BASES

BRANKO ĆURGUS

Throughout this note \mathcal{V} is a vector space over \mathbb{F} and j, k, l, m, and n are natural numbers.

Definition 1. Vectors $v_{1}, \ldots, v_{n} \in \mathcal{V}$ are said to be linearly dependent if there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ and $k \in\{1, \ldots, n\}$ such that $\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}=0$ and $\alpha_{k} \neq 0$.

The formal negation of the statement in Definition 1 is:
For all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ and all $k \in\{1, \ldots, n\}$ we have $\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n} \neq 0$ or $\alpha_{k}=0$.

The last statement is equivalent to:
For all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ and all $k \in\{1, \ldots, n\}$ we have $\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}=0$ implies $\alpha_{k}=0$.

The last statement can be restated as:
If $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ and $\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}=0$, then $\alpha_{k}=0$ for all $k \in$ $\{1, \ldots, n\}$.

Definition 2. Vectors $v_{1}, \ldots, v_{n} \in \mathcal{V}$ are said to be linearly independent if $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ and $\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}=0$ implies $\alpha_{k}=0$ for all $k \in\{1, \ldots, n\}$.

Lemma 3. Let $k \leq m$ and let v_{1}, \ldots, v_{m} be vectors in \mathcal{V}. If the vectors v_{1}, \ldots, v_{k} are linearly dependent, then the vectors v_{1}, \ldots, v_{m} are linearly dependent.

Proof. Let the vectors v_{1}, \ldots, v_{k} be linearly dependent. Then there exist $\alpha_{1}, \ldots, \alpha_{k}$ in \mathbb{F}, not all equal to 0 , such that $\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}=0$. Take $\alpha_{k+1}=\cdots=\alpha_{m}=0$. Then, not all $\alpha_{1}, \ldots, \alpha_{k}, \ldots, \alpha_{m}$ are equal to 0 and $\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}+\cdots+\alpha_{m} v_{m}=0$. Therefore, v_{1}, \ldots, v_{m} are linearly dependent.

The following corollary is the contrapositive of Lemma 3.
Corollary 4. Let $k \leq m$ and let v_{1}, \ldots, v_{m} be vectors in \mathcal{V}. If the vectors v_{1}, \ldots, v_{m} are linearly independent, then the vectors v_{1}, \ldots, v_{k} are linearly independent.

Lemma 5. Let $m \geq 2$, let v_{1}, \ldots, v_{m} be vectors in \mathcal{V}. The vectors v_{1}, \ldots, v_{m} are linearly dependent if and only if there exists $k \in\{1,2, \ldots, m\}$ such that

$$
\begin{equation*}
\operatorname{span}\left\{v_{l}: l \in\{1, \ldots, m\} \backslash\{k\}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\} \tag{1}
\end{equation*}
$$

Proof. Assume that v_{1}, \ldots, v_{m} are linearly dependent. Then there exist $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ such that $\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}=0$ and there exists $k \in$ $\{1, \ldots, m\}$ such that $\alpha_{k} \neq 0$. Now, $\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}=0$ implies

$$
v_{k}=-\left(1 / \alpha_{k}\right)\left(\alpha_{1} v_{1}+\cdots+\alpha_{k-1} v_{k-1}+\alpha_{k+1} v_{k+1}+\cdots+\alpha_{m} v_{m}\right)
$$

Thus $v_{k} \in \operatorname{span}\left\{v_{l}: l \in\{1, \ldots, m\} \backslash\{k\}\right\}$. Consequently

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\} \subseteq \operatorname{span}\left\{v_{l}: l \in\{1, \ldots, m\} \backslash\{k\}\right\}
$$

Since the converse inclusion is trivial, the "if" part of the lemma is proved.
Assume that there exists $k \in\{1,2, \ldots, m\}$ such that (1) holds. Then $v_{k} \in \operatorname{span}\left\{v_{l}: l \in\{1, \ldots, m\} \backslash\{k\}\right\}$. Therefore there exist

$$
\beta_{1}, \ldots, \beta_{k-1}, \beta_{k+1}, \ldots, \beta_{m} \in \mathbb{F}
$$

such that $v_{k}=\beta_{1} v_{1}+\cdots+\beta_{k-1} v_{k-1}+\beta_{k+1} v_{k+1}+\cdots+\beta_{m} v_{m}$. Consequently,

$$
\beta_{1} v_{1}+\cdots+\beta_{k-1} v_{k-1}+(-1) v_{k}+\beta_{k+1} v_{k+1}+\cdots+\beta_{m} v_{m}=0
$$

Since $-1 \neq 0, v_{1}, \ldots, v_{m}$ are linearly dependent.
Lemma 6. If $\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$ and $w \in \mathcal{V} \backslash\{0\}$, then, after a suitable renumbering of v_{1}, \ldots, v_{m}, we have

$$
\mathcal{V}=\operatorname{span}\left\{w, v_{2}, \ldots, v_{m}\right\}
$$

Proof. Assume that v_{1}, \ldots, v_{m} span \mathcal{V} and $w \in \mathcal{V} \backslash\{0\}$. Then there exist $\alpha_{1}, \ldots \alpha_{m}$ in \mathbb{F} such that $w=\alpha_{1} v_{1}+\cdots \alpha_{m} v_{m}$. Since $w \neq 0$ not all $\alpha_{1}, \ldots \alpha_{m}$ are equal to 0 . Renumber v_{1}, \ldots, v_{m} in such a way that $\alpha_{1} \neq 0$. Then

$$
v_{1}=\left(1 / \alpha_{1}\right)\left(w-\alpha_{2} v_{2}-\cdots-\alpha_{m} v_{m}\right)
$$

Thus $v_{1} \in \operatorname{span}\left\{w, v_{2}, \ldots, v_{m}\right\}$. Consequently,

$$
\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\} \subseteq \operatorname{span}\left\{w, v_{2}, \ldots, v_{m}\right\}
$$

Since the converse inclusion is obvious, $\mathcal{V}=\operatorname{span}\left\{w, v_{2}, \ldots, v_{m}\right\}$ is proved.

Lemma 7. Let $2 \leq j \leq m$. Let w_{1}, \ldots, w_{j}, and $v_{j}, v_{j+1}, \ldots, v_{m}$, be vectors in \mathcal{V}. If

$$
\begin{equation*}
\mathcal{V}=\operatorname{span}\left\{w_{1}, \ldots, w_{j-1}, v_{j}, v_{j+1}, \ldots, v_{m}\right\} \tag{2}
\end{equation*}
$$

and w_{1}, \ldots, w_{j} are linearly independent, then, after a suitable renumbering of the vectors v_{j}, \ldots, v_{m}, we have

$$
\begin{equation*}
\mathcal{V}=\operatorname{span}\left\{w_{1}, \ldots, w_{j-1}, w_{j}, v_{j+1} \ldots, v_{m}\right\} \tag{3}
\end{equation*}
$$

Proof. Assume that (2) holds and that $w_{1}, \ldots, w_{j-1}, w_{j}$ are linearly independent. Then there exist $\beta_{1}, \ldots, \beta_{m}$ in \mathbb{F} such that

$$
\begin{equation*}
w_{j}=\beta_{1} w_{1}+\cdots+\beta_{j-1} w_{j-1}+\beta_{j} v_{j}+\cdots+\beta_{m} v_{m} \tag{4}
\end{equation*}
$$

Since $w_{1}, \ldots, w_{j-1}, w_{j}$ are linearly independent we have

$$
w_{j}-\beta_{1} w_{1}-\cdots-\beta_{j-1} w_{j-1} \neq 0
$$

From (4) we have

$$
0 \neq w_{j}-\beta_{1} w_{1}-\cdots-\beta_{j-1} w_{j-1}=\beta_{j} v_{j}+\cdots+\beta_{m} v_{m}
$$

Therefore not all $\beta_{j}, \ldots, \beta_{m}$ are equal to 0 . Renumber v_{j}, \ldots, v_{m} in such a way that $\beta_{j} \neq 0$. Then

$$
v_{j}=\left(1 / \beta_{j}\right)\left(-\beta_{1} w_{1}-\cdots-\beta_{j-1} w_{j-1}+w_{j}-\beta_{j+1} v_{j+1}-\cdots-\beta_{m} v_{m}\right)
$$

Thus $v_{j} \in \operatorname{span}\left\{w_{1}, \ldots, w_{j-1}, w_{j}, \ldots, v_{m}\right\}$. Consequently,

$$
\mathcal{V}=\operatorname{span}\left\{w_{1}, \ldots, w_{j-1}, v_{j}, \ldots, v_{m}\right\} \subseteq \operatorname{span}\left\{w_{1}, \ldots, w_{j}, v_{j+1}, \ldots, v_{m}\right\}
$$

Since the converse inclusion is obvious, (3) is proved.
Theorem 8. Let $k \leq m$. Let v_{1}, \ldots, v_{m}, and w_{1}, \ldots, w_{k} be vectors in \mathcal{V}. If $\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$ and w_{1}, \ldots, w_{k}, are linearly independent, then, after a suitable renumbering of v_{1}, \ldots, v_{m}, we have

$$
\mathcal{V}=\operatorname{span}\left\{w_{1}, \ldots, w_{k}, v_{k+1}, \ldots, v_{m}\right\}
$$

Proof. Assume that $\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$ and that w_{1}, \ldots, w_{k} are linearly independent. Then $w_{1} \neq 0$. By Lemma 6 , after a suitable renumbering of v_{1}, \ldots, v_{m}, we have $\mathcal{V}=\operatorname{span}\left\{w_{1}, v_{2}, \ldots, v_{m}\right\}$. If $k=1$ the theorem is proved. Let $k \geq 2$ and let $2 \leq j \leq k$. By Corollary 4 the vectors w_{1}, \ldots, w_{j} are linearly independent. In particular w_{1} and w_{2} are linearly independent. Lemma 7 with $j=2$ yields that, after a suitable renumbering of v_{2}, \ldots, v_{m}, we have $\mathcal{V}=\operatorname{span}\left\{w_{1}, w_{2}, v_{3}, \ldots, v_{m}\right\}$. Repeated application of Lemma 7 (total of $k-1$ times) yields that, after a suitable renumbering of v_{1}, \ldots, v_{m}, we have $\mathcal{V}=\operatorname{span}\left\{w_{1}, \ldots, w_{k}, v_{k+1}, \ldots, v_{m}\right\}$.

An important special case of the preceding theorem is when $k=m$. We state it as a corollary.

Corollary 9. Let v_{1}, \ldots, v_{m} and w_{1}, \ldots, w_{m} be vectors in \mathcal{V}. If w_{1}, \ldots, w_{m} are linearly independent and $\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$, then

$$
\mathcal{V}=\operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\}
$$

Theorem 10. Let v_{1}, \ldots, v_{m} and w_{1}, \ldots, w_{k} be vectors in \mathcal{V}. If w_{1}, \ldots, w_{k} are linearly independent and $\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$, then $k \leq m$.

This theorem has the following logical structure: $P \wedge Q \Rightarrow R$. It is not difficult to show (using the truth tables) that the last implication is equivalent to the implication $P \wedge \neg R \Rightarrow \neg Q$ and also to $\neg R \wedge Q \Rightarrow \neg P$. We state each of these equivalent implications separately. There is no need to number them since these statements are equivalent to Theorem 10.

Statement. Let v_{1}, \ldots, v_{m} and w_{1}, \ldots, w_{k} be vectors in \mathcal{V}. If w_{1}, \ldots, w_{k} are linearly independent and $k>m$, then the vectors v_{1}, \ldots, v_{m} do not span \mathcal{V}.

Statement. Let v_{1}, \ldots, v_{m} and w_{1}, \ldots, w_{k} be vectors in \mathcal{V}. If $k>m$ and $\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$, then w_{1}, \ldots, w_{k} are linearly dependent.

Proof. We will prove the last statement. Assume that $\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$ and $k>m$. We will consider the following two cases:
Case 1. The vectors w_{1}, \ldots, w_{m} are linearly dependent.
Case 2. The vectors w_{1}, \ldots, w_{m} are linearly independent.
In Case 1 by Lemma 3 the vectors $w_{1}, \ldots, w_{m}, w_{m+1}, \ldots, w_{k}$ are also linearly dependent.

Now consider Case 2. By Corollary 9 we have $\mathcal{V}=\operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\}$. Since $k>m$, we have $k \geq m+1$ and thus, w_{m+1} is a vector in \mathcal{V} which can be written as a linear combination of the vectors w_{1}, \ldots, w_{m}. Thus the vectors $w_{1}, \ldots, w_{m}, w_{m+1}$ are linearly dependent. Consequently

$$
w_{1}, \ldots, w_{m}, w_{m+1}, \ldots, w_{k}
$$

are linearly dependent.
Definition 11. A vector space \mathcal{V} over \mathbb{F} is finite dimensional if there exists $m \in \mathbb{N}$ and vectors $v_{1}, \ldots, v_{m} \in \mathcal{V}$ such that

$$
\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\} .
$$

A vector space which is not finite dimensional is called infinite dimensional.
Proposition 12. Every subspace of a finite dimensional vector space is finite dimensional.

Proof. Let \mathcal{V} be a finite dimensional space. Let $m \in \mathbb{N}$ and $v_{1}, \ldots, v_{m} \in \mathcal{V}$ be such that

$$
\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\} .
$$

Let \mathcal{U} be a subspace of \mathcal{V}. If $\mathcal{U}=\{0\}$, then \mathcal{U} is finite dimensional. If $\mathcal{U} \neq\{0\}$, consider the set

$$
\mathbb{K}=\left\{k \in \mathbb{N}: \exists \text { linearly independent } u_{1}, \ldots, u_{k} \in \mathcal{U}\right\} .
$$

Since $\mathcal{U} \neq\{0\}$ there exists $u \in \mathcal{U}$ such that $u \neq 0$. The vector u is linearly independent. Therefore $1 \in \mathbb{K}$. If $k \in \mathbb{K}$, then there exist $u_{1}, \ldots, u_{k} \in \mathcal{U}$ which are linearly independent. Since $\mathcal{U} \subseteq \mathcal{V}$, the vectors u_{1}, \ldots, u_{k} are linearly independent vectors in \mathcal{V}. By Theorem 10 we have $k \leq m$. Thus \mathbb{K} is a nonempty, bounded above set of natural numbers. Therefore \mathbb{K} has a maximum.

Let $n=\max \mathbb{K}$. Since $n \in \mathbb{K}$ there exist linearly independent vectors $u_{1}, \ldots, u_{n} \in \mathcal{U}$. Since $n=\max \mathbb{K}$, any set with more than n vectors from \mathcal{U} must be linearly dependent. Therefore, for arbitrary $w \in \mathcal{U}$, the vectors $w, u_{1}, \ldots, u_{n} \in \mathcal{U}(n+1$ of them $)$ are linearly dependent. Consequently there exist $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ such that

$$
\left|\alpha_{0}\right|+\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|>0 \quad \text { and } \quad \alpha_{0} w+\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}=0 .
$$

Since u_{1}, \ldots, u_{n} are linearly independent, $\alpha_{0}=0$ in the above relations is not possible. Hence, $\alpha_{0} \neq 0$. Therefore

$$
w=-\frac{1}{\alpha_{0}}\left(\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}\right) .
$$

Consequently, $w \in \operatorname{span}\left\{u_{1}, \ldots, u_{n}\right\}$. Since $w \in \mathcal{U}$ was arbitrary, we conclude that $\mathcal{U}=\operatorname{span}\left\{u_{1}, \ldots, u_{n}\right\}$. Thus, \mathcal{U} is finite dimensional.

Remark 13. Notice that in the preceding proof we constructed a linearly independent set which spans \mathcal{U}.

Definition 14. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F}. A set $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of \mathcal{V} if

$$
\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} \quad \text { and } \quad v_{1}, \ldots, v_{n} \quad \text { are linearly independent. }
$$

Theorem 15. Let \mathcal{V} be a nonzero finite dimensional vector space. Then \mathcal{V} has a basis. If $\left\{v_{1}, \ldots, v_{m}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ are two basis of \mathcal{V}, then $m=n$.

Proof. The fact that \mathcal{V} has a basis is proved in the proof of Proposition 12. Just set $\mathcal{U}=\mathcal{V}$ in that proof.

Let $\left\{v_{1}, \ldots, v_{m}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ be two bases of \mathcal{V}. Since

$$
\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}
$$

and w_{1}, \ldots, w_{n} are linearly independent, Theorem 10 implies $m \geq n$. Since $\mathcal{V}=\operatorname{span}\left\{w_{1}, \ldots, w_{n}\right\}$ and v_{1}, \ldots, v_{m} are linearly independent Theorem 10 implies $m \leq n$. Thus $m=n$.

Definition 16. Let \mathcal{V} be a nonzero finite dimensional vector space over \mathbb{F} and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of \mathcal{V}. The number n is called the dimension of \mathcal{V} and it is denoted by $\operatorname{dim} \mathcal{V}$. By definition the dimension of the zero vector space is 0 .

Theorem 17. Let $\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$ and $\mathcal{V} \neq\{0\}$. There exist $n \in$ $\mathbb{N}, n \leq m$, and $j_{1}, \ldots, j_{n} \in\{1, \ldots, m\}$ such that $v_{j_{1}}, \ldots, v_{j_{n}}$ is a basis of \mathcal{V}.
Proof. Since $\mathcal{V} \neq\{0\}$ there exists $l \in\{1, \ldots, p\}$ such that $v_{l} \neq 0$. Put

$$
\mathbb{K}=\left\{\begin{array}{cc}
k \in \mathbb{N}: \quad k \leq m, \quad \exists i_{1}, \ldots, i_{k} \in\{1, \ldots, m\} \text { such that } \\
v_{i_{1}}, \ldots, v_{i_{k}} \text { are linearly independent }
\end{array}\right\} .
$$

The vector v_{l} is linearly independent. Therefore $k=1 \in \mathbb{K}$; namely we can choose $i_{1}=l$. Thus $\mathbb{K} \neq \emptyset$. Since \mathbb{K} is bounded above by m, it has a maximum; put $n=\max \mathbb{K}$. Since $n \in \mathbb{K}$, there exist $j_{1}, \ldots, j_{n} \in\{1, \ldots, p\}$ such that $v_{j_{1}}, \ldots, v_{j_{n}}$ are linearly independent.

Next, we shall prove $\operatorname{span}\left\{v_{j_{1}}, \ldots, v_{j_{n}}\right\}=\mathcal{V}$. Let

$$
k \in\{1, \ldots, m\} \backslash\left\{j_{1}, \ldots, j_{n}\right\}
$$

be arbitrary. Since $n+1 \notin \mathbb{K}$, the vectors ($n+1$ of them) $v_{j_{1}}, \ldots, v_{j_{n}}, v_{k}$ are linearly dependent. Thus there exist $\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1} \in \mathbb{F}$ not all zero such that

$$
\alpha_{1} v_{j_{1}}+\cdots+\alpha_{n} v_{j_{n}}+\alpha_{n+1} v_{k}=0 .
$$

Since the vectors $v_{j_{1}}, \ldots, v_{j_{n}}$, are linearly independent, $\alpha_{n+1}=0$ is not possible. Thus $\alpha_{n+1} \neq 0$. Therefore

$$
\begin{equation*}
v_{k}=-\frac{1}{\alpha_{n+1}}\left(\alpha_{1} v_{j_{1}}+\cdots+\alpha_{n} v_{j_{n}}\right) \tag{5}
\end{equation*}
$$

Hence

$$
v_{k} \in \operatorname{span}\left\{v_{j_{1}}, \ldots, v_{j_{n}}\right\} \text { for each } k \in\{1, \ldots, m\} \backslash\left\{j_{1}, \ldots, j_{n}\right\} .
$$

Consequently

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\} \subseteq \operatorname{span}\left\{v_{j_{1}}, \ldots, v_{j_{n}}\right\}
$$

Since the converse inclusion is obvious, the theorem is proved.
Theorem 18. Let \mathcal{V} be a finite dimensional vector space and let u_{1}, \ldots, u_{k} be linearly independent vectors in \mathcal{V}. Then there exist vectors u_{k+1}, \ldots, u_{n} in \mathcal{V} such that $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of \mathcal{V}.

Proof. By Theorem 15 the vector space \mathcal{V} has a basis. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for \mathcal{V}. By Theorem 10 we have $k \leq n$. By Theorem 8 , after a suitable renumbering of v_{1}, \ldots, v_{n}, we have

$$
\mathcal{V}=\operatorname{span}\left\{u_{1}, \ldots, u_{k}, v_{k+1}, \ldots, v_{n}\right\} .
$$

Since v_{1}, \ldots, v_{n} are linearly independent, by Theorem 10 (see the first Statement) no proper subset of

$$
\left\{u_{1}, \ldots, u_{k}, v_{k+1}, \ldots, v_{n}\right\}
$$

spans \mathcal{V}. By Lemma 5 this implies that the vectors $u_{1}, \ldots, u_{k}, v_{k+1}, \ldots, v_{n}$ are linearly independent.

Proposition 19. Let \mathcal{V} be a finite dimensional vector space and let \mathcal{U} be a subspace of \mathcal{V}. Then $\operatorname{dim} \mathcal{U} \leq \operatorname{dim} \mathcal{V}$. Also, $\mathcal{U}=\mathcal{V}$ if and only if $\operatorname{dim} \mathcal{U}=$ $\operatorname{dim} \mathcal{V}$.

Proof. Let $m=\operatorname{dim} \mathcal{U}$ and $n=\operatorname{dim} \mathcal{V}$. Let u_{1}, \ldots, u_{m} be a basis of \mathcal{U} and let v_{1}, \ldots, v_{n} be a basis of \mathcal{V}. Since $\mathcal{V}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ and u_{1}, \ldots, u_{m} are linearly independent Theorem 10 implies $m \leq n$.

If $\mathcal{U}=\mathcal{V}$, then clearly $\operatorname{dim} \mathcal{U}=\operatorname{dim} \mathcal{V}$. Now assume that \mathcal{U} is a proper subspace of \mathcal{V}. Then there exists $v \in \mathcal{V}$ such that $v \notin \mathcal{U}$. Let again u_{1}, \ldots, u_{m} be a basis of \mathcal{U}. Then u_{1}, \ldots, u_{m}, v are linearly independent vectors in \mathcal{V}. By Theorem 10 we have $m+1 \leq n$. Thus $m<n$.

Proposition 20. Let \mathcal{V} be a finite dimensional vector space and let w_{1}, \ldots, w_{n} be vectors in \mathcal{V}. Then any two of the following three statements imply the remaining one.
(a) $n=\operatorname{dim} \mathcal{V}$.
(b) $\operatorname{span}\left\{w_{1}, \ldots, w_{n}\right\}=\mathcal{V}$.
(c) w_{1}, \ldots, w_{n} are linearly independent.

Proof. Assume (b) and (c). Then (a) follows by the definition of dimension of \mathcal{V}.

Notice that (b) and Theorem 17 imply that $n \geq \operatorname{dim} \mathcal{V}$. Therefore, the implication "(a) and (b) imply (c)" is equivalent to the implication: If $\operatorname{span}\left\{w_{1}, \ldots, w_{n}\right\}=\mathcal{V}$ and w_{1}, \ldots, w_{n} are linearly dependent, then $n>$ $\operatorname{dim} \mathcal{V}$. The last implication is an immediate consequence of Lemma 5. Thus (a) and (b) imply (c).

Notice that (c) and Theorem 17 imply that $n \leq \operatorname{dim} \mathcal{V}$. Therefore, the implication "(a) and (c) imply (b)" is equivalent to the implication: If w_{1}, \ldots, w_{n} are linearly independent and $\operatorname{span}\left\{w_{1}, \ldots, w_{n}\right\}$ is a proper subspace of \mathcal{V}, then $n<\operatorname{dim} \mathcal{V}$. The last implication is a consequence of Proposition 19.

