
1 Eigenvalues and eigenvectors of a linear operator

In this section we consider a vector space V over a scalar field F. By L(V) we denote the vector space
L(V,V) of all linear operators on V. The vector space L(V) with the composition of operators as an
additional binary operation is an algebra in the sense of the following definition.

Definition 1.1. A vector space A over a field F is an algebra over F if the following conditions are satisfied:

(a) there exist a binary operation · : A×A → A.

(b) (associativity) for all x, y, z ∈ A we have (x · y) · z = x · (y · z).

(c) (right-distributivity) for all x, y, z ∈ A we have (x+ y) · z = x · z + y · z.

(d) (left-distributivity) for all x, y, z ∈ A we have z · (x+ y) = z · x+ z · y.

(e) (respect for scaling) for all x, y ∈ A and all α ∈ F we have α(x · y) = (αx) · y = x · (αy).

The binary operation in an algebra is often referred to as multiplication.

The multiplicative identity in the algebra L(V) is the identity operator IV .

For T ∈ L(V) we recursively define nonnegative integer powers of T by T 0 = IV and for all n ∈ N

T n = T ◦ T n−1.

For T ∈ L(V), set
AT = span

{

T k : k ∈ N ∪ {0}
}

.

Clearly AT is a subspace of L(V). Moreover, we will see below that AT is a commutative subalgebra of
L(V).

Recall that by definition of a span a nonzero S ∈ L(V) belongs to AT if and only if ∃m ∈ N ∪ {0} and
α0, α1, . . . , αm ∈ F such that am 6= 0 and

S =
m
∑

k=0

αkT
k. (1)

The last expression reminds us of a polynomial over F. Recall that by F[z] we denote the algebra of all
polynomials over F. That is

F[z] =

{ n
∑

j=0

αjz
j : n ∈ N ∪ {0}, (α0, . . . , αn) ∈ Fn+1

}

.

Next we recall the definition of the multiplication in the algebra F[z]. Let m,n ∈ N ∪ {0} and

p(z) =

m
∑

i=0

αiz
i ∈ F[z] and q(z) =

n
∑

j=0

βjz
j ∈ F[z]. (2)

Then by definition

(pq)(z) =

m+n
∑

k=0

(

∑

i+j=k
i∈{0,...,m}
j∈{0,...,n}

αiβj

)

zk.

Since the multiplication in F is commutative, it follows that pq = qp. That is F[z] is a commutative algebra.

The obvious alikeness of the expression (1) and the expression for the polynomial p in (2) is the
motivation for the following definition. For a fixed T ∈ L(V) we define

ΞT : F[z] → L(V)

by setting

ΞT (p) =
m
∑

i=0

αiT
i where p(z) =

m
∑

i=0

αiz
i ∈ F[z]. (3)

It is common to write p(T ) for ΞT (p).
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Theorem 1.2. Let T ∈ L(V). The function ΞT : F[z] → L(V) defined in (3) is an algebra homomorphism.

The range of ΞT is AT .

Proof. It is not difficult to prove that ΞT : F[z] → L(V) is linear. We will prove that ΞT : F[z] → L(V) is
multiplicative, that is, for all p, q ∈ F[z] we have ΞT (pq) = ΞT (p)ΞT (q). To prove this let p, q ∈ F[z] be
arbitrary and given in (2). Then

ΞT (p)ΞT (q) =

(

m
∑

i=0

αiT
i

)(

n
∑

j=0

βjT
j

)

(by definition in (3))

=
m
∑

i=0

n
∑

j=0

αiβjT
i+j (since L(V) is an algebra)

=

m+n
∑

k=0





∑

i+j=k

αiβj



T k (since L(V) is a vector space)

= ΞT (pq) (by definition in (3)).

This proves the multiplicative property of ΞT .

The fact that AT is the range of ΞT is obvious.

Corollary 1.3. Let T ∈ L(V). The subspace AT of L(V) is a commutative subalgebra of L(V).

Proof. Let Q,S ∈ AT . Since AT is the range of ΞT there exist p, q ∈ F[z] such that Q = ΞT (p) and
S = ΞT (q). Then, since ΞT is an algebra homomorphism we have

QS = ΞT (p)ΞT (p) = ΞT (pq) = ΞT (qp) = ΞT (q)ΞT (p) = SQ.

This sequence of equalities shows that QS ∈ ran(ΞT ) = AT and QS = SQ. That is AT is closed with
respect to the operator composition and the operator composition on AT is commutative.

Corollary 1.4. Let V be a complex vector space and let T ∈ L(V) be a nonzero operator. Then for every

p ∈ C[z] such that deg p ≥ 1 there exist a nonzero α ∈ C and z1, . . . , zm ∈ C such that

ΞT (p) = p(T ) = α(T − z1I) · · · (T − zmI).

Proof. Let p ∈ C[z] such that m = deg p ≥ 1. Then there exist α0, . . . , αm ∈ C such that αm 6= 0 such that

p(z) =
m
∑

k=0

αjz
j.

By the Fundamental Theorem of Algebra there exist nonzero α ∈ C and z1, . . . , zm ∈ C such that

p(z) = α(z − z1) · · · (z − zm).

Here α = αm and z1, . . . , zm are the roots of p. Since ΞT is an algebra homomorphism we have

p(T ) = ΞT (p) = αΞT (z − z1) · · · ΞT (z − zm) = α(T − z1I) · · · (T − zmI).

This completes the proof.

Lemma 1.5. Let n ∈ N and S1, . . . , Sn ∈ L(V). If S1, . . . , Sn are all injective, then S1 · · · Sn is injective.
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Proof. We proceed by Mathematical Induction. The base step is trivial. It is useful to prove the implication
for n = 2. Assume that S, T ∈ L(V) are injective and let u, v ∈ V be such that u 6= v. Then, since T is
injective, Tu 6= Tv. Since S is injective, S(Tu) 6= S(Tv). Thus, ST is injective.

Next we prove the inductive step. Let m ∈ N and assume that S1 · · · Sm is injective whenever
S1, . . . , Sm ∈ L(V) are all injective. (This is the inductive hypothesis.) Now assume that S1, . . . , Sm, Sm+1 ∈
L(V) are all injective. By the inductive hypothesis the operator S = S1 · · · Sm is injective. Since by as-
sumption T = Sm+1 is injective, the already proved claim for n = 2 yields that

ST = S1 · · · Sm Sm+1

is injective. This completes the proof.

Theorem 1.6. Let V be a nontrivial finite dimensional vector space over C. Let T ∈ L(V). Then there

exists a λ ∈ C and v ∈ V such that v 6= 0v and Tv = λv.

Proof. The claim of the theorem is trivial if T is a scalar multiple of the identity operator. So, assume
that T ∈ L(V) is not a scalar multiple of the identity operator.

Since L(V) is finite dimensional and C[z] is infinite dimensional, by the Rank-nullity theorem the
operator ΞT is not injective. Thus nul(ΞT ) 6= {0v}. Hence, there exists a p ∈ C[z] such that p 6= 0C[z] and
ΞT (p) = p(T ) = 0L(V). Since p 6= 0C[z] then deg p ≥ 0. Note that if deg p = 0 then p(z) = c for some
c ∈ C for all z ∈ C. Thus ΞT (p) = p(T ) = cIV . This is not possible since we assume that T is not a scalar
multiple of the identity. Hence deg p > 0. By Corollary 1.4 there exists α 6= 0 and z1, . . . , zm ∈ C such
that

0L(V) = ΞT (p) = p(T ) = α(T − z1I) · · · (T − zmI).

Since 0L(V) is not injective, Lemma 1.5 implies that there exists j ∈ {1, . . . ,m} such that T − zjI is not
injective. That is, there exists v ∈ V, v 6= 0V such that

(T − zjI)v = 0.

Setting λ = zj completes the proof.

Remark 1.7. Note that the proof in the textbook is different. The proof in the textbook is somewhat
more elementary since it does not use the Rank-nullity theorem.

Definition 1.8. Let V be a vector space over F, T ∈ L(V). A scalar λ ∈ F is an eigenvalue of T if there
exists v ∈ V such that v 6= 0 and Tv = λv. The subspace nul(T − λI) of V is called the eigenspace of T
corresponding to λ

Definition 1.9. Let V be a finite dimensional vector space over F. Let T ∈ L(V). The set of all eigenvalues
of T is denoted by σ(T ). It is called the spectrum of T .

The next theorem can be stated in English simply as: Eigenvectors corresponding to distinct eigenvalues
are linearly independent.

Theorem 1.10. Let V be a vector space over F, T ∈ L(V) and n ∈ N. If the following two conditions are

satisfied:

(a) λ1, . . . , λn ∈ F are such that λi 6= λj for all i, j ∈ {1, . . . , n} such that i 6= j,

(b) v1, . . . , vn ∈ V are such that Tvk = λkvk and vk 6= 0 for all k ∈ {1, . . . , n},

then {v1, . . . , vn} is linearly independent.
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Proof. We will prove this by using the mathematical induction on n. For the base case, we will prove the
claim for n = 1. Let λ1 ∈ F and let v1 ∈ V be such that v1 6= 0 and Tv1 = λ1v1. Since v1 6= 0, we conclude
that {v1} is linearly independent.

Next we prove the inductive step. Let m ∈ N be arbitrary. The inductive hypothesis is the assumption
that the following implication holds.

If the following two conditions are satisfied:

(i) µ1, . . . , µm ∈ F are such that µi 6= µj for all i, j ∈ {1, . . . ,m} such that i 6= j,

(ii) w1, . . . , wm ∈ V are such that Twk = µkwk and wk 6= 0 for all k ∈ {1, . . . ,m},

then {w1, . . . , wm} is linearly independent.

We need to prove the following implication

If the following two conditions are satisfied:

(I) λ1, . . . , λm+1 ∈ F are such that λi 6= λj for all i, j ∈ {1, . . . ,m+ 1} such that i 6= j,

(II) v1, . . . , vm+1 ∈ V are such that Tvk = λkvk and vk 6= 0 for all k ∈ {1, . . . ,m+ 1},

then {v1, . . . , vm+1} is linearly independent.

Assume (I) and (II) in the red box. We need to prove that {v1, . . . , vm+1} is linearly independent.

Let α1, . . . , αm+1 ∈ F be such that

α1v1 + · · · + αmvm + αm+1vm+1 = 0. (4)

Applying T ∈ L(V) to both sides of (4), using the linearity of T and assumption (II) we get

α1λ1v1 + · · ·+ αmλmvm + αm+1λm+1vm+1 = 0. (5)

Multiplying both sides of (4) by λm+1 we get

α1λm+1v1 + · · ·+ αmλm+1vm + αm+1λm+1vm+1 = 0. (6)

Subtracting (6) from (5) we get

α1(λ1 − λm+1)v1 + · · · + αm(λm − λm+1)vm = 0.

Since by assumption (I) we have λj − λm+1 6= 0 for all j ∈ {1, . . . ,m}, setting

wj = (λj − λm+1)vj , j ∈ {1, . . . ,m},

and taking into account (II) we have

wj 6= 0 and Twj = λjwj for all j ∈ {1, . . . ,m}. (7)

Thus, by (I) and (7), the scalars λ1, . . . , λm and vectors w1, . . . , wm satisfy assumptions (i) and (ii) of
the inductive hypothesis (the green box). Consequently, the vectors w1, . . . , wm are linearly independent.
Since by (7) we have

α1w1 + · · ·+ αmwm = 0,

it follows that α1 = · · · = αm = 0. Substituting these values in (4) we get αm+1vm+1 = 0. Since by
(II), vm+1 6= 0 we conclude that αm+1 = 0. This completes the proof of the linear independence of
v1, . . . , vm+1.

Corollary 3: Let V be a finite dimensional vector space over F and let T ∈ L(V). Then T has at most
n = dimV distinct eigenvalues.
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Proof. Let B be a basis of V where B = {u1, ..., un}. Then |B| = n and spanB = V. Let C = {v1, ..., vm} be
eigenvectors corresponding to m distinct eigenvalues. Then C is a linearly independent set with |C| = m.
By the Steinitz Exchange Lemma, m ≤ n. Consequently, T has at most n distinct eigenvalues.

Definition 1.11. Let V be a vector space over F and T ∈ L(V ). A subspace U of V is called an invariant

subspace under T if T (U) ⊆ U .

The following proposition is straightforward.

Proposition 1.12. Let S, T ∈ L(V) be such that ST = TS. Then nulT is invariant under S and nulS is

invariant under T . In particular, all eigenspaces of T are invariant under T .

Definition 1.13. A matrix A ∈ Fn×n with entries aij, i, j ∈ {1, . . . , n} is called upper triangular if ai,j = 0
for all i, j ∈ {1, . . . , n} such that i > j.

Definition 1.14. Let V be a finite dimensional vector space over F with n = dimV > 0. Let T ∈ L(V).
A sequence of nontrivial subspaces U1, . . . ,Un of V such that

U1 ( U2 ( · · · ( Un (8)

and
TUk ⊆ Uk for all k ∈ {1, . . . , n}

is called a fan for T in V. A basis {v1, . . . , vn} of V is called a fan basis corresponding to T if the subspaces

Vk = span{v1, . . . , vk}, k ∈ {1, . . . , n},

form a fan for T .

Notice that (8) implies
1 ≤ dimU1 < dimU2 < · · · < dimUn ≤ n.

Consequently, if U1, . . . ,Un is a fan for T we have dimUk = k for all k ∈ {1, . . . , n}. In particular Un = V.

Theorem 1.15 (Theorem 5.12). Let V be a finite dimensional vector space over F with dimV = n and let

T ∈ L(V). Let B = {v1, . . . , vn} be a basis of V and set

Vk = span{v1, . . . , vk}, k ∈ {1, . . . , n}.

The following statements are equivalent.

(a) MB
B (T ) is upper-triangular.

(b) Tvk ∈ Vk for all k ∈ {1, . . . , n}.

(c) TVk ⊆ Vk for all k ∈ {1, . . . , n}.

(d) B is a fan basis corresponding to T .

Proof. (a) ⇒ (b). Assume that MB
B (T ) is upper triangular. That is

MB
B (T ) =





















a11 a12 · · · a1k · · · a1n
0 a22 · · · a2k · · · a2n
...

...
. . .

...
...

0 0 · · · akk · · · 0
...

...
...

. . .
...

0 0 · · · 0 · · · ann





















.
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Let k ∈ {1, . . . , n} be arbitrary. Then, by the definition of MB
B (T ),

CB(Tvk) =





















a1k
...

akk
0
...
0





















.

Consequently, by the definition of CB, we have

Tvk = a1kv1 + · · ·+ akkvk ∈ span{v1, . . . , vk} = Vk.

Thus, (b) is proved.

(b) ⇒ (a). Assume that Tvk ∈ Vk for all k ∈ {1, . . . , n}. Let aij , i, j ∈ {1, . . . , n}, be the entries of
MB

B (T ). Let j ∈ {1, . . . , n} be arbitrary. Since Tvj ∈ Vj there exist α1, . . . , αj ∈ F such that

Tvj = α1v1 + · · ·+ αjvj.

By the definition of CB we have

CB(Tvj) =





















α1
...
αj

0
...
0





















.

On the other side, by the definition of MB
B (T ), we have

CB(Tvj) =





















a1k
...

ajj
aj+1,j

...
anj





















.

The last two equalities, and the fact that CB is a function, imply aij = 0 for all i ∈ {j + 1, . . . , n}. This
proves (a).

(b) ⇒ (c). Suppose Tvk ∈ Vk = span{v1, . . . , vk} for all k ∈ {1, . . . , n}. Let v ∈ Vk. Then v =
α1v1 + · · ·+ αkvk. Applying T , we get Tv = α1Tv1 + · · · + αkTvk. Thus,

Tv ∈ span{Tv1, . . . , T vk}. (9)

Since
Tvj ∈ Vj ⊂ Vk for all j ∈ {1, . . . , k},

we have
span{Tv1, . . . , T vk} ⊆ Vk.

Together with (9), this proves (c).

(c) ⇒ (b). Suppose TVk ⊆ Vk for all k ∈ {1, . . . , n}. Then since vk ∈ Vk, we have Tvk ∈ Vk for each
k ∈ {1, . . . , n}.

(c) ⇔ (d) follows from the definition of a fan basis corresponding to T .
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Theorem 1.16. Let V be a finite dimensional vector space over F with dimV = n, and let T ∈ L(V).
Let B = {v1, . . . , vn} be a basis of V such that MB

B (T ) is upper triangular with diagonal entries ajj,

j ∈ {1, . . . , n}. Then T is not injective if and only if there exists j ∈ {1, . . . , n} such that ajj = 0.

Proof. In this proof we set
Vk = span{v1, ..., vk}, k ∈ {1, ..., n}.

Then
V1 ( V2 ( . . . ( Vn (10)

and by Theorem 1.15, TVk ⊆ Vk.

We first prove the “only if” part. Assume that T is not injective. Consider the set

K =
{

k ∈ {1, ..., n} : TVk ( Vk

}

Since T is not injective, nulT 6= {0V}. Thus by the Rank-Nullity Theorem, ranT ( V = Vn. Since
TVn = ranT , it follows that TVn ( Vn. Therefore n ∈ K. Hence the set K is a nonempty set of positive
integers. Hence, by the Well-Ordering principle minK exists. Set j = minK.

If j = 1, then dimV1 = 1, but since TV1 ( V1 it must be that dimTV1 = 0. Thus TV1 = {0V}, so
Tv1 = 0v. Hence CB(T ) = [0 · · · 0]⊤ and so ajj = 0. If j > 1, then j − 1 ∈ {1, . . . , n} but j − 1 6∈ K. By
Theorem 1.15, TVj−1 ⊆ Vj−1 and, since j − 1 6∈ K, TVj−1 ( Vj−1 is not true. Hence TVj−1 = Vj−1. Since
j ∈ K, we have TVj ( Vj. Now we have

Vj−1 = TVj−1 ⊆ TVj ( Vj .

Consequently,
j − 1 = dimVj−1 ≤ dim

(

TVj

)

< dimVj = j,

which implies dim
(

TVj

)

= j − 1 and therefore TVj = Vj−1. This implies that there exist α1, . . . , αj−1 ∈ F

such that
Tvj = α1v1 + · · ·+ αj−1vj−1.

By the definition of MB
B this implies that ajj = 0.

Next we prove the “if” part. Assume that there exists j ∈ {1, ..., n} such that ajj = 0. Then

Tvj = a1jv1 + · · ·+ aj−1,jvj−1 + 0vj ∈ Vj−1. (11)

By Theorem 1.15 and (10) we have

Tvi ∈ Vi ⊆ Vj−1 for all i ∈ {1, . . . , j − 1}. (12)

Now (11) and (12) imply Tvi ∈ Vj−1 for all i ∈ {1, . . . , j} and consequently TVj ⊆ Vj. To complete the
proof, we apply the Rank-Nullity theorem to the restriction T |Vj

of T to the subspace Vj :

dimnul
(

T |Vj

)

+ dim ran
(

T |Vj

)

= j.

Since TVj ⊆ Vj implies dim ran
(

T |Vj

)

≤ j − 1, we conclude

dimnul
(

T |Vj

)

≥ 1.

Thus nul
(

T |Vj

)

6= {0V}, that is, there exists v ∈ Vj such that v 6= 0 and Tv = T |Vj
v = 0. This proves that

T is not invertible.

Corollary 1.17 (Theorem 5.16). Let V be a finite dimensional vector space over F with dimV = n,

and let T ∈ L(V). Let B be a basis of V such that MB
B (T ) is upper triangular with diagonal entries ajj,

j ∈ {1, . . . , n}. The following statements are equivalent.
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(a) T is not injective.

(b) T is not invertible.

(c) 0 is an eigenvalue of T .

(d)
∏n

i=1 aii = 0.

(e) There exists j ∈ {1, . . . , n} such that ajj = 0.

Proof. The equivalence (a) ⇔ (b) follows from the Rank-nullity theorem and it has been proved earlier.
The equivalence (a) ⇔ (c) is almost trivial. The equivalence (a) ⇔ (e) was proved in Theorem 1.16 and
The equivalence (d) ⇔ (e) is should have been proved in high school.

Theorem 1.18. Let V be a finite dimensional vector space over F with dimV = n, and let T ∈ L(V). Let

B be a basis of V such that MB
B (T ) is upper triangular with diagonal entries ajj, j ∈ {1, . . . , n}. Then

σ(T ) =
{

ajj : j ∈ {1, ..., n}
}

.

Proof. Notice that MB
B : L(V ) → Fn×n is a linear operator. Therefore

MB
B (T − λI) = MB

B (T )− λMB
B (I) = MB

B (T )− λIn.

Here In denotes the identity matrix in Fn×n. As MB
B (T ) and MB

B (I) = In are upper triangular, MB
B (T−λI)

is upper triangular as well with diagonal entries ajj − λ, j ∈ {1, ..., n}.

To prove a set equality we need to prove two inclusions.

First we prove ⊆. Let λ ∈ σ(T ). Because λ is an eigenvalue, T − λI is not injective. Because T − λI

is not injective, by Theorem 1.16 one of its diagonal entries is zero. So there exists i ∈ {1, ..., n} such that
aii − λ = 0. Thus λ = aii. So σ(T ) ⊆

{

ajj : j ∈ {1, ..., n}
}

.

Next we prove ⊇. Let aii ∈
{

ajj : j ∈ {1, ..., n}
}

be arbitrary. Then aii − aii = 0. By Theorem 1.16
and the note at the beginning of this proof T − aiiI is not injective. This implies that aii is an eigenvalue
of T . Thus aii ∈ σ(T ). This completes the proof.

Remark 1.19. Theorem 1.18 is identical to Theorem 5.18 in the textbook.

Theorem 1.20 (Theorem 5.13). Let V be a nonzero finite dimensional complex vector space. If dimV = n

and T ∈ L(V), then there exists a basis B of V such that MB
B (T ) is upper-triangular.

Proof. We proceed by the complete induction on n = dim(V).

The base case is trivial. Assume dimV = 1 and T ∈ L(V). Set B = {v}, where u ∈ V\{0u} is arbitrary.
Then there exists λ ∈ C such that Tu = λu. Then, MB

B (T ) =
[

λ
]

.

Now we prove the inductive step. Let m ∈ N be arbitrary. The inductive hypothesis is

For every k ∈ {1, . . . ,m} the following implication holds: If dimU = k and S ∈ L(U), then
there exists a basis A of U such that MA

A (S) is upper-triangular.

We complete the inductive step, we need to prove the implication:

If dimV = m + 1 and T ∈ L(V), then there exists a basis B of V such that MB
B (T ) is

upper-triangular.

To prove the red implication assume that dimV = m+1 and T ∈ L(V). By Theorem 1.6 the operator
T has an eigenvalue. Let λ be an eigenvalue of T . Set U = ran(T − λI). Because (T − λI) is not injective,
it is not surjective, and thus k = dim(U) < dim(V) = m+ 1. That is k ∈ {1, . . . ,m}.

Moreover, TU = U . To show this, let u ∈ U . Then Tu = (T − λI)u + λu. Since (T − λI)u ∈ U and
λu ∈ U , Tu ∈ U . Hence, S = T |U is an operator on U .
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By the inductive hypothesis (the green box), there exists a basis A = {u1, . . . , uk} of U such that
MA

A (S) is upper-triangular. That is,

Tuj = Suj ∈ span{u1, . . . , uj} for all j ∈ {1, . . . , k}.

Extend A to a basis B = {u1, . . . , uk, v1, . . . , vn−k} of V. Since

Tvj = (T − λI)vj + λvj, j ∈ {1, . . . , n− k}

where (T − λI)vj ∈ U , we have

Tvj ∈ span{u1, . . . , um, vj} ⊆ span{u1, . . . , um, v1, . . . , vj} for all j ∈ {1, . . . , n − k}.

By Theorem 1.15, MB
B (T ) is upper-triangular.

2 Inner Product Spaces

We will first introduce several “dot-product-like” objects. We start with the most general.

Definition 2.1. Let V be a vector space over a scalar field F. A function

[ · , · ] : V × V → F

is a sesquilinear form on V if the following two conditions are satisfied.

(a) (linearity in the first variable) ∀α, β ∈ F ∀u, v, w ∈ V [αu+ βv,w] = α[u,w] + β[v,w].

(b) (anti-linearity in the second variable) ∀α, β ∈ F ∀u, v, w ∈ V [u, αv + βw] = α[u, v] + β[u,w].

Example 2.2. Let M ∈ Cn×n be arbitrary. Then

[x,y] = (Mx) · y, x,y ∈ Cn,

is a sesquilinear form on the complex vector space Cn. Here · denotes the usual dot product in C.

Theorem 2.3. Let V be a vector space over a scalar field F and let [ · , · ] : V × V → F be a sesquilinear

form on V. If i ∈ F, then

[u, v] =
1

4

3
∑

k=0

ik
[

u+ ikv, u+ ikv
]

(13)

for all u, v ∈ V.

Corollary 2.4. Let V be a vector space over a scalar field F and let [ · , · ] : V × V → F be a sesquilinear

form on V. If i ∈ F and [v, v] = 0 for all v ∈ V, then [u, v] = 0 for all u, v ∈ V.

Definition 2.5. Let V be a vector space over a scalar field F. A sesquilinear form [ · , · ] : V × V → F is
hermitian if

(c) (hermiticity) ∀u, v ∈ V [u, v] = [v, u].

A hermitian sesquilinear form is also called an inner product.

Let [ · , · ] be an inner product on V. The hermiticity of [ · , · ] implies that [v, v] = [v, v] for all v ∈ V.
Thus [v, v] ∈ R for all v ∈ V. The natural trichotomy that arises is the motivation for the following
definition.
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Definition 2.6. An inner product [ · , · ] on V is called nonnegative if [v, v] ≥ 0 for all v ∈ V, it is called
nonpositive if [v, v] ≤ 0 for all v ∈ V, and it is called indefinite if there exist u ∈ V and v ∈ V such that
[u, u] < 0 and [v, v] > 0.

The following implication that you might have learned in high school will be useful below.

Theorem 2.7 (High School Theorem). Let a, b, c be real numbers. Assume a ≥ 0. Then the following

implication holds:

∀x ∈ Q ax2 + bx+ c ≥ 0 ⇒ b2 − 4ac ≤ 0. (14)

Theorem 2.8 (Cauchy-Bunyakovsky-Schwartz Inequality). Let V be a vector space over F and let 〈 · , · 〉
be a nonnegative inner product on V. Then

∀u, v ∈ V |〈u, v〉|2 ≤ 〈u, u〉〈v, v〉. (15)

The equality occurs in (15) if and only if there exists α, β ∈ F not both 0 such that 〈αu+βv, αu+βv〉 = 0.

Proof. Let u, v ∈ V be arbitrary. Since 〈·, ·〉 is nonnegative we have

∀ t ∈ Q
〈

u+ t〈u, v〉v, u + t〈u, v〉v
〉

≥ 0. (16)

Since 〈·, ·〉 is a sesquilinear hermitian form on V, (16) is equivalent to

∀ t ∈ Q 〈u, u〉+ 2t|〈u, v〉|2 + t2|〈u, v〉|2〈v, v〉 ≥ 0. (17)

As 〈v, v〉 ≥ 0, the High School Theorem applies and (17) implies

4|〈u, v〉|4 − 4|〈u, v〉|2〈u, u〉〈v, v〉 ≤ 0. (18)

Again, since 〈u, u〉 ≥ 0 and 〈v, v〉 ≥ 0, (18) is equivalent to

|〈u, v〉|2 ≤ 〈u, u〉〈v, v〉.

Since u, v ∈ V were arbitrary, (15) is proved.

Corollary 2.9. Let V be a vector space over F and let 〈 · , · 〉 be a nonnegative inner product on V. Then

the following two implications are equivalent.

(i) If v ∈ V and 〈u, v〉 = 0 for all u ∈ V, then v = 0.

(ii) If v ∈ V and 〈v, v〉 = 0, then v = 0.

Proof. Assume that the implication (i) holds and let v ∈ V be such that 〈v, v〉 = 0. Let u ∈ V be arbitrary.
By the the CBS inequality

|〈u, v〉|2 ≤ 〈u, u〉〈v, v〉 = 0.

Thus, 〈u, v〉 = 0 for all u ∈ V. By (i) we conclude v = 0. This proves (ii).

The converse is trivial. However, here is a proof. Assume that the implication (ii) holds. To prove (i),
let v ∈ V and assume 〈u, v〉 = 0 for all u ∈ V. Setting u = v we get 〈v, v〉 = 0. Now (ii) yields v = 0.

Definition 2.10. Let V be a vector space over a scalar field F. An inner product [ · , · ] on V is nondegenerate
if the following implication holds

(d) (nondegenerecy) u ∈ V and [u, v] = 0 for all v ∈ V implies u = 0.
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It follows from Corollary 2.9 that a nonnegative inner product 〈 · , · 〉 on V is nondegenerate if and only
if 〈v, v〉 = 0 implies v = 0. A nonnegative nondegenerate inner product is also called positive definite inner

product. Since this is the most often encountered inner product we give its definition as it commonly given
in textbooks.

Definition 2.11. Let V be a vector space over a scalar field F. A function 〈 · , · 〉 : V × V → F is called a
positive definite inner product on V if the following conditions are satisfied;

(a) ∀u, v, w ∈ V ∀α, β ∈ F 〈αu+ βv, v〉 = α〈u,w〉 + β〈v,w〉,

(b) ∀u, v ∈ V 〈u, v〉 = 〈v, u〉,

(c) ∀ v ∈ V 〈v, v〉 ≥ 0,

(d) If v ∈ V and 〈v, v〉 = 0, then v = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Branko Ćurgus revised up to here. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 2.12. Pythagorean Theorem

Let u, v ∈ V. Then 〈u, v〉 = 0 =⇒ 〈u+ v, u+ v〉 = 〈u, u〉+ 〈v, v〉

Furthermore, if v1, · · · , vn ∈ V and 〈vj , jk〉 = 0 whenever j 6= k then 〈
∑n

j=1 vj,
∑n

k=1 vk〉 =
∑n

j=1〈vj , vj〉

Proof. For two vectors.

〈u+ v, u+ v〉 = 〈u, u+ v〉+ 〈v, u+ v〉

= 〈u, u〉+ 〈u, v〉 + 〈v, u〉 + 〈v, v〉

= 〈u, u〉+ 2Re〈u, v〉 + 〈v, v〉

= 〈u, u〉+ 〈v, v〉

November 8 (The Gram-Schmidt orthogonalization was proven the previous day)

Theorem 2.13 (Gram-Schmidt). If V is a finite dimensional vector space with positive definite inner

product 〈 · , · 〉, then V has an orthonormal basis.

Corollary 2.14. If V is a complex vector space with positive definite inner product and T ∈ L(V) then

there exists an orthonormal basis B such that MB
B(T ) is upper-triangular.

Definition 2.15. Let (V, 〈 · , · 〉) be a finite dimensional positive definite inner product space and A ⊂ V.
We define A⊥ = {v ∈ V : 〈v, a〉 = 0 ∀ a ∈ A}.

Claim (Not proven in class): A⊥ is a subspace of V.

Theorem 2.16. If U is a subspace of V, then V = U ⊕ U⊥.

Proof. Let v ∈ U and v ∈ U⊥. Then 〈v, v〉 = 0. Since the 〈 · , · 〉 is positive definite, this implies v = 0V .
Note that since U is a subspace of V, U inherits the positive definite inner product space. Thus U is
a finite dimensional positive definite inner product space. Thus there exists an orthonormal basis of U ,
B = {u1, u2, . . . uk}.

Let v ∈ V be arbitrary. By the Gram-Schmidt process,

v =





k
∑

j=1

〈v, uj〉uj



+



v −

k
∑

j=1

〈v, uj〉uj



 ,

11



where the first summand is in U and the second summand is in U⊥. More succinctly, we write this as
v = w+ (v−w) where w =

∑k
j=1〈v, uj〉uj . We prove w is unique: u ∈ U⊥ if and only if 〈w, uj〉 = 0 for all

j ∈ {1, . . . k}. The forward direction is trivial (from the definition of U⊥). To prove the reverse direction,
let u ∈ U be arbitrary. Then there exist αj ∈ F such that u =

∑k
j=1 αjuj. Now calculate

〈w, u〉 =

〈

w,

k
∑

j=1

αjuj

〉

=

k
∑

j=1

ᾱj〈w, uj〉 = 0.

The last equality follows from the assumption. Thus u ∈ U⊥.

Now for every i ∈ {1, . . . k},

〈v − w, ui〉 =

〈

v −
k
∑

j=1

〈v, uj〉uj , ui

〉

= 〈v, ui〉 −
k
∑

j=1

〈v, uj〉〈uj , ui〉 = 〈v, ui〉 − 〈v, ui〉 = 0.

Definition 2.17. By the previous theorem, if U is a subspace of V, then V = U ⊕U⊥ implies for all v ∈ V,
there exists a unique u ∈ U such that (v − u) ∈ U⊥ and v = u+ (v − u). This defines a function which we
call the orthogonal projection of v onto U as PU : V → U such that PU (v) = u.

Since U is a subspace of V, PU ∈ L(V). Furthermore, ranPU = U , nulPU = U⊥, and (PU )
2 = PU

(idempotent).

Proposition 2.18. Let U be a subspace of V, v ∈ V be arbitrary. Let u0 ∈ U . Then ‖v − u0‖ ≤ ‖v − u‖
for every u ∈ U if and only if PU (v) = u0 and v − u0 ∈ U⊥.

Proof. (⇐=): Assume v ∈ V, u, u0 ∈ U , v−u0 ∈ U⊥. Then ‖v−u‖2 = ‖v−u0+u0+u‖2, where v−u0 ∈ U⊥

and u0 + u ∈ U . By the pythagorean theorem,

‖v − u0 + u0 + u‖2 = ‖v − u0‖
2 + ‖u0 − u‖2 ≥ ‖v − u0‖

2.

(=⇒) Assume ‖v− u0‖ ≤ ‖v− u‖ for all u ∈ U . We show v− u0 ∈ U⊥. This direction of the proof was
given on November 9.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stuff from November 19, 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lemma 2.19. Let V be a vector space over F and let 〈 · , · 〉 be a positive definite inner product on V. Let

U be a subspace of V and let T ∈ L(V). The subspace U is invariant under T if and only if the subspace

U⊥ is invariant under T ∗.

Proof. By the definition of adjoint we have

〈Tu, v〉 = 〈u, T ∗v〉 (19)

for all u, v ∈ V. Assume TU ⊂ U . From (19) we get

0 = 〈Tu, v〉 = 〈u, T ∗v〉 ∀u ∈ U and ∀v ∈ U⊥.

Therefore, T ∗v ∈ U⊥ for all v ∈ U⊥. This proves “only if” part.

The proof of the “if” part is similar.
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In the proof of the next theorem we use δij to represent the Kronecker delta function, that is δij = 1 if
i = j and δij = 0 otherwise.

Theorem 2.20 (Spectral theorem for normal operators). Let V be a finite dimensional complex vector

space with a positive definite inner product 〈 · , · 〉. Let T ∈ L(V). Then T is normal if and only if there

exists an orthonormal basis of V which consists of eigenvectors of T .

Proof. Set n = dimV. We first prove “only if” part. Assume that T is normal. Set

K =

{

k ∈ {1, . . . , n} :
∃w1, . . . , wk ∈ V and ∃λ1, . . . , λk ∈ C

such that 〈wi, wj〉 = δij and Twj = λjwj

for all i, j ∈ {1, . . . , k}

}

Clearly 1 ∈ K. Since K is finite, m = maxK exists. Clearly, m ≤ n.

Next we will prove that k ∈ K and k < n implies that k + 1 ∈ K. Assume k ∈ K and k < n. Let
w1, . . . , wk ∈ V and λ1, . . . , λk ∈ C be such that 〈wi, wj〉 = δij and Twj = λjwj for all i, j ∈ {1, . . . , k}. Set

W = span{w1, . . . , wk}.

Since w1, . . . , wk are eigenvectors of T we have TW ⊆ W. By Lemma 2.19, T ∗
(

W⊥
)

⊆ W⊥. Thus,
T ∗|W⊥ ∈ L

(

W⊥
)

. Since dimW = k < n we have dim
(

W⊥
)

= n − k ≥ 1. Since W⊥ is a complex vector
space the operator T ∗|W⊥ has an eigenvalue µ with the corresponding unit eigenvector u. Clearly, u ∈ W⊥

and T ∗u = µu. Since T ∗ is normal, we have Tu = µu. Since u ∈ W⊥ and Tu = µu, setting wk+1 = u and
λk+1 = µ we have

〈wi, wj〉 = δij and Twj = λjwj for all i, j ∈ {1, . . . , k, k + 1}.

Thus k + 1 ∈ K. Consequently, k < m. Thus, for k ∈ K, we have proved the implication

k < n ⇒ k < m.

The contrapositive of this implication is: For k ∈ K, we have

k ≥ m ⇒ k ≥ n.

In particular, for m ∈ K we have m = m implies m ≥ n. Since m ≤ n is also true, this proves that m = n.
That is, n ∈ K. This implies that there exist u1, . . . , un ∈ V and λ1, . . . , λn ∈ C such that 〈ui, uj〉 = δij
and Tuj = λjuj for all i, j ∈ {1, . . . , n}.

Since u1, . . . , un are orthonormal, they are linearly independent. Since n = dimV, it turns out that
u1, . . . , un form a basis of V. This completes the proof.

To prove the converse assume that there exist an orthonormal basis of V which consist of eigenvectors
of T . That is, assume that there exists u1, . . . , un ∈ V and λ1, . . . , λn ∈ C such that 〈ui, uj〉 = δij and
Tuj = λjuj for all i, j ∈ {1, . . . , n}.

Let j ∈ {1, . . . , n} be arbitrary. Since u1, . . . , un form an orthonormal basis we have

T ∗uj = 〈T ∗uj , u1〉u1 + 〈T ∗uj , u2〉u2 + · · ·+ 〈T ∗uj, un〉un

= 〈uj , Tu1〉u1 + 〈uj , Tu2〉u2 + · · ·+ 〈uj , Tun〉un

= 〈uj , λ1u1〉u1 + 〈uj , λ2u2〉u2 + · · ·+ 〈uj , λnun〉un

= λ1〈uj , u1〉u1 + λ2〈uj , u2〉u2 + · · ·+ λn〈uj , un〉un

= λjuj .

Thus, T ∗uj = λjuj for all j ∈ {1, . . . , n}. Consequently,

TT ∗uj = T
(

λjuj
)

= λjTuj = λjλjuj = |λj |
2uj ,
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and also
T ∗Tuj = T ∗

(

λjuj
)

= λjT
∗uj = λjλjuj = |λj |

2uj.

Thus, TT ∗uj = T ∗Tuj for all j ∈ {1, . . . , n}. Since u1, . . . , un form a basis of V this implies TT ∗v = T ∗Tv

for all v ∈ V, that is, T is normal.
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