AXIOMS OF A VECTOR SPACE

BRANKO ĆURGUS

Abstract. Did I get it right?

Definition 1. A subset \mathbb{F} of \mathbb{C} is called a scalar field if the following five statements hold.
SF1 $0,1 \in \mathbb{F}$.
SF2 If $\alpha, \beta \in \mathbb{F}$, then $\alpha+\beta \in \mathbb{F}$ and $\alpha \beta \in \mathbb{F}$.
SF3 If $\alpha \in \mathbb{F}$, then $-\alpha \in \mathbb{F}$.
SF4 If $\alpha \in \mathbb{F}$ and $\alpha \neq 0$, then $\frac{1}{\alpha} \in \mathbb{F}$.
SF5 If $\alpha \in \mathbb{F}$, then $\bar{\alpha} \in \mathbb{F}$.
Definition 2. A set \mathcal{V} is called a commutative group if the following five statements hold.
CG1 There exists a mapping $+: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$.
(The mapping in CG1 is called addition and its value on a pair $(u, v) \in \mathcal{V} \times \mathcal{V}$ is denoted by $u+v$.)
CG2 For all $u, v, w \in \mathcal{V}$ we have $u+(v+w)=(u+v)+w$.
CG3 For all $u, v \in \mathcal{V}$ we have $u+v=v+u$.
CG4 There exists an element $0_{\mathcal{V}} \in \mathcal{V}$ such that $v+0_{\mathcal{V}}=v$ for all $v \in \mathcal{V}$.
CG5 For each $v \in \mathcal{V}$ there exists $w \in \mathcal{V}$ such that $v+w=0 \mathcal{V}$.
It can be proved that for a given $v \in \mathcal{V}$ the vector $w \in \mathcal{V}$ whose existence is postulated by CG5 is unique. This vector is called the opposite of v and it is denoted by $-v$.

Definition 3. A commutative group \mathcal{V} with the addition + is called a vector space over a scalar field \mathbb{F} if the following five statements hold.
VS1 There exists a mapping $\cdot: \mathbb{F} \times \mathcal{V} \rightarrow \mathcal{V}$.
(The mapping in VS1 is called scaling and its value on a pair $(\alpha, v) \in \mathbb{F} \times \mathcal{V}$ is denoted by $\alpha \cdot v$, or simply αv.)
VS2 For all $\alpha, \beta \in \mathbb{F}$ and all $v \in \mathcal{V}$ we have $\alpha(\beta v)=(\alpha \beta) v$.
VS3 For all $\alpha, \beta \in \mathbb{F}$ and all $v \in \mathcal{V}$ we have $(\alpha+\beta) v=\alpha v+\beta v$.
VS4 For all $\alpha \in \mathbb{F}$ and all $u, v \in \mathcal{V}$ we have $\alpha(u+v)=\alpha u+\alpha v$.
VS5 For all $v \in \mathcal{V}$ we have $1 v=v$.

[^0]
[^0]: Date: September 23, 2010 19:13.

