AXIOMS OF A VECTOR SPACE

BRANKO ĆURGUS

ABSTRACT. Did I get it right?

Definition 1. A subset \mathbb{F} of \mathbb{C} is called a *scalar field* if the following five statements hold.

SF1 0, 1 \in F. **SF2** If $\alpha, \beta \in$ F, then $\alpha + \beta \in$ F and $\alpha\beta \in$ F. **SF3** If $\alpha \in$ F, then $-\alpha \in$ F. **SF4** If $\alpha \in$ F and $\alpha \neq 0$, then $\frac{1}{\alpha} \in$ F. **SF5** If $\alpha \in$ F, then $\overline{\alpha} \in$ F.

Definition 2. A set \mathcal{V} is called a *commutative group* if the following five statements hold.

CG1 There exists a mapping $+ : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$.

(The mapping in CG1 is called *addition* and its value on a pair $(u, v) \in \mathcal{V} \times \mathcal{V}$ is denoted by u + v.)

CG2 For all $u, v, w \in \mathcal{V}$ we have u + (v + w) = (u + v) + w.

CG3 For all $u, v \in \mathcal{V}$ we have u + v = v + u.

CG4 There exists an element $0_{\mathcal{V}} \in \mathcal{V}$ such that $v + 0_{\mathcal{V}} = v$ for all $v \in \mathcal{V}$. **CG5** For each $v \in \mathcal{V}$ there exists $w \in \mathcal{V}$ such that $v + w = 0_{\mathcal{V}}$.

It can be proved that for a given $v \in \mathcal{V}$ the vector $w \in \mathcal{V}$ whose existence is postulated by CG5 is unique. This vector is called the *opposite* of v and it is denoted by -v.

Definition 3. A commutative group \mathcal{V} with the addition + is called a *vector* space over a scalar field \mathbb{F} if the following five statements hold.

VS1 There exists a mapping $\cdot : \mathbb{F} \times \mathcal{V} \to \mathcal{V}$.

(The mapping in VS1 is called *scaling* and its value on a pair $(\alpha, v) \in \mathbb{F} \times \mathcal{V}$ is denoted by $\alpha \cdot v$, or simply αv .)

VS2 For all $\alpha, \beta \in \mathbb{F}$ and all $v \in \mathcal{V}$ we have $\alpha(\beta v) = (\alpha \beta)v$.

VS3 For all $\alpha, \beta \in \mathbb{F}$ and all $v \in \mathcal{V}$ we have $(\alpha + \beta)v = \alpha v + \beta v$.

VS4 For all $\alpha \in \mathbb{F}$ and all $u, v \in \mathcal{V}$ we have $\alpha(u+v) = \alpha u + \alpha v$.

VS5 For all $v \in \mathcal{V}$ we have 1v = v.

Date: September 23, 2010 19:13.