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Exercises

2. The equation to be solved is

y′′(t) + 5y′(t) + 6y(t) = 0.

The characteristic equation is

λ2 + 5λ+ 6 = 0.

The solutions are λ1 = −2 and λ2 = −3. Therefore,

y1(t) = e−2t and y2(t) = e−3t

are solutions of the given equation. Now calculate the Wronskian

W
(

e−2t, e−3t
)

=

∣

∣

∣

∣

∣

e−2t e−3t

−2e−2t −3e−3t

∣

∣

∣

∣

∣

= e−2t(−3)e−3t − e−3t(−2)e−2t = −e−5t 6= 0.

Nonzero Wronskian implies that these solutions are linearly independent. Thus they form a

fundamental set of solutions. The general solution is

y(t) = C1e
−2t + C2e

−3t.

9. The equation to be solved is

y′′(t) + 4y′(t) + 5y(t) = 0.

The characteristic equation is

λ2 + 4λ+ 5 = 0.

The solutions are λ1 = −2 + i and λ2 == −2− i. Therefore,

y1(t) = e−2t cos t and y2(t) = e−2t sin t

are solutions of the given equation. The Wronskian is not zero, so these solutions are linearly

independent. Thus they form a fundamental set of solutions. The general solution is

y(t) = C1e
−2t cos t+ C2e

−2t sin t = e−2t
(

C1 cos t+ C2 sin t
)

= Ae−2t cos(t− φ).

21. The initial value problem to be solved is

y′′(t) + 25y(t) = 0, y(0) = 1, y′(0) = −1.



First we find the general solution. The characteristic equation is

λ2 + 25 = 0.

The solutions are λ1 = 5i and λ2 = −5i. Therefore,

y1(t) = e5i t and y2(t) = e−5i t

are solutions of the given equation. But, we are interested in real solutions. So, use Euler’s

formula to get the real and imaginary part:

y1 = e5i t = cos(5t) + i sin(5t) and y2 = e−5i t = cos(5t)− i sin(5t).

As we showed in class the real part and the imaginary part of these functions are also

solutions of the given equation. Now calculate the Wronskian

W
(

cos(5t), sin(5t)
)

=

∣

∣

∣

∣

∣

cos(5t) sin(5t)

−5 sin(5t) 5 cos(5t)

∣

∣

∣

∣

∣

= 5(cos(5t))2 + 5(sin(5t))2 = 5 6= 0.

Nonzero Wronskian implies that cos(5t) and sin(5t) are linearly independent. Thus they

form a fundamental set of solutions of the given equation. The general solution is

y(t) = C1 cos(5t) + C2 sin(5t).

To solve the initial value problem we find the derivative first:

y′(t) = −5C1 sin(5t) + 5C2 cos(5t).

Now we use the initial conditions:

1 = y(0) = C1 · 1 + C2 · 0, −1 = y′(0) = −5C1 · 0 + 5C2 · 1.

Thus

C1 = 1 and C2 = −1

5
.

The solution of the given initial value problem is

y(t) = cos(5t)− 1

5
sin(5t).

But, much more preferable way to write the solution is in the form A cos(5t−φ). To do this

we use complex numbers:

cos(5t) = Re
(

e5i t
)

, −1

5
sin(5t) = Re

(

i

5
e5i t
)



Thus

cos(5t)− 1

5
sin(5t) = Re

(

e5i t +
i

5
e5i t
)

= Re

((

1 +
i

5

)

e5i t
)

.

Now we convert 1 + i/5 to polar form

1 +
i

5
=

√

1 +
1

25
ei θ =

√
26

5
ei θ,

where θ = arctan
(

1/5
)

. Hence,

(

1 +
i

5

)

e5i t =

√
26

5
ei θ e5i t =

√
26

5
ei(5 t+θ),

and therefore

cos(5t)− 1

5
sin(5t) = Re

((

1 +
i

5

)

e5i t
)

= Re

(√
26

5
ei(5 t+θ)

)

=

√
26

5
cos
(

5 t+ θ
)

.

Thus the solution is

y(t) = cos(5t)− 1

5
sin(5t) =

√
26

5
cos
(

5 t− φ
)

, where φ = − arctan
(

1/5
)

.

Just to make sure that the last two formulas represent the same function I plot them on the

same graph, see Figure 1.

22. The initial value problem to be solved is

y′′(t) + 10y′(t) + 25y(t) = 0, y(0) = 2, y′(0) = −1.

First we find the general solution. The characteristic equation is

λ2 + 10λ+ 25 = 0.

There is only one solution λ1 = −5. The corresponding solution of the given differential

equation is

y1(t) = e−5 t.

As it is explained in the book the other solution is

y2(t) = t e−5 t.

The solutions

y1(t) = e−5 t and y2(t) = t e−5 t

are linearly independent since their Wronskian is nonzero:

W
(

e−5 t, t e−5 t
)

=

∣

∣

∣

∣

∣

e−5 t t e−5 t

−5 e−5 t e−5 t − 5t e−5 t

∣

∣

∣

∣

∣

= e−10 t − 5t e−10 t + 5 t e−10 t = e−10 t 6= 0.
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Figure 1: Problem 21

The general solution is

y(t) = C1 e
−5 t + C2 t e

−5 t.

To solve the initial value problem we find the derivative first:

y′(t) = −5C1 e
−5 t + C2e

−5 t − 5C2t e
−5 t =

(

−5C1 + C2 − 5C2t
)

e−5 t.

Now we use the initial conditions:

2 = y(0) = C1 · 1 + C2 · 0, −1 = y′(0) = −5C1 + C2.

Thus

C1 = 2 and C2 = 9.

The solution of the given initial value problem is, see Figure 2,

y(t) = 2 e−5 t + 9 t e−5 t =
(

2 + 9 t
)

e−5 t.

My comment. The initial value problem that we solved here can be interpreted as describ-

ing the motion of a mass attached to a spring with damping. Here the mass is 1kg, damping

is 10kg/s and spring constant 25kg/s2. At time 0 the mass is displaced by 2m from the

equilibrium position and it is given the initial velocity -1m/s. The solution that we found
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Figure 2: Problem 22

describes the position of the mass at any time t > 0. It means that the mass will just creep

back to the equilibrium position.

An interesting question that arises here is whether we can give the mass an initial velocity

so that it passes through the equilibrium. To solve this problem we need to set the initial

velocity as an unknown quantity, call it v0 and solve the initial value problem:

y′′(t) + 10y′(t) + 25y(t) = 0, y(0) = 2, y′(0) = v0.

The solution of this problem is

y(t) =
(

2 + (10 + v0) t
)

e−5 t.

Now the question is: for which v0 there exists t > 0 such that y(t) = 0. Since e−5 t > 0, we

need a positive t such that

2 + (10 + v0) t = 0.

Solving for t we get t = −2/(10 + v0). This quantity will be positive if v0 < −10. For

example, for v0 = −18 we have t = 1/4 see Figure 3.

Looking at Figure 3, a natural question arises: What is the lowest position that the mass

will reach in this situation? Here we assume that v0 = −18 and the solution is

y(t) =
(

2− 8 t
)

e−5 t.
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Figure 3: Problem 22, my comments

To answer the question, we take the derivative

y′(t) = −5
(

2− 8 t
)

e−5 t − 8e−5 t =
(

−18 + 40 t
)

e−5 t.

Solving y′(t) = 0 for t > 0 we get t = 9/20. The lowest position of the mass is

y(9/20) =
(

2− 8 9/20
)

e−5 9/20 = −(8/5) e−9/4 ≈ −0.168639.

24. The initial value problem to be solved is

y′′(t)− 4y′(t)− 5y(t) = 0, y(1) = −1, y′(1) = −1.

First we find the general solution. The characteristic equation is

λ2 − 4λ− 5 = 0.

The solutions are λ1 = −1 and λ2 = 5. Therefore,

y1(t) = e−t and y2(t) = e5 t

are solutions of the given equation. These solutions are linearly independent. The general

solution is

y(t) = C1e
−t + C2e

5t.



To solve the initial value problem we find the derivative first:

y′(t) = −C1e
−t + 5C2e

5t.

Now we use the initial conditions:

−1 = y(1) = C1 · e−1 + C2 · e5, −1 = y′(1) = −C1 · e−1 + 5C2 · e5.

Thus we need to solve

C1e
−1 + C2e

5 = −1

−C1e
−1 + 5C2e

5 = −1

We can always solve one equation and substitute the solution into the other equation. But,

here it is easier to add two equations to get

6C2e
5 = −2.

Thus C2 = −e−5/3. Substituting this in the first equation we get C1e
−1 − 1/3 = −1. Thus

C1 = −2e/3. Finally, the solution is

y(t) = −2e

3
e−t − e−5

3
e5t = −1

3

(

2e1−t + e5(t−1)
)

.

26. The initial value problem to be solved is

4y′′(t) + y(t) = 0, y(1) = 0, y′(1) = −2.

First we find the general solution. The characteristic equation is

4λ2 + 1 = 0.

The solutions are λ1 = i/2 and λ2 = −i/2. The complex solutions are

eit/2 = cos
(

t/2
)

+ i sin
(

t/2
)

, e−it/2 = cos
(

t/2
)

− i sin
(

t/2
)

.

The real solutions are

cos
(

t/2
)

, sin
(

t/2
)

These solutions are linearly independent. The general solution is

y(t) = C1 cos
(

t/2
)

+ C2 sin
(

t/2
)

.

To solve the initial value problem we find the derivative first:

y′(t) = −C1

2
sin
(

t/2
)

+
C2

2
cos
(

t/2
)

.



Now we use the initial conditions:

0 = y(1) = C1 cos(1/2) + C2 sin(1/2), −2 = y′(1) = −C1

2
sin
(

1/2
)

+
C2

2
cos
(

1/2
)

.

Thus we need to solve

C1 cos(1/2) + C2 sin(1/2) = 0

−C1

2
sin
(

1/2
)

+
C2

2
cos
(

1/2
)

= −2

Solve the first equation for C1 and substitute the solution into the second equation:

C1 = −C2 sin(1/2)/ cos(1/2), C2
1

2

sin(1/2)

cos(1/2)
sin(1/2) + C2

1

2
cos(1/2) = −2.

Solve the last equation for C2:

C2
1

2

(sin(1/2))2 + (cos(1/2))2

cos(1/2)
= −2

C2
1

2

1

cos(1/2)
= −2

C2 = −4 cos(1/2)

Now

C1 = −C2
sin(1/2)

cos(1/2)
= 4 cos(1/2)

sin(1/2)

cos(1/2)
= 4 sin(1/2).

Finally, the solution is (see Figure 4)

y(t) = 4 sin(1/2) cos
(

t/2
)

− 4 cos(1/2) sin
(

t/2
)

.

My comment. It is interesting to determine the amplitude and the phase of this solution.

y(t) = Re
(

4 sin(1/2)eit/2 + 4 cos(1/2) i eit/2
)

= 4Re
(

(

sin(1/2) + i cos(1/2)
)

eit/2
)

= 4Re
(

i
(

cos(1/2)− i sin(1/2)
)

eit/2
)

= 4Re
(

ie−i 1/2eit/2
)

= 4Re
(

eiπ/2e−i1/2eit/2
)

= 4Re
(

ei(t−1+π)/2
)

= 4 cos
(

(t− 1 + π)/2
)

Thus the amplitude and the phase are

A = 4 and φ =
1− π

2
.
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Figure 4: Problem 26


