Section 5.4 version December 1, 2011 at 22:04

Exercises

17. We need to solve the initial value problem

$$
y^{\prime \prime}(t)+y^{\prime}(t)=t e^{-t}, \quad y(0)=-2, \quad y^{\prime}(0)=0
$$

Applying the Laplace transform to both sides of the equation we get

$$
s^{2} Y(s)+2 s+s Y(s)+2=\frac{1}{(s+1)^{2}}
$$

Solving for $Y(s)$ yields

$$
Y(s)=\frac{1}{s(s+1)(s+1)^{2}}-\frac{2(s+1)}{s(s+1)}=\frac{1}{s(s+1)^{3}}-\frac{2}{s}
$$

Now the only problem is to find A, B, C, D such that

$$
\frac{1}{s(s+1)^{3}}=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{(s+1)^{2}}+\frac{D}{(s+1)^{3}} .
$$

Writing the rational expressions on the right-hand side and equating the resulting numerator to 1 we get the equations for A, B, C, D :

$$
A=1, \quad 3 A+B+C+D=0, \quad 3 A+2 B+C=0, \quad A+B=0
$$

Clearly the solution is $A=1, B=-1, C=-1, D=-1$. Hence,

$$
\frac{1}{s(s+1)^{3}}=\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}-\frac{1}{(s+1)^{3}}
$$

Thus,

$$
Y(s)=\frac{1}{s(s+1)^{3}}-\frac{2}{s}=-\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}-\frac{1}{2} \frac{2!}{(s+1)^{3}}
$$

All functions in the last expression for $Y(s)$ above are in the table of Laplace transforms. (Look at both: the special and the general rules.) Therefore the inverse Laplace transform of $Y(s)$ is (see Figure 1)

$$
y(t)=-1-e^{-t}-t e^{-t}-\frac{1}{2} t^{2} e^{-t}
$$

Figure 1: Problem 17

