MATH 504 Assignment 2 November 14, 2011

Name _____

Problem 1. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be an inner product space over a scalar field \mathbb{F} . Let $\|\cdot\|$ be the corresponding norm on \mathcal{V} . That is, for $v \in \mathcal{V}$, $\|v\| := \sqrt{\langle v, v \rangle}$. Find a necessary and sufficient condition (in terms of the vectors $v_1, \ldots, v_k \in \mathcal{V}$) for the following equality

$$||v_1 + \dots + v_k|| = ||v_1|| + \dots + ||v_k||.$$

Problem 2. Let \mathcal{V} be a finite dimensional vector space and let $T : \mathcal{V} \longrightarrow \mathcal{V}$ be a linear map. Put $T^0 = I, T^1 = T$, and $T^j = T^{j-1} \circ T$, for $j \in \mathbb{N}$.

- (a) Prove that there exists $k \in \mathbb{N}$ such that $\mathcal{N}(T^k) = \mathcal{N}(T^{k+1})$.
- (b) Prove that $\mathcal{N}(T^k) = \mathcal{N}(T^l)$ for each $l \in \mathbb{N}$, l > k where k is a number from (a).
- (c) Explore the situation with $\mathcal{R}(T^j)$ with $j \in \mathbb{N}$. Formulate your statements and prove them.

Problem 3. Let \mathcal{V} be a finite dimensional vector space over a scalar field \mathbb{F} and $n = \dim \mathcal{V}$. Let v_1, v_2, \ldots, v_n be a basis of \mathcal{V} and let $\langle \cdot, \cdot \rangle$ be an inner product on \mathcal{V} . Suppose that x_1, x_2, \ldots, x_n are arbitrary scalars in \mathbb{F} . Prove that there exists a vector $v \in \mathcal{V}$, such that

$$\langle v, v_j \rangle = x_j \text{ for all } j \in \{1, \dots, n\}.$$

Problem 4. Let $\mathbb{C}[z]$ be the set of all polynomials with complex coefficients. Then $\mathbb{C}[z]$ is a vector space over \mathbb{C} . (You do not need to prove this.) By $D : \mathcal{P} \to \mathcal{P}$ we denote the differentiation operator

$$(Df)(z) = f'(z), \quad f \in \mathbb{C}[z].$$

Let \mathcal{Q} be a nontrivial finite dimensional subspace of $\mathbb{C}[z]$ which is invariant under D; that is such that $D\mathcal{Q} \subseteq \mathcal{Q}$. Prove that there exist $n \in \mathbb{N} \cup \{0\}$ such that

$$\mathcal{Q} = \{ f \in \mathbb{C}[z] : \deg f \le n \}.$$

Problem 5. Let \mathcal{V} be a finite dimensional vector space over a field \mathbb{F} . Let $\langle \cdot, \cdot \rangle$ be an inner product on \mathcal{V} . Let x and y be fixed nonzero vectors in \mathcal{V} . Define the mapping $T \in \mathcal{L}(\mathcal{V})$ by

$$Tv = v - \langle v, x \rangle y, \qquad v \in \mathcal{V}.$$

You do not need to prove that $T \in \mathcal{L}(\mathcal{V})$. Answer the following questions and provide complete rigorous justifications.

- (a) Determine all eigenvalues and the corresponding eigenspaces of T.
- (b) Determine an explicit formula for T^* .
- (c) Describe all mappings Q on \mathcal{V} for which TQ = QT.
- (d) Determine a necessary and sufficient condition for T to be normal.
- (e) Determine a necessary and sufficient condition for T to be self-adjoint.