MATH 430

Assignment 2 November 20, 2012

Name

Problem 1. Consider the function $x \mapsto x^2$, $0 < x < \pi$. Denote by f the Fourier periodic extension of the even extension of this function. Denote by g the Fourier periodic extension of the odd extension of the given function. Denote by h the Fourier periodic extension of the function obtained by extending the given function by 0 on $(-\pi, 0]$.

- (a) Find the Fourier series of the functions f, g and h.
- (b) What is the relationship between the functions f, g and h? Explain how this relationship could be used to simplify the calculations in (a).
- (c) Find the following sums $\sum_{n=1}^{\infty} \frac{1}{n^2}$, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$. Explain your answer using the Fourier series calculated above.
- (d) Use the properties of the translation and the addition formula for cosine to find which function has $\sum_{n=1}^{\infty} \frac{1}{n^2} \cos(nx)$ as its Fourier series. Use Mathematica to confirm that your solution is correct.
- (e) Performing term by term indefinite integration of the Fourier series in (d), find which function has $\sum_{n=1}^{\infty} \frac{1}{n^4} \cos(nx)$ as its Fourier series. Mathematica can be helpful here, but I expect a derivation of the formula that is not Mathematica dependent.
- (f) In (e) you found the sums of some interesting numerical series. Which ones?

Problem 2. Consider the function $x \mapsto e^{ax}$, $-\pi < x < \pi$.

- (a) Find the Fourier series of this function. Express all the Fourier coefficients using the hyperbolic (not the exponential!) functions.
- (b) Use the Fourier series from (a) to find the sums $\sum_{n=1}^{\infty} \frac{1}{a^2 + n^2}$, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{a^2 + n^2}$.
- (c) Does the series $\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$ converge uniformly on \mathbb{R} ? Explain the best you can. Even a fully rigorous explanation is not too difficult.

Problem 3. Consider the vibrating string equation

$$\frac{\partial^2 u}{\partial t^2}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t)$$

subject to the boundary conditions

$$u(0,t)-\frac{\partial u}{\partial x}(0,t)=0, \qquad 2\,u(\pi,t)+\frac{\partial u}{\partial x}(\pi,t)=0, \quad t\geq 0,$$

and the initial conditions

$$u(x,0) = f(x), \qquad \frac{\partial u}{\partial t}(x,0) = 0, \quad 0 \le x \le \pi.$$

- (a) Solve the above problem.
- (b) This problem can be interpreted as a mathematical model of vibrations of a string whose endpoints are fixed and the end parts of the string are rigid (soaked in super-glue). Assume that the in initial shape of the string is $f(x) = \frac{1}{5} \left(-1 x \left(\pi + \frac{1}{2} \frac{3}{2\pi}\right) x^2 + x^3\right), 0 \le x \le \pi$, and assume that f(x) satisfies the boundary conditions. What is the domain of the entire string? Write the equation for the initial shape of the entire string?
- (c) Illustrate in Mathematica.

Problem 4. This problem is for graduate students only. Consider a string of length 5, that is $0 \le x \le 5$, which is fixed at its endpoints. Assume the part of the string between 1 and 2 is rigid (soaked in super-glue).

- (a) Establish a mathematical model for the vibrations of this string.
- (b) Solve the problem that you formulated in (a).
- (c) Illustrate in Mathematica with the initial shape given by $f(x) = 3x 2x^2, 0 \le x \le 1$, f(x) = 2 x, 1 < x < 2 and $f(x) = (10 7x + x^2)/3, 2 \le x \le 5$, and no initial velocity.
- (d) Illustrate in Mathematica with no initial displacement and the initial velocity $g(x) = \sin(2\pi x/5), 0 \le x \le 5$.