Summer 2007 Math 331: Week 4

Linear Second Order Equations with Constant Coefficients

Key concepts:

- Physical Application: The motion of a mass attached to a spring (pages 159, 160 and 193 (2nd: 155, 156 and 189)) leads to the equation

$$
m y^{\prime \prime}+b y^{\prime}+k y=0 \text { where: } \quad \begin{aligned}
& m \text { is the mass attached to a spring, } \\
& b \\
& k \quad \text { is the coefficient of damping, } \\
& k
\end{aligned}
$$

- Finding the general solution of the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ using the characteristic polynomial $a s^{2}+b s+c=0$.
Section 3.6:
- page 325 (2nd 317) A free gift from the Math Dept (ignore systems and vector solutions),
- pages 327-328 (2nd 319-320) Solving initial-value problems,
- page 328 (2nd 320) Complex eigenvalues (that is complex roots of the characteristic polynomial, ignore vector solutions),
- page 329 (2nd 321) The Method of the Lucky Guess
- page 334 (2nd 326) A critically damped oscillator (that is the characteristic polynomial has only one root).
- A Classification of Harmonic Oscillators (pages 330-336 (2nd 322-328)). Ignore vector solutions.

Exercises • page 168 (2nd 164): 21, 22, 23; page 198 (2nd 194): 15-18 (find the general solutions); page 289 (2nd 281): 21, 22

- Section 3.6: A selection from 1-28 and 38, 39, 40
- In all these exercises ignore references to systems and phase portraits.

