Linear Second Order Equations with Constant Coefficients

Key concepts:

• Physical Application: The motion of a mass attached to a spring (pages 159, 160 and 193 (2nd: 155, 156 and 189)) leads to the equation

m y'' + b y' + k y = 0	where:	m	is the mass attached to a spring,
		b	is the coefficient of damping,
		k	is the spring constant

- Finding the general solution of the equation a y"+by'+cy = 0 using the characteristic polynomial a s² + b s + c = 0.
 Section 3.6:
 - page 325 (2nd 317) A free gift from the Math Dept (ignore systems and vector solutions),
 - pages 327-328 (2nd 319-320) Solving initial-value problems,
 - page 328 (2nd 320) Complex eigenvalues (that is complex roots of the characteristic polynomial, ignore vector solutions),
 - page 329 (2nd 321) The Method of the Lucky Guess
 - page 334 (2nd 326) A critically damped oscillator (that is the characteristic polynomial has only one root).
- A Classification of Harmonic Oscillators (pages 330-336 (2nd 322-328)). Ignore vector solutions.
- **Exercises** page 168 (2nd 164): 21, 22, 23; page 198 (2nd 194): 15-18 (find the general solutions); page 289 (2nd 281): 21, 22
 - Section 3.6: A selection from 1 28 and 38, 39, 40
 - In all these exercises ignore references to systems and phase portraits.