More examples of MoG

A big part of $M_{0} C$ is understancling the germithy of the charactuishics.
In this case, since the z-cord. does not change ur only need to understand the projections of characteristics. called ed es Aharateritics

$$
\begin{aligned}
& x=a s+\xi \\
& t=s \\
& x=a t+3 \\
& \text { all minted }
\end{aligned}
$$

all sougict char terarariel

How does $u(x, t)$ change in time?

$$
\begin{array}{ll}
t=0 & u(x, 0)=f(x) \\
t=1 & u(x, 1)=f(x-a)
\end{array}
$$

$$
\mu(x, t)=f(x-a t)
$$

is just a right wand shift; the graph of $f(x)$ moves to the right at speed a wits of x /ant of time.

Solve! \rightarrow Starit from $z, \$ z$ then T; Hhan X

$$
\begin{aligned}
& Z(s)=f(\zeta) \\
& T(s)=s \\
& X / s)=f(\xi) s+\xi \\
& \langle f(\xi) s+\xi, s, f(\xi)
\end{aligned}
$$

$$
\text { sitvariable, " cont } x \text {. }
$$

these ore the characteristics Wreach 3 we art suc chomedainic

Under tand the propectious Inist 7

Can you understand the projected charactenthics?

$$
\begin{aligned}
& \text { projected charactensurs } \\
& \langle f(\xi) s+\xi, s\rangle \\
& f(\xi)=e^{-\xi^{2}}
\end{aligned}
$$

these are lives, but how they are positioned? How they chang with $\}$? Just plotting many of them in Mathematic would answer that, but it is interesting to play with this question just on paper.

