$MATH 504 \stackrel{\rm Examination 1}{_{\rm October 26, 2011}}$

Name ____

Problem 1. State and prove the Steinitz exchange lemma.

Problem 2. Let \mathcal{V} be a finite dimensional vector space over \mathbb{C} and let $T \in \mathcal{L}(\mathcal{V})$. Prove that there exists a basis \mathcal{B} of \mathcal{V} such that $\mathsf{M}_{\mathcal{B}}(T)$ is an upper triangular matrix.

Problem 3. Let \mathcal{V} be finite-dimensional vector space over \mathbb{F} . Let \mathcal{U} be a subspace of \mathcal{V} . Set $k = \dim \mathcal{U}, m = \dim \mathcal{V}$. Consider the following set

$$\mathcal{K} = \big\{ T \in \mathcal{L}(\mathcal{V}) \, : \, T\mathcal{U} \subseteq \mathcal{U} \big\}.$$

Prove that \mathcal{K} is a subspace of $\mathcal{L}(\mathcal{V})$. (This is easy, but do it right.) Determine dim \mathcal{K} . A formal proof is required for full credit.

Problem 4. Let $\mathbb{C}[z]$ be a vector space of polynomials over \mathbb{C} . Let $q \in \mathbb{C}[z]$ be a fixed nonzero polynomial and let $z_0 \in \mathbb{C}$ be a fixed complex number. Define a mapping T on $\mathbb{C}[z]$ by

$$Tp = p - p(z_0)q, \quad p \in \mathbb{C}[z].$$

Then $T \in \mathcal{L}(\mathbb{C}[z])$. (You don't need to prove this.)

- (a) Under some condition on the polynomial q and the number z_0 the mapping T is invertible. Discover this condition; state it and prove your claim.
- (b) Assume that the condition you stated in (a is satisfied. Find the formula for the inverse of T.
- (c) Assume that the condition you stated in (a is not satisfied. Find $\mathcal{N}(T)$.
- (d) Find the eigenvalues and eigenspaces of T. They should be given in terms of the polynomial q and the number z_0 .

Problem 5. Assume

- k is a natural number,
- \mathcal{V} is a vector space over \mathbb{F} ,
- $T \in \mathcal{L}(\mathcal{V}),$
- $\lambda_1, \ldots, \lambda_k$ are mutually distinct scalars in \mathbb{F} ,
- $v_1,\ldots,v_k\in\mathcal{V},$
- $Tv_j = \lambda_j v_j, \ j \in \{1, \dots, k\},$
- \mathcal{W} is a subspace of \mathcal{V} which is invariant under T, that is $T\mathcal{W} \subseteq \mathcal{W}$.

Prove the following implication:

If $v_1 + \cdots + v_k \in \mathcal{W}$, then $v_j \in \mathcal{W}$ for all $j \in \{1, \ldots, k\}$.