An example of the Method of Charactenstics
$a \neq 0 \quad a x^{2}+b x+c=0$

$$
\Leftrightarrow \quad x \in\left\{\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}, \frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right\}
$$

$u(x, y)$ is an unknown function. of tiro variables $A(x, y, z), B(x, y, z), C(x, y, z)$ are given coefficients We are solving g l. PD:

$$
\begin{aligned}
& \text { Te are solving gel. PDE: } \\
& A(x, y, u) U_{x}(x, y)+B(x, y, u) u_{y}(x, y)=C(x, y, u) \\
& \text {, } h \text {) vector }
\end{aligned}
$$

To this PDE we associate the vector field

$$
A(x, y, z), B(x, y, z), C(x, y, z)
$$

On Friday we showed that the sol surface is tangut to this vector field.
From Math 331 we knower how to find cronies which ore tangent to this vector field. these curves are called Hacharcecteristics of the given PDE.
Hour do we communicate curves in 3-fpeci? We use vector valued functions:
s is a variable $s \longmapsto\langle X(s), Y(s), Z(s)\rangle$ represents a curve in 3-space. Fo this curve to be tangent to the field $\langle A(), B(), C()\rangle$ I need to have:

$$
\begin{aligned}
& \frac{d Y}{d s}(s)=(X(s), Y(s), Z(s)) \\
& \frac{d Z}{d s}(s)=C(X(s), Y(s), Z(s))
\end{aligned}
$$

Given initial Conditions $X(0)=$?,$Y(0)=$ Pet a $z(0)=?$? ${ }^{2}$
the initial condition for

$$
u(x, y)
$$

$$
u(x, 0)=f(x)
$$

$$
\text { Charst. }\left\{\begin{array}{l}
\frac{d X}{d s}=A(X, Y, Z) \\
\frac{d y}{d s}=(X, Y, Z) \\
\frac{d z}{d s}=C(X, Y, Z) \\
X(0)=\xi \tag{IV}\\
Y(0)=0 \\
Z(0)=f(\xi)
\end{array}\right.
$$

I imagine I can solve this system

I get solwhins which depend on the o independent variables: s and ξ

$$
\left\{\begin{array}{l}
X(s, \xi), Y(s, \xi), Z(s, \xi)\rangle \\
\text { He isisthe graph of } u(x, y)
\end{array}\right.
$$

surface, this, the graph of $n(x, y)$ runkinction
To find a formula for $z=u(x, y)$ we have to eliminate s, r. This can be tricky.

Thine of the unit sphere.

Here I explained how I write script u, it is u, like in unit sphere. I differentiate it front Greek μ, by giving μ a long tail. In LateX μ is $1 \mathrm{mu}, \nu$ is inn, $\bar{\xi}$ is vi.
Here I want to illustrate $\langle X(s, \xi), Y(s, \xi), Z(s, \xi)\rangle$ vs. $z=u(x, y)$, that is $\langle x, y, u(x, y)\rangle$ with the unit sphere. The parametric equations of the mint sphere are: $\langle\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi\rangle$.
From, these equations, and with $\cos \varphi \geqslant 0$, how would we find the equation $z=\sqrt{1-x^{2}-y^{2}}$?. We would need to solve $\begin{aligned} & x=\cos \theta \sin \varphi \\ & y=\sin \theta \sin \varphi\end{aligned}$ for φ in terms of x and y and Here is how it goes: $x^{2}+y^{2}=(\sin \varphi)^{2}=1-(\cos \varphi)^{2}$. Thus $(\cos \varphi)^{2}=1-x^{2}-y^{2}$. Since $\cos \varphi \geqslant 0, z=\sqrt{1-x^{2}-y^{2}}$

Now example : Transport Equation.

$$
a u_{x}(x, t)+u_{z}(x, t)=0
$$

$a \in \mathbb{R} a \neq 0$
Helector field is $\langle a, 1,0\rangle$.
The initial condition:

$$
\begin{aligned}
& \text { condition: } \\
& u(x, 0)=f(x)
\end{aligned}
$$

$$
\begin{gathered}
u(x, 0)=f(x-a \cdot 0)=f(x) \\
u_{x}(x, t)=f^{\prime}(x-a t) \cdot 1 \\
u_{t}(x, t)=f^{\prime}(x-a t)(-a) \\
a u_{x}+u_{t}=a f^{\prime}(x-a t)+(-a) f^{\prime}(x-a t)=0
\end{gathered}
$$

