Jordan normal form

Branko Ćurgus

December 6, 2011 at 23:45

Throughout this note \mathcal{V} is a finite dimensional vector space over \mathbb{C}. The symbol \mathbb{N} denotes the set of positive integers and $i, j, k, l, m, n, p, q, r \in \mathbb{N}$.

1 Nilpotent operators

Theorem 1.1. Let \mathcal{V} be a nontrivial finite dimensional vector space over \mathbb{C} with $n=\operatorname{dim} \mathcal{V}$. Let $N \in \mathcal{L}(\mathcal{V})$ be a nilpotent operator such that $m=\operatorname{dim} \mathcal{N}(N)$. Then there exist vectors $v_{1}, \ldots, v_{m} \in \mathcal{V}$ and positive integers q_{1}, \ldots, q_{m} such that

$$
v_{k} \notin \mathcal{R}(N) \quad \text { for all } \quad k \in\{1, \ldots, m\},
$$

the vectors

$$
N^{q_{1}-1} v_{1}, \ldots, N^{q_{m}-1} v_{m}
$$

form a basis of $\in \mathcal{N}(N)$ and the vectors

$$
v_{k}, N v_{k}, \ldots, N^{q_{k}-1} v_{k}, \quad k \in\{1, \ldots, m\},
$$

form a basis of \mathcal{V}.
Proof. First notice that if $N=0$, then $\mathcal{N}(N)=\mathcal{V}$ and the theorem is trivially true. In this case $m=n$ and any basis v_{1}, \ldots, v_{n} of \mathcal{V} with positive integers $q_{1}=\cdots=q_{n}=1$ satisfies the requirement of the theorem. From now on we assume that $N \neq 0$.

The proof is by induction on the dimension n. The statement is trivially true for $n=1$. Let $n \in \mathbb{N}$ and assume that the statement is true for any vector space of dimension less or equal to n. It is always good to be specific and state what is being assumed. The following implication is our inductive hypothesis:

If \mathcal{W} is a vector space over \mathbb{C} such that $\operatorname{dim} \mathcal{W} \leq n$ and if $M \in \mathcal{L}(\mathcal{W})$ is a nilpotent operator such that $l=\operatorname{dim} \mathcal{N}(M)$, then there exist $w_{1}, \ldots, w_{l} \in \mathcal{W}$ and positive integers p_{1}, \ldots, p_{l} such that

$$
w_{j} \notin \mathcal{R}(M) \quad \text { for all } \quad j \in\{1, \ldots, l\},
$$

the vectors

$$
M^{p_{1}-1} w_{1}, \ldots, M^{p_{l}-1} w_{l}
$$

form a basis of $\mathcal{N}(M)$ and the vectors

$$
w_{j}, M w_{j}, \ldots, M^{p_{j}-1} w_{j}, \quad j \in\{1, \ldots, l\},
$$

form a basis of \mathcal{W}.
Next we present a proof of the inductive step.

Let \mathcal{V} be a nontrivial finite dimensional vector space over \mathbb{C} with $\operatorname{dim} \mathcal{V}=n+1$. Let $N \in \mathcal{L}(\mathcal{V})$ be a nilpotent operator such that $m=\operatorname{dim} \mathcal{N}(N)$. Set $\mathcal{W}=\mathcal{R}(N)$. Since N is nilpotent it is not invertible. Thus $m=\operatorname{dim} \mathcal{N}(N) \geq 1$. By the famous "rank-nullity" theorem $\operatorname{dim} \mathcal{W}<n+1$. Since $N \neq 0, \operatorname{dim} \mathcal{W}>0$. Clearly $N \mathcal{W} \subseteq \mathcal{W}$. Denote by M the restriction $\left.N\right|_{\mathcal{W}}$ of N to \mathcal{W}. Then $M \in \mathcal{L}(\mathcal{W})$. Since N is nilpotent, M is nilpotent as well. Clearly, $\mathcal{N}(M)=\mathcal{N}(N) \cap \mathcal{R}(N)$. Set $l=\operatorname{dim} \mathcal{N}(M)$. The vector space \mathcal{W} and the operator M satisfy all the assumptions of the inductive hypothesis. This allows us to deduce that there exist $w_{1}, \ldots, w_{l} \in \mathcal{W}$ and positive integers p_{1}, \ldots, p_{l} such that

$$
\begin{equation*}
w_{j} \notin \mathcal{R}(M) \quad \text { for all } \quad j \in\{1, \ldots, l\} \tag{1}
\end{equation*}
$$

the vectors

$$
\begin{equation*}
M^{p_{1}-1} w_{1}, \ldots, M^{p_{l}-1} w_{l} \tag{2}
\end{equation*}
$$

form a basis of $\mathcal{N}(M)$ the vectors

$$
\begin{equation*}
w_{j}, M w_{j}, \ldots, M^{p_{j}-1} w_{j}, \quad j \in\{1, \ldots, l\}, \tag{3}
\end{equation*}
$$

form a basis of $\mathcal{W}=\mathcal{R}(N)$. Since $w_{j} \in \mathcal{R}(N)$, there exist $v_{j} \in \mathcal{V}$ such that $w_{j}=N v_{j}$ for all $j \in\{1, \ldots, l\}$. Since by (1), $w_{j} \notin \mathcal{R}(M)$, we have $v_{j} \notin \mathcal{R}(N)$ for all $j \in\{1, \ldots, l\}$. We know that vectors in (2), that is,

$$
M^{p_{1}-1} w_{1}=N^{p_{1}} v_{1}, \ldots, M^{p_{l}-1} w_{l}=N^{p_{l}} v_{l},
$$

form a basis of $\mathcal{N}(M)=\mathcal{N}(N) \cap \mathcal{R}(N)$. Recall that $m=\operatorname{dim} \mathcal{N}(N), l \leq m$, and let v_{l+1}, \ldots, v_{m} be such that

$$
\begin{equation*}
N^{p_{1}} v_{1}, \ldots, N^{p_{l}} v_{l}, v_{l+1}, \ldots, v_{m}, \tag{4}
\end{equation*}
$$

form a basis of $\mathcal{N}(N)$. (It is possible that $l=m$. In this case we already have a basis of $\mathcal{N}(N)$ and the last step can be skipped.)

Now let us review the stage: We started with the basis

$$
w_{j}=N v_{j}, M w_{j}=N^{2} v_{j}, \ldots, M^{p_{j}-1} w_{j}=N^{p_{j}} v_{j}, \quad j \in\{1, \ldots, l\},
$$

of $\mathcal{W}=\mathcal{R}(N)$ which has exactly $\operatorname{dim} \mathcal{R}(N)$ vectors. Then we added the vectors v_{1}, \ldots, v_{m}. Now we have $m+\operatorname{dim} \mathcal{R}(N)=\operatorname{dim} \mathcal{N}(N)+\operatorname{dim} \mathcal{R}(N)=\operatorname{dim} \mathcal{V}$ vectors:

$$
\begin{equation*}
v_{j}, N v_{j}, N^{2} v_{j}, \ldots, N^{p_{j}} v_{j}, \quad j \in\{1, \ldots, l\}, \quad v_{l+1}, \ldots, v_{m} . \tag{5}
\end{equation*}
$$

For easier record keeping set

$$
q_{k}=\left\{\begin{array}{lll}
p_{k}+1 & \text { if } \quad k \in\{1, \ldots, l\} \\
1 & \text { if } \quad k \in\{l+1, \ldots, m\}
\end{array}\right.
$$

Then (5) can be rewritten as

$$
\begin{equation*}
v_{k}, N v_{k}, N^{2} v_{k}, \ldots, N^{q_{k}-1} v_{k}, \quad k \in\{1, \ldots, m\} . \tag{6}
\end{equation*}
$$

Next we will prove that the vectors in (6) are linearly independent. Let

$$
\alpha_{k, j} \in \mathbb{C}, \quad j \in\left\{0, \ldots, q_{k}-1\right\}, \quad k \in\{1, \ldots, m\}
$$

be such that

$$
\begin{equation*}
\sum_{k=1}^{m} \sum_{j=0}^{q_{k}-1} \alpha_{k, j} N^{j} v_{k}=0 \tag{7}
\end{equation*}
$$

Applying N to the last equality yields

$$
\sum_{k=1}^{l} \sum_{j=0}^{q_{k}-1} \alpha_{k, j} N^{j+1} v_{k}=\sum_{k=1}^{l} \sum_{j=0}^{q_{k}-2} \alpha_{k, j} N^{j+1} v_{k}=\sum_{k=1}^{l} \sum_{j=0}^{p_{k}-1} \alpha_{k, j} M^{j} w_{k}=0 .
$$

Since the vectors in the last double sum are linearly independent (they are the vectors from (3)) we have

$$
\alpha_{k, 0}=\cdots=\alpha_{k, q_{k}-2}=0, \quad k \in\{1, \ldots, l\}
$$

Substituting these values in (7) we get

$$
\sum_{k=1}^{m} \alpha_{k, q_{k}-1} N^{q_{k}-1} v_{k}=0
$$

But, beautifully, the vectors in the last sum are exactly the vectors in (4) which are linearly independent. Thus

$$
\alpha_{k, q_{k}-1}=0, \quad k \in\{1, \ldots, m\} .
$$

This completes the proof that all the coefficients in (7) must be zero. Thus, the vectors in (6) are linearly independent. Since there are exactly $n+1$ vectors in (6) they form a basis of \mathcal{V}. This completes the proof.

Remark 1.2. In this remark we will establish a connection between the lengths q_{1}, \ldots, q_{m} and the numbers

$$
m_{j}=\operatorname{dim} \mathcal{N}\left(N^{j}\right), \quad j \in\{1, \ldots, d\} .
$$

Here $d \in\{1, \ldots, n\}$ is the degree of nilpotency of N, that is the smallest positive integer such that $T^{d}=0$. Then

$$
0=m_{0}<m_{1}=m<m_{2}<\cdots<m_{d}=n=m_{d+1},
$$

where, for convenience, we define $m_{0}=0$ and $m_{d+1}=n$. It follows from the previous theorem that

$$
0<m_{i+1}-m_{i} \leq m_{i}-m_{i-1}, \quad i \in\{1, \ldots, d-1\} .
$$

We can always assume that the lengths $q_{1}, \ldots, q_{m} \in\{1, \ldots, d\}$ from the previous theorem are in nonincreasing order. That is,

$$
d=q_{1} \geq \cdots \geq q_{m} \geq 1
$$

Then the formula for q_{k} is

$$
q_{k}=\max \left\{j \in\{1, \ldots, d\}: m_{j}-m_{j-1} \geq k\right\}, \quad k \in\{1, \ldots, m\}
$$

Conversely, the numbers $m_{1}-m_{0} \geq m_{2}-m_{1} \geq \cdots \geq m_{d}-m_{d-1} \geq 1$ can be determined from q_{1}, \ldots, q_{m} by

$$
m_{j}-m_{j-1}=\max \left\{k \in\{1, \ldots, m\}: q_{k} \geq j\right\}, \quad j \in\{1, \ldots, d\}
$$

2 More about the upper triangular matrix representations

In class we proved the following theorem.
Theorem 2.1. Let \mathcal{V} be a finite dimensional vector space over \mathbb{C}. For $T \in \mathcal{L}(\mathcal{V})$ there exists a basis \mathcal{B} for \mathcal{V} such that the matrix $\mathrm{M}_{\mathcal{B}}(T)$ is upper triangular.

Our next goal is to understand which complex numbers are on the diagonal of a triangular matrix $\mathrm{M}_{\mathcal{B}}(T)$.

Theorem 2.2. Let \mathcal{V} be a finite dimensional vector space over \mathbb{C} and $n=\operatorname{dim} \mathcal{V}$. Let $T \in \mathcal{L}(\mathcal{V})$, let $\mathcal{B}=\left\{v, \ldots, v_{n}\right\}$ be a basis for \mathcal{V} such that the matrix $\mathrm{M}_{\mathcal{B}}(T)$ is upper triangular, that is

$$
\mathbf{M}_{\mathcal{B}}(T)=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \tag{8}\\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

Then each eigenvalue λ of T appears among $\left\{a_{11}, a_{22}, \ldots, a_{n n}\right\}$ at least

$$
\operatorname{dim} \mathcal{N}\left((T-\lambda I)^{n}\right)
$$

times.
Proof. We shall prove the theorem for $\lambda=0$. The general case follows by considering the operator $T-\lambda I$. Let $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$. Assume that the set $\left\{i \in\{1, \ldots, n\}: a_{i i} \neq 0\right\}$ has exactly r elements. Let

$$
\left\{i \in\{1, \ldots, n\}: a_{i i} \neq 0\right\}=\left\{k_{1}, \ldots, k_{r}\right\}, \quad \text { where } \quad k_{1}<\cdots<k_{r} .
$$

In other words, the diagonal entries $a_{k_{1} k_{1}}, \ldots, a_{k_{r} k_{r}}$ are nonzero and all other diagonal entries are 0 . Since the matrix $\mathrm{M}_{\mathcal{B}}(T)$ is upper triangular, the vectors

$$
\mathrm{C}_{\mathcal{B}}\left(T v_{k_{j}}\right)=\left[\begin{array}{c}
a_{1 k_{j}} \\
\vdots \\
a_{k_{j} k_{j}} \\
0 \\
\vdots \\
0
\end{array}\right], \quad j \in\{1, \ldots, r\}
$$

are linearly independent. As the mapping $\mathrm{C}_{\mathcal{B}}: \mathcal{V} \rightarrow \mathbb{C}^{n}$ is an isomorphism, the vectors $T v_{k_{j}}, j \in$ $\{1, \ldots, r\}$, are linearly independent. Consequently, $\operatorname{dim} \mathcal{R}(T) \geq r$. Hence $\operatorname{dim} \mathcal{N}(T)=n-$ $\operatorname{dim} \mathcal{R}(T) \leq n-r$. Since there are exactly $d-r$ zero entries on the diagonal of $\mathrm{M}_{\mathcal{B}}(T)$, we see that there are at least $\operatorname{dim} \mathcal{N}(T)$ zero entries on the diagonal of $\mathrm{M}_{\mathcal{B}}(T)$. Applying this result to the operator T^{n} we conclude that there are at least $\operatorname{dim} \mathcal{N}\left(T^{n}\right)$ zero entries on the diagonal of $\mathrm{M}_{\mathcal{B}}\left(T^{n}\right)$. But, the diagonal entries of $\mathrm{M}_{\mathcal{B}}\left(T^{n}\right)$ are $a_{11}^{n}, \ldots, a_{n n}^{n}$ and the number of zeros among $a_{11}^{n}, \ldots, a_{n n}^{n}$ is identical to the number of zeros among $a_{11}, \ldots, a_{n n}$. Hence, there are at least $\operatorname{dim} \mathcal{N}\left(T^{n}\right)$ zero entries on the diagonal of $\mathrm{M}_{\mathcal{B}}(T)$.

Theorem 2.3. Let \mathcal{V} be a finite dimensional vector space over \mathbb{C} and $n=\operatorname{dim} \mathcal{V}$. Let $T \in \mathcal{L}(\mathcal{V})$ and let $\mathcal{B}=\left\{v, \ldots, v_{n}\right\}$ be a basis for \mathcal{V} such that the matrix $\mathrm{M}_{\mathcal{B}}(T)$ is upper triangular with the elements on the main diagonal being $a_{11}, \ldots, a_{n n}$, see (8). Let

$$
\begin{equation*}
p(z)=\left(z-a_{11}\right)\left(z-a_{22}\right) \cdots\left(z-a_{n n}\right) \tag{9}
\end{equation*}
$$

Then $p(T)=0$.
Proof. For $k \in\{1,2, \ldots, n\}$, the matrix $\mathrm{M}_{\mathcal{B}}\left(T-a_{k k} I\right)$ is upper triangular and its entry in the k-th column and the k-th row is 0 . Therefore,

$$
\begin{equation*}
\left(T-a_{11} I\right)\left(\operatorname{span}\left\{v_{1}\right\}\right)=\left\{0_{\mathcal{V}}\right\} \tag{10}
\end{equation*}
$$

and, for $k \in\{2, \ldots, n\}$,

$$
\begin{equation*}
\left(T-a_{k k} I\right)\left(\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}\right) \subseteq \operatorname{span}\left\{v_{1}, \ldots, v_{k-1}\right\} \tag{11}
\end{equation*}
$$

The inclusions (11) and (10) imply

$$
\begin{aligned}
p(T)(\mathcal{V}) & =\left(T-a_{11} I\right)\left(T-a_{22} I\right) \cdots\left(T-a_{n n} I\right)(\mathcal{V}) \\
& =\left(T-a_{11} I\right) \cdots\left(T-a_{n n} I\right)\left(\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}\right) \\
& \subseteq\left(T-a_{11} I\right) \cdots\left(T-a_{(n-1)(n-1)} I\right)\left(\operatorname{span}\left\{v_{1}, \ldots, v_{n-1}\right\}\right) \\
& \vdots \\
& \subseteq\left(T-a_{11} I\right)\left(T-a_{22} I\right)\left(\operatorname{span}\left\{v_{1}, v_{2}\right\}\right) \\
& \subseteq\left(T-a_{11} I\right)\left(\operatorname{span}\left\{v_{1}\right\}\right) \\
& =\left\{0_{\mathcal{V}}\right\}
\end{aligned}
$$

Thus $p(T)=0$. The theorem is proved.

3 A decomposition of a vector space

Lemma 3.1. Let \mathcal{V} be a vector space over a field \mathbb{F}. Let A and B be linear mappings on \mathcal{V}. If A and B commute, then $\mathcal{N}(B)$ is an invariant subspace for A.

Proof. Let v be in $\mathcal{N}(B)$. Then $0 \mathcal{v}=B v=A B v=B A v$. Therefore $A v$ belongs to $\mathcal{N}(B)$.
Lemma 3.2. Let \mathcal{V} be a finite dimensional vector space over a field \mathbb{F}. Let A and B be linear operators on \mathcal{V}. Assume that A and B commute and that $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0 \mathcal{V}\}$. Then $\mathcal{N}(A B)=$ $\mathcal{N}(A) \oplus \mathcal{N}(B)$.

Proof. By Lemma 3.1 $\mathcal{N}(B)$ is an invariant subspace of A. Denote by C the restriction of A to $\mathcal{N}(B)$, that is $C w=A w$ for all w in $\mathcal{N}(B)$. Then

$$
\mathcal{N}(C)=\left\{w \in \mathcal{N}(B): C w=0_{\mathcal{V}}\right\}=\mathcal{N}(A) \cap \mathcal{N}(B)=\left\{0_{\mathcal{V}}\right\}
$$

It follows that C is a bijection of $\mathcal{N}(B)$ onto itself. Since $\mathcal{N}(B)$ is finite dimensional, C is onto. Therefore, for every v in $\mathcal{N}(B)$ there exists u in $\mathcal{N}(B)$ such that $v=C u=A u$. Let w be arbitrary element of $\mathcal{N}(A B)$. Since $\mathcal{N}(A B)=\mathcal{N}(B A)$ we have $A w \in \mathcal{N}(B)$. Hence, there exists u in $\mathcal{N}(B)$ such that $A w=A u$. Consequently, $w-u \in \mathcal{N}(A)$. Thus $w=(w-u)+u$, where $u \in \mathcal{N}(B)$ and $w-u \in \mathcal{N}(A)$. This proves that $\mathcal{N}(A B) \subseteq \mathcal{N}(A) \oplus \mathcal{N}(B)$. The converse inclusion is straightforward.

Proposition 3.3. Let \mathcal{V} be a finite dimensional vector space over a field \mathbb{F}. Let $q \in \mathbb{N}, q>1$, and let $A_{1}, A_{2}, \ldots, A_{q}$, be linear operators on \mathcal{V}. Assume that

$$
\begin{equation*}
A_{j} A_{k}=A_{k} A_{j} \quad \text { and } \quad \mathcal{N}\left(A_{j}\right) \cap \mathcal{N}\left(A_{k}\right)=\{0 \mathcal{\nu}\}, \quad j \neq k, \quad j, k \in\{1, \ldots, q\} . \tag{12}
\end{equation*}
$$

Then

$$
\mathcal{N}\left(A_{1} A_{2} \cdots A_{q}\right)=\bigoplus_{j=1}^{q} \mathcal{N}\left(A_{j}\right) .
$$

Proof. The proof is by mathematical induction. We already proved the proposition for two operators. The inductive hypothesis is that the proposition is true for $q-1$ operators. To prove the inductive step assume (12). By the inductive hypothesis

$$
\begin{equation*}
\mathcal{N}\left(A_{1} A_{2} \cdots A_{q-1}\right)=\bigoplus_{j=1}^{q-1} \mathcal{N}\left(A_{j}\right) \tag{13}
\end{equation*}
$$

Set $A=A_{1} A_{2} \cdots A_{q-1}$ and $B=A_{q}$. By repeated application of the first equality in (12) it follows that $A B=B A$. To apply Lemma 3.2 we need to verify $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0 \nu\}$. By the inductive hypothesis the null space of A is given by (13). Thus we need to prove

$$
\left(\bigoplus_{j=1}^{q-1} \mathcal{N}\left(A_{j}\right)\right) \bigcap \mathcal{N}\left(A_{q}\right)=\left\{0_{\mathcal{V}}\right\} .
$$

Let v be in the above intersection. Then there exist $v_{j} \in \mathcal{N}\left(A_{j}\right), j \in\{1, \ldots, q-1\}$ such that

$$
v=v_{1}+\cdots+v_{q-1} \quad \text { and } \quad A_{q} v=0_{\nu} .
$$

The last two equalities imply

$$
0_{\mathcal{V}}=A_{q} v_{1}+\cdots+A_{q} v_{q-1} .
$$

Since by (12) A_{j} and A_{q} commute, Lemma 3.1 implies that $\mathcal{N}\left(A_{k}\right)$ is invariant under A_{q}. That is, $A_{q} v_{j} \in \mathcal{N}\left(A_{j}\right)$ for all $j \in\{1, \ldots, q-1\}$. This and the fact that the sum in (13) is direct yield $A_{q} v_{j}=0 \mathcal{V}$ for all $j \in\{1, \ldots, q-1\}$. By the second relation in (12) we get

$$
v_{j} \in \mathcal{N}\left(A_{j}\right) \cap \mathcal{N}\left(A_{k}\right)=\left\{0_{\mathcal{V}}\right\} \quad \text { for all } j \in\{1, \ldots, q-1\} .
$$

This proves that $v=0_{\mathcal{\nu}}$. Now Lemma 3.2 yields $\mathcal{N}(A B)=\mathcal{N}(A) \oplus \mathcal{N}(B)$. Together with (13), this implies the claim of the proposition.

Proposition 3.4. Let \mathcal{V} be a finite dimensional vector space over a field \mathbb{F}. Let $T \in \mathcal{L}(\mathcal{V})$. If λ and μ are distinct eigenvalues of T and j and k are natural numbers, then

$$
\mathcal{N}\left((T-\lambda I)^{j}\right) \bigcap \mathcal{N}\left((T-\mu I)^{k}\right)=\left\{0_{\mathcal{V}}\right\} .
$$

Proof. The set equality in the proposition is equivalent to the implication

$$
v \in \mathcal{N}\left((T-\mu I)^{k}\right) \backslash\left\{0_{\nu}\right\} \quad \Rightarrow \quad v \notin \mathcal{N}\left((T-\lambda I)^{j}\right) .
$$

We will prove the last implication. Let $v \in \mathcal{V}$ be such that $(T-\mu I)^{k} v=0_{\mathcal{V}}$ and $v \neq 0_{\mathcal{V}}$. Let $i \in\{1, \ldots, k\}$ be such that $(T-\mu I)^{i} v=0_{\mathcal{V}}$ and $(T-\mu I)^{i-1} v \neq 0_{\mathcal{V}}$. Set $w:=(T-\mu I)^{i-1} v$. Then
w is an eigenvector of T corresponding to $\mu: \quad T w=\mu w$. Then (as we must have proven before), for an arbitrary polynomial $p \in \mathbb{C}[z]$ we have $p(T) w=p(\mu) w$. In particular

$$
(T-\lambda I)^{l} w=(\mu-\lambda)^{l} w \quad \text { for all } \quad l \in \mathbb{N} .
$$

Since $\mu-\lambda \neq 0$ and $w \neq 0_{\mathcal{V}}$ we have that

$$
(T-\lambda I)^{l} w \neq 0_{\mathcal{V}} \quad \text { for all } \quad l \in \mathbb{N}
$$

Consequently,

$$
(T-\lambda I)^{l}(T-\mu I)^{i-1} v \neq 0_{\mathcal{V}} \quad \text { for all } \quad l \in \mathbb{N} .
$$

Since the operators $(T-\lambda I)^{l}$ and $(T-\mu I)^{i-1}$ commute we have

$$
(T-\mu I)^{i-1}(T-\lambda I)^{l} v \neq 0 \mathcal{V} \quad \text { for all } \quad l \in \mathbb{N} .
$$

Therefore $(T-\lambda I)^{l} v \neq 0$ v for all $l \in \mathbb{N}$. Hence $v \notin \mathcal{N}\left((T-\lambda I)^{j}\right)$. This proves the proposition.
Theorem 3.5. Let \mathcal{V} be a finite dimensional vector space over \mathbb{C} and $T \in \mathcal{L}(\mathcal{V})$. We make the following assumptions:
(i) \mathcal{B} is a basis of \mathcal{V} for which $\mathrm{M}_{\mathcal{B}}(T)$ is upper triangular.
(ii) $\lambda_{1}, \ldots, \lambda_{q}$, are all the distinct eigenvalues of T.
(iii) For $k \in\{1, \ldots, q\}$ denote by $m_{k} \in\{1, \ldots, n\}$ the number of times the eigenvalue λ_{k} appears on the diagonal of $\mathrm{M}_{\mathcal{B}}(T)$.
(iv) For $k \in\{1, \ldots, q\}$ set $\mathcal{W}_{k}:=\mathcal{N}\left(\left(T-\lambda_{k} I\right)^{m_{k}}\right)$.

Then
(a) Each of the subspaces $\mathcal{W}_{1}, \ldots, \mathcal{W}_{q}$, is invariant subspace of T.
(b) $\mathcal{V}=\mathcal{W}_{1} \oplus \cdots \oplus \mathcal{W}_{q}$.
(c) $\operatorname{dim} \mathcal{W}_{k}=m_{k}$ and $\mathcal{W}_{k}=\mathcal{N}\left(\left(T-\lambda_{k}\right)^{n}\right)$ for all $k \in\{1, \ldots, q\}$.
(d) For $k \in\{1, \ldots, q\}$ set $T_{k}=T \mid \mathcal{w}_{k}$ and $N_{k}=T_{k}-\lambda_{k} I$. Then $N_{k}^{m_{k}}=0$, that is, N_{k} is a nilpotent mapping on \mathcal{W}_{k}.

Proof. (a) Since the mapping T commutes with each of the mappings $\left(T-\lambda_{k} I\right)^{n}$, Lemma 3.1 implies that each subspace $\mathcal{W}_{1}, \ldots, \mathcal{W}_{q}$, is an invariant subspace of T.
(b) By Theorem 2.3 we have

$$
p(T)=\left(T-\lambda_{1} I\right)^{m_{1}} \cdots\left(T-\lambda_{q} I\right)^{m_{q}}=0 .
$$

Notice that the mappings $\left(T-\lambda_{1} I\right)^{m_{1}}, \ldots,\left(T-\lambda_{q} I\right)^{m_{q}}$ satisfy the assumptions of Proposition 3.3. Consequently, $\mathcal{V}=\mathcal{N}(p(T))$ is the direct sum of the subspaces $\mathcal{W}_{1}, \ldots \mathcal{W}_{q}$. This proves (b).
(c) Since clearly $m_{k} \leq n$, we have that

$$
\begin{equation*}
\mathcal{W}_{k} \subseteq \mathcal{N}\left(\left(T-\lambda_{k}\right)^{n}\right) \tag{14}
\end{equation*}
$$

By Theorem 2.2, $\operatorname{dim} \mathcal{N}\left(\left(T-\lambda_{k}\right)^{n}\right) \leq m_{k}$, and hence

$$
\begin{equation*}
\operatorname{dim} \mathcal{W}_{k} \leq \operatorname{dim} \mathcal{N}\left(\left(T-\lambda_{k}\right)^{n}\right) \leq m_{k} \tag{15}
\end{equation*}
$$

Since

$$
n=\sum_{k=1}^{q} \operatorname{dim} \mathcal{W}_{k} \leq \sum_{k=1}^{q} m_{k}=n
$$

the inequalities in (15) are in fact equalities. That is

$$
\begin{equation*}
\operatorname{dim} \mathcal{W}_{k}=\operatorname{dim} \mathcal{N}\left(\left(T-\lambda_{k}\right)^{n}\right)=m_{k} \tag{16}
\end{equation*}
$$

This and (14) imply $\mathcal{W}_{k}=\mathcal{N}\left(\left(T-\lambda_{k}\right)^{n}\right)$.
(d) Clearly, \mathcal{W}_{k} is also an invariant subspace of $T-\lambda_{k} I$. Denote by N_{k} the restriction of $T-\lambda_{k} I$ to its invariant subspace \mathcal{W}_{k} and by T_{k} the restriction of T to \mathcal{W}_{k}. Then, $T_{k}=\lambda_{k} I+N_{k}$ and the mapping N_{k} is nilpotent.

Definition 3.6. Let \mathcal{V} be a finite dimensional vector space over \mathbb{C} and $T \in \mathcal{L}(\mathcal{V})$. Let $1 \leq q \leq n$ and let $\lambda_{1}, \ldots, \lambda_{q}$ be all the distinct eigenvalues of T. Set

$$
n_{k}=\operatorname{dim} \mathcal{N}\left(\left(T-\lambda_{k}\right)^{n}\right), \quad k \in\{1, \ldots, q\} .
$$

The number n_{k} is called the algebraic multiplicity of the eigenvalue λ_{k}. The polynomial

$$
\begin{equation*}
p(z)=\left(z-\lambda_{1}\right)^{n_{1}} \cdots\left(z-\lambda_{q}\right)^{n_{q}} \tag{17}
\end{equation*}
$$

is called the characteristic polynomial of T.
Theorem 3.7 (Hamilton-Cayley). Let \mathcal{V} be a finite dimensional vector space over \mathbb{C} and $T \in \mathcal{L}(\mathcal{V})$. Let p be a characteristic polynomial of T. Then $p(T)=0$.

Proof. We use the notation of Theorem 3.5 and Definition 3.6. By Theorem 3.5 (c) we have $n_{k}=m_{k}$ for all $k=1, \ldots, q$. Therefore the polynomials defined in (9) and (17) are identical. Now the theorem follows from Theorem 2.3.

4 The Jordan Normal Form

Let T be a linear operator on a vector space \mathcal{V} over \mathbb{C}. Let λ be an eigenvalue of T and $l \in \mathbb{N}$. A sequence of nonzero vectors

$$
\begin{equation*}
v_{1}, \ldots, v_{l} \tag{18}
\end{equation*}
$$

such that

$$
\begin{equation*}
T v_{1}=\lambda v_{1}, \quad \text { and } \quad v_{l} \notin \mathcal{R}(T-\lambda I) \tag{19}
\end{equation*}
$$

and, if $l>1$,

$$
\begin{equation*}
T v_{j}=\lambda v_{j}+v_{j-1}, \quad j \in\{2, \ldots, l\} \tag{20}
\end{equation*}
$$

is called a Jordan chain of T corresponding to the eigenvalue λ. The number l is the length of the Jordan chain. The vector v_{l} is called the lead vector of the Jordan chain.

The lead vector of a Jordan chain satisfies

$$
v_{l} \notin \mathcal{R}(T-\lambda I)
$$

and all the other vectors of the corresponding Jordan chain can be expressed in terms of the lead vector:

$$
v_{l-j}=(T-\lambda I)^{j} v_{l}, \quad j \in\{0,1, \ldots, l-1\}
$$

Notice that $(T-\lambda I)^{l} v_{l}=0_{\mathcal{V}}$ since v_{1} is an eigenvector of T.
A sequence

$$
\begin{equation*}
(T-\lambda I)^{l-1} v,(T-\lambda I)^{l-2} v,(T-\lambda I) v, \ldots, v \tag{21}
\end{equation*}
$$

is a Jordan chain, provided that $(T-\lambda I)^{l-1} v \neq 0_{\mathcal{V}},(T-\lambda I)^{l} v=0_{\mathcal{V}}$ and $v \notin \mathcal{R}(T-\lambda I)$.
Let \mathcal{W} be a subspace of \mathcal{V} spanned by a Jordan chain (18) of T. The first equality in (19) and (20) imply that \mathcal{W} is an invariant subspace of T. If we denote by S the restriction of T to \mathcal{W}, then the matrix representation of S with respect to the basis $\left\{v_{1}, \ldots, v_{l}\right\}$ is

$$
\mathrm{M}_{\mathcal{B}}(S)=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \tag{22}\\
0 & \lambda & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right]
$$

A matrix of this form is called a Jordan block corresponding to the eigenvalue λ. In words: a Jordan block corresponding to the eigenvalue λ is a square matrix with all elements on the main diagonal equal to λ and all elements on the superdiagonal equal to 1 .

A basis for \mathcal{V} which consists of Jordan chains of T is called a Jordan basis for \mathcal{V} with respect to T.

If a basis \mathcal{B} for \mathcal{V} is a Jordan basis with respect to T then the matrix $\mathrm{M}_{\mathcal{B}}(T)$ has Jordan blocks of different sizes on the diagonal and all other elements of $\mathrm{M}_{\mathcal{B}}(T)$ are zeros. Each eigenvalue of T is represented in $\mathrm{M}_{\mathcal{B}}(T)$ by one or more Jordan blocks:

$$
\left.\left[\begin{array}{cccc|cccccc}
\hline \lambda_{1} & 1 & \cdots & 0 \tag{23}\\
0 & \lambda_{1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & \lambda_{1}
\end{array}\right) \begin{array}{cccccc}
0 & 0 & \cdots & 0 & & \\
0 & 0 & \cdots & 0 & & \\
\vdots & \vdots & \ddots & \vdots & & \\
\hline 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & & \\
0 & 0 & \cdots & 0 & & \\
0 & 0 & \cdots & 0 & \begin{array}{ccccc}
\lambda_{2} & 1 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & 1 \\
0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & \lambda_{2}
\end{array} & \\
& & & & & \\
& & & & \\
& & & & & \\
& & & \ddots & \\
& & & & & \\
& & & \ddots
\end{array}\right] .
$$

In the above matrix λ_{1} and λ_{2} are not necessarily distinct eigenvalues. A matrix of the form (23) is called the Jordan normal form for T. More precisely, a square matrix $\mathrm{M}=\left[a_{j, k}\right]$ is a Jordan normal form for T if:
(i) all elements of M outside of the main diagonal and the superdiagonal are 0 ,
(ii) all elements on the main diagonal of M are eigenvalues of T,
(iii) all elements on the superdiagonal of M are either 1 or 0 , and,
(iv) if $a_{j-1, j-1} \neq a_{j, j}$, with $j \in\{2, \ldots, n\}$, then $a_{j-1, j}=0$.

Theorem 4.1. Let \mathcal{V} be a finite dimensional vector space over \mathbb{C} and let $T \in \mathcal{L}(\mathcal{V})$. Then \mathcal{V} has a Jordan basis with respect to T.

Proof. We use the notation and the results of Theorem 3.5. Let $k \in\{1, \ldots, q\}$. It is important to notice that each Jordan chain of the nilpotent operator N_{k} is a Jordan chain of T which corresponds to the eigenvalue λ_{k}. Since N_{k} is a nilpotent mapping in $\mathcal{L}\left(\mathcal{W}_{k}\right)$, by Theorem 1.1 there exists a basis $\mathcal{B}_{k}=\left\{v_{k, 1}, \ldots, v_{k, m_{k}}\right\}$ for \mathcal{W}_{k} which consists of Jordan chains of N_{k}. Consequently, \mathcal{B}_{k} consists of Jordan chains of T. Since \mathcal{V} is a direct sum of $\mathcal{W}_{1}, \ldots, \mathcal{W}_{q}$, the union $\mathcal{B}=\mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{q}$, that is,

$$
\mathcal{B}=\left\{v_{1,1}, \ldots, v_{1, m_{1}}, v_{2,1}, \ldots, v_{2, m_{2}}, \ldots, v_{q, 1}, \ldots, v_{q, m_{q}}\right\}
$$

is a basis for \mathcal{V}. This basis consists of Jordan chains of T.
The matrix $\mathrm{M}_{\mathcal{B}}(T)$ is a block diagonal with the blocks $\mathrm{M}_{\mathcal{B}_{k}}\left(T_{k}\right), k=1, \ldots, q$, on the diagonal and with zeros every where else:

$$
\mathrm{M}_{\mathcal{B}}(T)=\left[\begin{array}{cccc}
\mathrm{M}_{\mathcal{B}_{1}}\left(T_{1}\right) & 0 & \cdots & 0 \\
0 & \mathrm{M}_{\mathcal{B}_{2}}\left(T_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \vdots \vdots & \vdots \\
0 & 0 & \cdots & \mathrm{M}_{\mathcal{B}_{q}}\left(T_{q}\right)
\end{array}\right]
$$

Since $T_{k}=\lambda_{k} I+N_{k}$, we have

$$
\mathrm{M}_{\mathcal{B}_{k}}\left(T_{k}\right)=\lambda_{k} \mathrm{I}+\mathrm{M}_{\mathcal{B}_{k}}\left(N_{k}\right) .
$$

Thus all the elements on the main diagonal of $\mathrm{M}_{\mathcal{B}_{k}}\left(T_{k}\right)$ equal λ_{k} and all the elements of superdiagonal of $\mathrm{M}_{\mathcal{B}_{k}}\left(T_{k}\right)$ are either 1 or 0 . If there are exactly h_{k} Jordan chains in the basis \mathcal{B}_{k}, then 0 appears exactly $h_{k}-1$ times on the superdiagonal of $\mathrm{M}_{\mathcal{B}_{k}}\left(T_{k}\right)$. Therefore $\mathrm{M}_{\mathcal{B}}(T)$ is a Jordan normal form for T.

