Section 4.5 version November 16, 2011 at 23:01

Exercises

2. The given equation is

$$
y^{\prime \prime}(t)+6 y^{\prime}(t)+8 y(t)=-3 e^{-t}
$$

To find a particular solution we try $y(t)=a e^{-t}$ and calculate

$$
a e^{-t}-6 a e^{-t}+8 a e^{-t}=-3 e^{-t}
$$

Thus $3 a=-3$, that is $a=-1$. Thus the particular solution is

$$
y_{p}(t)=-e^{-t}
$$

Finding the general solution of the corresponding homogeneous equation we have the general solution of this equation is

$$
y(t)=C_{1} e^{-2 t}+C_{2} e^{-4 t}-e^{-t}
$$

5. The given equation is

$$
y^{\prime \prime}(t)+4 y(t)=\cos (3 t)
$$

Instead we solve the complex equation

$$
z^{\prime \prime}(t)+4 z(t)=e^{3 i t}
$$

Then the real part of the solution of the complex equation will be the solution of the given equation.
For the complex equation try $a e^{3 i t}$. Find the first and the second derivative and substitute in the equation:

$$
-9 a e^{3 i t}+4 a e^{3 i t}=e^{3 i t}
$$

Thus we need to solve $-5 a=1$. Thus a particular solution of the complex equation is

$$
z(t)=-\frac{1}{5} e^{3 i t}=\frac{1}{5} e^{(3 t+\pi) i}=\frac{1}{5}(\cos (3 t+\pi)+i \sin (3 t+\pi))
$$

The real part of the complex solution is a solution of the original equation

$$
y_{p}(t)=\frac{1}{5} \cos (3 t+\pi)
$$

I prefer this way of writing solution since it emphasizes the amplitude as a positive number $1 / 5$ and it shows the phase $\phi=-\pi$. This solution is identical to the solution in the book. The general solution of the given differential equation is

$$
y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)+\frac{1}{5} \cos (3 t+\pi)
$$

6. The given equation is

$$
y^{\prime \prime}(t)+9 y(t)=\sin (2 t)
$$

Instead we solve the complex equation

$$
z^{\prime \prime}(t)+9 z(t)=e^{2 i t} .
$$

Then the imaginary part of the solution of the complex equation will be the solution of the given equation.
For the complex equation try $a e^{2 i t}$. Find the first and the second derivative and substitute in the equation:

$$
-4 a e^{2 i t}+9 a e^{2 i t}=e^{2 i t} .
$$

Thus we need to solve $5 a=1$. Thus a particular solution of the complex equation is

$$
z(t)=\frac{1}{5} e^{2 i t}=\frac{1}{5}(\cos (2 t)+i \sin (2 t))
$$

The imaginary part of the complex solution is a solution of the original equation

$$
y_{p}(t)=\frac{1}{5} \sin (2 t) .
$$

The general solution of the given differential equation is

$$
y(t)=C_{1} \cos (3 t)+C_{2} \sin (3 t)+\frac{1}{5} \sin (2 t)
$$

BC comment. The above equation can be viewed as a model of a spring-mass system without damping and with the forcing term (in my picture drawn on the blackboard it is "wind") $\sin (2 t)$. Now we can answer the question how this system will respond if the mass is at rest at time $t=0$.
From $y(0)=0$ we conclude that $C_{1}=0$. Since we also have $y^{\prime}(0)=0$ we have $3 C_{2}+2 / 5=0$. Hence $c_{2}=-2 / 15$. Thus the solution is (see Figure 1)

$$
y(t)=\frac{1}{15}(-2 \sin (3 t)+3 \sin (2 t)) .
$$

The period of $\sin (3 t)$ is $2 \pi / 3$ and the period of $\sin (2 t)$ is π. Thus, the period of the solution is 2π.
If you are wondering how other solutions look like look at Figures 2 and 3. In Figure 2 I vary the initial position and in Figure 3 I vary the initial velocity.
8. The given equation is

$$
y^{\prime \prime}(t)+7 y^{\prime}(t)+10 y(t)=-4 \sin (3 t)
$$

Figure 1: Problem 6

Instead we solve the complex equation

$$
z^{\prime \prime}(t)+7 z^{\prime}(t)+10 z(t)=-4 e^{3 t i}
$$

Then the imaginary part of the solution of the complex equation will be the solution of the given equation.
For the complex equation try $a e^{3 i t}$. Find the first and the second derivative and substitute in the equation:

$$
-9 a e^{3 i t}+21 a i e^{3 i t}+10 a e^{3 i t}=-4 e^{3 i t}
$$

Thus we need to solve $a(1+21 i)=-4$. Thus a particular solution of the complex equation is

$$
z_{p}(t)=\frac{-4}{1+21 i} e^{3 i t}=\frac{-4}{1+21 i}(\cos (3 t)+i \sin (3 t))=\frac{-4+84 i}{442}(\cos (3 t)+i \sin (3 t))
$$

The imaginary part of the last displayed function is

$$
y_{p}(t)=\frac{84}{442} \cos (3 t)-\frac{4}{442} \sin (3 t)=\frac{2}{221}(21 \cos (3 t)-\sin (3 t))
$$

This is a particular solution.
But, it is always good to find a solution in the amplitude-phase form. For that write $1+21 i$ in the polar form:

$$
1+21 i=\sqrt{442} e^{\phi i}, \quad \text { where } \quad \phi=\arctan (21) .
$$

Figure 2: Problem 6

Figure 3: Problem 6

Then,

$$
\frac{1}{1+21 i}=\frac{1}{\sqrt{442}} e^{-\phi i}, \quad \text { where } \quad \phi=\arctan (21)
$$

and consequently, since $-1=e^{\pi i}$, we have

$$
z_{p}(t)=\frac{-4}{\sqrt{442}} e^{-\phi i} e^{3 i t}=\frac{4}{\sqrt{442}} e^{(\pi-\phi) i} e^{3 i t}=\frac{4}{\sqrt{442}} e^{(3 t+\pi-\phi) i}
$$

The imaginary part here is

$$
y_{p}(t)=\frac{4}{\sqrt{442}} \sin (3 t+\pi-\phi)=\frac{4}{\sqrt{442}} \sin (3 t-(\phi-\pi))
$$

Just to verify that two formulas that we found coincide we show them both in Figure 4.

Figure 4: Problem 8
21. The initial value problem to be solved is

$$
y^{\prime \prime}(t)-2 y^{\prime}(t)+5 y(t)=3 \cos (t), \quad y(0)=0, \quad y^{\prime}(0)=-2 .
$$

The characteristic equation of the corresponding homogeneous equation is

$$
\lambda^{2}-2 \lambda+5=0
$$

The solution of this equation are

$$
\lambda_{1,2}=\frac{2 \pm \sqrt{4-20}}{2}=1 \pm 2 i
$$

Thus the general solution of the corresponding homogeneous equation is

$$
y_{H}(t)=C_{1} e^{t} \cos (2 t)+C_{2} e^{t} \sin (2 t) .
$$

To find a particular solution we solve the complex equation:

$$
z^{\prime \prime}(t)-2 z^{\prime}(t)+5 z(t)=3 e^{i t}
$$

We look for a solution in the form $a e^{i t}$. Substituting yields

$$
-a e^{i t}-2 i a e^{i t}+5 a e^{i t}=3 e^{i t}
$$

To find a we solve $a(4-2 i)=3$. Thus the solution is

$$
z_{p}(t)=\frac{3}{4-2 i} e^{i t}=\frac{12+6 i}{20}(\cos (t)+i \sin (t))
$$

The real part of the last function is

$$
y_{p}(t)=\frac{3}{5} \cos (t)-\frac{3}{10} \sin (t)
$$

Thus the general solution of the given equation is

$$
y(t)=C_{1} e^{t} \cos (2 t)+C_{2} e^{t} \sin (2 t)+\frac{3}{5} \cos (t)-\frac{3}{10} \sin (t)
$$

To solve for C_{1} and C_{2} we use initial conditions: $y(0)=0$ and $y^{\prime}(0)=-2$. The first condition $y(0)=0$ yields $C_{1}=-3 / 5$. Now we calculate $y^{\prime}(t)$:
$y^{\prime}(t)=e^{t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right)+e^{t}\left(-2 C_{1} \sin (2 t)+2 C_{2} \cos (2 t)\right)-\frac{3}{5} \sin (t)-\frac{3}{10} \cos (t)$.
Then

$$
y^{\prime}(0)=C_{1}+2 C_{2}-\frac{3}{10}=-2 .
$$

Hence $C_{2}=-11 / 20$ and the solution of the given problem is

$$
y(t)=-\frac{3}{5} e^{t} \cos (2 t)-\frac{11}{20} e^{t} \sin (2 t)+\frac{3}{5} \cos (t)-\frac{3}{10} \sin (t)
$$

26. The given equation is

$$
y^{\prime \prime}(t)+4 y(t)=4 \cos (2 t)
$$

Instead we solve the complex equation

$$
z^{\prime \prime}(t)+4 z(t)=4 e^{2 i t}
$$

Since $\operatorname{Re}\left(4 e^{2 i t}\right)=4 \cos (2 t)$, the real part of the solution of the complex equation will be the solution of the given equation.
For the complex equation try $a e^{2 i t}$. Find the first and the second derivative and substitute in the equation:

$$
-4 a e^{2 i t}+4 a e^{2 i t}=4 e^{2 i t}
$$

Thus we get $0=4 e^{2 i t}$, which is impossible. So, we have to change the guessed solution to $z(t)=a t e^{2 i t}$. Then calculate

$$
\begin{aligned}
z^{\prime}(t) & =a e^{2 i t}+2 i a t e^{2 i t}=a(1+2 i t) e^{2 i t} \\
z^{\prime \prime}(t) & =2 i a e^{2 i t}+2 i a(1+2 i t) e^{2 i t}=4 a(i-t) e^{2 i t}
\end{aligned}
$$

Substitute the second derivative in the equation and we get

$$
4 a(i-t) e^{2 i t}+4 a t e^{2 i t}=4 e^{2 i t}
$$

Simplifying yields

$$
4 a i e^{2 i t}=4 e^{2 i t}
$$

that is $a i=1$, or $a=-i$. Thus, the complex solution is

$$
z(t)=-i t e^{2 i t}=-i t \cos (2 t)+t \sin (2 t)
$$

Since we are looking for the real part, a particular solution of the given equation is

$$
t \sin (2 t)
$$

The general solution is

$$
y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)+t \sin (2 t) .
$$

This solution is significantly different than any solutions. The function $t \sin (2 t)$ (see Figure 5) is unbounded. In terms of a string: if the forces are aligned as in this problem, the string would break. This phenomenon is called resonance.
Now we can find the solution that satisfies $y(0)=0$ and $y^{\prime}(0)=0$. That solution is $t \sin (2 t)$ and it is shown in Figure 5. Several other solutions are shown in Figures 6 and 7.

Figure 5: Problem 26

Figure 6: Problem 26

Figure 7: Problem 26

