Section 5.5 version December 4, 2011 at 13:57
 Exercises

6. We need to calculate the Laplace transform of

$$
H(t-2) e^{-t}
$$

Notice that the Laplace transform of

$$
H(t-2) e^{-(t-2)}=H(t-2) f(t-2) \quad \text { where } \quad f(t)=e^{-t}
$$

can be calculated using the Table of Laplace transforms. Thus the Laplace transform of

$$
H(t-2) e^{-(t-2)} \quad \text { is } \quad e^{-2 s} \frac{1}{s+1} .
$$

But,

$$
H(t-2) e^{-(t-2)}=H(t-2) e^{-t+2}=e^{2} H(t-2) e^{-t},
$$

and therefore

$$
H(t-2) e^{-t}=e^{-2} H(t-2) e^{-(t-2)}
$$

Thus the Laplace transform of

$$
H(t-2) e^{-t} \quad \text { is } \quad e^{-2} e^{-2 s} \frac{1}{s+1}=e^{-2(s+1)} \frac{1}{s+1} .
$$

13. The given function is (see Figure 1)

$$
f(t)= \begin{cases}0, & \text { if } \quad t<0 \\ t^{2}, & \text { if } \quad 0 \leq t<2 \\ 4, & \text { if } \quad 2 \leq t\end{cases}
$$

Figure 1: Problem 13
Using the interval function $H_{a b}(t)$ we can write $f(t)$ as

$$
\begin{aligned}
f(t) & =t^{2} H_{0,2}(t)+4 H_{2}(t) \\
& =t^{2}\left(H_{0}(t)-H_{2}(t)\right)+4 H_{2}(t) \\
& =t^{2} H_{0}(t)-t^{2} H_{2}(t)+4 H_{2}(t) \\
& =t^{2}+\left(4-t^{2}\right) H_{2}(t) \\
& =t^{2}+H(t-2)\left(-4(t-2)-(t-2)^{2}\right) \\
& =t^{2}-4(t-2) H(t-2)-(t-2)^{2} H(t-2)
\end{aligned}
$$

Now we can use the table of the transforms to find the Laplace transform of $f(t)$

$$
\frac{2}{s^{3}}-4 \frac{e^{-2 s}}{s^{2}}-2 \frac{e^{-2 s}}{s^{3}}=\frac{2}{s^{3}}\left(1-e^{-2 s}\right)-e^{-2 s} \frac{4}{s^{2}}
$$

14. The given function is (see Figure 2)

$$
f(t)= \begin{cases}3, & \text { if } \quad 0 \leq t<1 \\ 2, & \text { if } 1 \leq t<2 \\ 1, & \text { if } 2 \leq t<3 \\ 0, & \text { if } 3 \leq t\end{cases}
$$

Using the interval function $H_{a b}(t)$ we can write $f(t)$ as

$$
\begin{aligned}
f(t) & =3 H_{0,1}(t)+2 H_{1,2}(t)+1 H_{2,3}(t) \\
& =3\left(H_{0}(t)-H_{1}(t)\right)+2\left(H_{1}(t)-H_{2}(t)\right)+\left(H_{2}(t)-H_{3}(t)\right) \\
& =3 H_{0}(t)-H_{1}(t)-H_{2}(t)-H_{3}(t) \\
& =3-H_{1}(t)-H_{2}(t)-H_{3}(t) .
\end{aligned}
$$

Now we can use the table of the transforms to find the Laplace transform of $f(t)$

$$
\frac{3}{s}-\frac{e^{-s}}{s}-\frac{e^{-2 s}}{s}-\frac{e^{-3 s}}{s}=\frac{3-e^{-s}-e^{-2 s}-e^{-3 s}}{s} .
$$

22. The given function is

$$
F(s)=\frac{1-e^{-s}}{s(s+2)}=\frac{1}{s(s+2)}-e^{-s} \frac{1}{s(s+2)}
$$

To find the inverse laplace transform of this function first find the inverse Laplace transform of

$$
F_{1}(s)=\frac{1}{s(s+2)}=\frac{1}{2}\left(\frac{1}{s}-\frac{1}{s+2}\right) .
$$

From the table of Laplace transforms we see that it is the function

$$
f_{1}(t)=\frac{1}{2}\left(1-e^{-2 t}\right) .
$$

Now looking at the table again we can see that the inverse laplace transform of this function first find the inverse Laplace transform of

$$
F_{2}(s)=e^{-s} \frac{1}{s(s+2)}
$$

is

$$
f_{2}(t)=H(t-1) f(t-1)=\frac{1}{2} H(t-1)\left(1-e^{-2(t-1)}\right)=\frac{1}{2} H(t-1)\left(1-e^{2} e^{-2 t}\right)
$$

Finally, the inverse Laplace transform of the given function is

$$
f(t)=f_{1}(t)-f_{2}(t)=\frac{1}{2}\left(1-e^{-2 t}\right)-\frac{1}{2} H(t-1)\left(1-e^{2} e^{-2 t}\right) .
$$

It is interesting to rewrite this function $f(t)$ as a piecewise defined function:

$$
f(t)=\left\{\begin{array}{lll}
\frac{1}{2}\left(1-e^{-2 t}\right) & \text { if } & 0 \leq t<1 \\
\frac{1}{2}\left(e^{2}-1\right) e^{-2 t} & \text { if } & 1 \leq t
\end{array}\right.
$$

Figure 3: Problem 22
28. The initial value problem that we are asked to solve can be written as

$$
y^{\prime \prime}(t)+4 y(t)=H_{1}(t)-H_{2}(t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Applying the Laplace transform to both sides of the equation and using the initial conditions we get the equation for $Y(s)$:

$$
\left(s^{2}+4\right) Y(s)=\frac{e^{-s}-e^{-2 s}}{s} .
$$

The solution is

$$
Y(s)=\frac{e^{-s}-e^{-2 s}}{s\left(s^{2}+4\right)}=e^{-s} \frac{1}{s\left(s^{2}+4\right)}-e^{-2 s} \frac{1}{s\left(s^{2}+4\right)}
$$

To calculate the inverse Laplace transform of $Y(s)$ we first calculate the inverse Laplace transform of

$$
\frac{1}{s\left(s^{2}+4\right)}=\frac{1}{4}\left(\frac{1}{s}-\frac{s}{s^{2}+4}\right) .
$$

That is the function

$$
\frac{1}{4}(1-\cos (2 t))
$$

Using the table of Laplace transform we read that the inverse Laplace transform of

$$
e^{-s} \frac{1}{s\left(s^{2}+4\right)} \quad \text { is } \quad \frac{1}{4} H(t-1)((1-\cos (2(t-1)))
$$

and the inverse Laplace transform of

$$
e^{-2 s} \frac{1}{s\left(s^{2}+4\right)} \quad \text { is } \quad \frac{1}{4} H(t-2)(1-\cos (2(t-2))) .
$$

Therefore

$$
y(t)=\frac{1}{4}(H(t-1)(1-\cos (2 t-2))-H(t-2)(1-\cos (2 t-4)))
$$

Again, we rewrite $y(t)$ as a piecewise defined function:

$$
y(t)= \begin{cases}0 & \text { if } \quad 0 \leq t<1 \\ \frac{1}{4}(1-\cos (2 t-2)) & \text { if } \quad 1 \leq t<2 \\ \frac{1}{4}(\cos (2 t-4)-\cos (2 t-2)) & \text { if } 2 \leq t\end{cases}
$$

The expression $\cos (2 t-4)-\cos (2 t-2)$ can be simplified using Euler's identity

$$
\begin{aligned}
\cos (2 t-4)-\cos (2 t-2) & =\operatorname{Re}\left(e^{(2 t-4) i}-e^{(2 t-2) i}\right) \\
& =\operatorname{Re}\left(e^{(2 t-3) i}\left(e^{-i}-e^{i}\right)\right) \\
& =\operatorname{Re}\left(e^{(2 t-3) i}(\cos (1)-i \sin (1)+\cos (1)-i \sin (1))\right) \\
& =\operatorname{Re}\left(e^{(2 t-3) i}(-2 i \sin (1))\right) \\
& =2 \sin (1) \sin (2 t-3) .
\end{aligned}
$$

Thus the amplitude of the third part of the solution is $\frac{\sin (1)}{2}$. This is indicated by dashed lines in Figure 4.

A periodic on-off switch

Let c be a positive real number. A periodic on-off switch is a periodic function with period $2 c$ with the graph given in Figure 5 below.

Figure 5: A periodic on-off switch
A possible formula for this function is $f(t)=H(\sin (\pi t / c))$. For example, for $c=1.5$ the graph is given in Figure 6.

Figure 6: A periodic on-off switch, $c=1.5$
The window of the function $f(t)$ (with unspecified c) is the function $1-H_{c}(t)$. The graph is given in Figure 7 where the graph of the window is in blue with the dark blue part belonging to $f(t)$ and the light blue part is the part outside of the interval $[0,2 c)$.

Figure 7: The window of a periodic on-off switch

The Laplace transform of the window of $f(t)$, that is of $1-H_{c}(t)$, is $\frac{1-e^{-c s}}{s}$. Therefore the Laplace transform of the periodic on-off switch is

$$
\frac{1-e^{-c s}}{s\left(1-e^{-2 c s}\right)}=\frac{1}{s\left(1+e^{-c s}\right)}
$$

