4
5. The differential equation is

$$
y^{\prime}+\frac{1}{2} y=2 \cos (t)
$$

The proposed general solution is

$$
y(t)=\frac{4}{5} \cos (t)+\frac{8}{5} \sin (t)+C e^{-t / 2}
$$

The derivative of the proposed general solution is

$$
y^{\prime}(t)=-\frac{4}{5} \sin (t)+\frac{8}{5} \cos (t)-\frac{1}{2} C e^{-t / 2} .
$$

Thus

$$
y^{\prime}(t)+\frac{1}{2} y(t)=-\frac{4}{5} \sin (t)+\frac{8}{5} \cos (t)-\frac{1}{2} C e^{-t / 2}+\frac{2}{5} \cos (t)+\frac{4}{5} \sin (t)+\frac{1}{2} C e^{-t / 2}=2 \cos (t) .
$$

Hence, the proposed general solution satisfies the differential equation. Choosing $C=$ $-5,-4,-3,-2,-1,0,1,2,3,4,5$ we get we get Figure 3

Figure 3: Problem 5
6. The differential equation is

$$
y^{\prime}=y(4-y)
$$

The proposed general solution is

$$
y(t)=\frac{4}{1+C e^{-4 t}}
$$

The derivative of the proposed general solution is

$$
y^{\prime}(t)=-\frac{4}{\left(1+C e^{-4 t}\right)^{2}} C(-4) e^{-4 t}=\frac{16 C e^{-4 t}}{\left(1+C e^{-4 t}\right)^{2}}
$$

Now calculate

$$
y(t)(4-y(t))=\frac{4}{1+C e^{-4 t}}\left(4-\frac{4}{1+C e^{-4 t}}\right)=\frac{4\left(4+4 C e^{-4 t}-4\right)}{\left(1+C e^{-4 t}\right)^{2}}=\frac{16 C e^{-4 t}}{\left(1+C e^{-4 t}\right)^{2}}=y^{\prime}(t)
$$

Hence, the proposed general solution satisfies the differential equation. Choosing $C=$ $1,2,3,4,5$ we get we get Figure 4

Figure 4: Problem 6
7. The constant function $y(t)=0$ is a solution of the differential equation in Problem 6. Why? The derivative of this function is 0 . Now evaluate the right-hand side substituting $y(t)=0$:

$$
y(t)(4-y(t))=0(4-0)=0 \cdot 4=0=y^{\prime}(t)
$$

Thus the constant function 0 is a solution. But there is no value of C such that

$$
\frac{4}{1+C e^{-4 t}}=0
$$

For a fraction to be 0 the numerator must be 0 . In this case numerator is 4 and, as we very well know, $4 \neq 0$.
10. The proposed solution is

$$
y(t)=\frac{3}{6 t-11}=3(6 t-11)^{-1}
$$

First observe that

$$
y(2)=\frac{3}{62-11}=3
$$

Hence, this function satisfies the initial condition. Now calculate the derivative

$$
y^{\prime}(t)=-3(6 t-11)^{-2} 6=-18(6 t-11)^{-2}=-2\left(3^{2}(6 t-11)^{-2}\right)=-2 y(t)^{2} .
$$

Thus, the given function is really a solution of the given initial value problem.
The function $y(t)$ is not defined at $t=11 / 6$. Since $11 / 6<2$, the interval of existence of the solution is $t>11 / 6$, that is $(11 / 6,+\infty)$. This is illustrated at Figure 5 .

Figure 5: Problem 10
13. The proposed solution is

$$
y(t)=\frac{1}{3} t^{2}+\frac{C}{t} .
$$

You should verify that this is really the general solution of the given differential equation. We will solve the given initial value problem:

$$
y(1)=\frac{1}{3}+\frac{C}{1}=2 .
$$

Solving for C we get $C=5 / 3$. Thus the solution is

$$
y(t)=\frac{1}{3} t^{2}+\frac{5}{3 t} .
$$

The function $y(t)$ is not defined at $t=0$. Since $0<1$, the interval of existence of the solution is $t>0$, that is $(0,+\infty)$. This is illustrated at Figure 6 .

Figure 6: Problem 13
14. The proposed solution is

$$
y(t)=e^{-t}\left(t+\frac{C}{t}\right)
$$

You should verify that this is really the general solution of the given differential equation. We will solve the given initial value problem:

$$
y(1)=e^{-1}\left(1+\frac{C}{1}\right)=\frac{1}{e} .
$$

Since $e^{-1}=1 / e$, solving for C yields $C=0$. Thus the solution is

$$
y(t)=t e^{-t}
$$

The function $y(t)$ is defined for all real numbers. The interval of existence of the solution is $(-\infty,+\infty)$. This is illustrated at Figure 7.

Figure 7: Problem 14
15. The proposed solution is

$$
y(t)=\frac{2}{-1+C e^{-2 t}} .
$$

You should verify that this is really the general solution of the given differential equation. We will solve the given initial value problem:

$$
y(0)=\frac{2}{-1+C e^{0}}=-3 .
$$

Simplifying we get $2=3-3 C$, that is $C=1 / 3$. Thus the solution is

$$
y(t)=\frac{6}{-3+e^{-2 t}} .
$$

The function $y(t)$ is not defined for $t=-(\ln 3) / 2$. Since $-(\ln 3) / 2<0$, the interval of existence of the solution is $t>-(\ln 3) / 2$, that is $(-(\ln 3) / 2,+\infty)$. This is illustrated at Figure 8.

Figure 8: Problem 15

