1 Eigenvalues and eigenvectors of a linear operator

In this section we consider a vector space \mathcal{V} over a scalar field \mathbb{F} . By $\mathcal{L}(\mathcal{V})$ we denote the vector space $\mathcal{L}(\mathcal{V}, \mathcal{V})$ of all linear operators on \mathcal{V} . The vector space $\mathcal{L}(\mathcal{V})$ with the composition of operators as an additional binary operation is an algebra in the sense of the following definition.

Definition 1.1. A vector space \mathcal{A} over a field \mathbb{F} is an *algebra* over \mathbb{F} if the following conditions are satisfied:

- (a) there exist a binary operation $\cdot : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$.
- (b) (associativity) for all $x, y, z \in \mathcal{A}$ we have $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- (c) (right-distributivity) for all $x, y, z \in \mathcal{A}$ we have $(x + y) \cdot z = x \cdot z + y \cdot z$.
- (d) (*left-distributivity*) for all $x, y, z \in \mathcal{A}$ we have $z \cdot (x + y) = z \cdot x + z \cdot y$.
- (e) (respect for scaling) for all $x, y \in \mathcal{A}$ and all $\alpha \in \mathbb{F}$ we have $\alpha(x \cdot y) = (\alpha x) \cdot y = x \cdot (\alpha y)$.

The binary operation in an algebra is often referred to as *multiplication*.

The multiplicative identity in the algebra $\mathcal{L}(\mathcal{V})$ is the identity operator $I_{\mathcal{V}}$.

For $T \in \mathcal{L}(\mathcal{V})$ we recursively define nonnegative integer powers of T by $T^0 = I_{\mathcal{V}}$ and for all $n \in \mathbb{N}$ $T^n = T \circ T^{n-1}$.

For $T \in \mathcal{L}(\mathcal{V})$, set

$$\mathcal{A}_T = \operatorname{span}\{T^k : k \in \mathbb{N} \cup \{0\}\}$$

Clearly \mathcal{A}_T is a subspace of $\mathcal{L}(\mathcal{V})$. Moreover, we will see below that \mathcal{A}_T is a commutative subalgebra of $\mathcal{L}(\mathcal{V})$.

Recall that by definition of a span a nonzero $S \in \mathcal{L}(\mathcal{V})$ belongs to \mathcal{A}_T if and only if $\exists m \in \mathbb{N} \cup \{0\}$ and $\alpha_0, \alpha_1, \ldots, \alpha_m \in \mathbb{F}$ such that $a_m \neq 0$ and

$$S = \sum_{k=0}^{m} \alpha_k T^k.$$
(1)

The last expression reminds us of a polynomial over \mathbb{F} . Recall that by $\mathbb{F}[z]$ we denote the algebra of all polynomials over \mathbb{F} . That is

$$\mathbb{F}[z] = \left\{ \sum_{j=0}^{n} \alpha_j z^j : n \in \mathbb{N} \cup \{0\}, \ (\alpha_0, \dots, \alpha_n) \in \mathbb{F}^{n+1} \right\}.$$

Next we recall the definition of the multiplication in the algebra $\mathbb{F}[z]$. Let $m, n \in \mathbb{N} \cup \{0\}$ and

$$p(z) = \sum_{i=0}^{m} \alpha_i z^i \in \mathbb{F}[z] \quad \text{and} \quad q(z) = \sum_{j=0}^{n} \beta_j z^j \in \mathbb{F}[z].$$
(2)

Then by definition

$$(pq)(z) = \sum_{k=0}^{m+n} \left(\sum_{\substack{i+j=k\\i\in\{0,...,m\}\\j\in\{0,...,n\}}} \alpha_i \beta_j \right) z^k$$

Since the multiplication in \mathbb{F} is commutative, it follows that pq = qp. That is $\mathbb{F}[z]$ is a commutative algebra.

The obvious alikeness of the expression (1) and the expression for the polynomial p in (2) is the motivation for the following definition. For a fixed $T \in \mathcal{L}(\mathcal{V})$ we define

$$\Xi_T: \mathbb{F}[z] \to \mathcal{L}(\mathcal{V})$$

by setting

$$\Xi_T(p) = \sum_{i=0}^m \alpha_i T^i \qquad \text{where} \qquad p(z) = \sum_{i=0}^m \alpha_i z^i \in \mathbb{F}[z].$$
(3)

It is common to write p(T) for $\Xi_T(p)$.

Theorem 1.2. Let $T \in \mathcal{L}(\mathcal{V})$. The function $\Xi_T : \mathbb{F}[z] \to \mathcal{L}(\mathcal{V})$ defined in (3) is an algebra homomorphism. The range of Ξ_T is \mathcal{A}_T .

Proof. It is not difficult to prove that $\Xi_T : \mathbb{F}[z] \to \mathcal{L}(\mathcal{V})$ is linear. We will prove that $\Xi_T : \mathbb{F}[z] \to \mathcal{L}(\mathcal{V})$ is multiplicative, that is, for all $p, q \in \mathbb{F}[z]$ we have $\Xi_T(pq) = \Xi_T(p)\Xi_T(q)$. To prove this let $p, q \in \mathbb{F}[z]$ be arbitrary and given in (2). Then

$$\Xi_T(p)\Xi_T(q) = \left(\sum_{i=0}^m \alpha_i T^i\right) \left(\sum_{j=0}^n \beta_j T^j\right) \qquad \text{(by definition in (3))}$$
$$= \sum_{i=0}^m \sum_{j=0}^n \alpha_i \beta_j T^{i+j} \qquad \text{(since } \mathcal{L}(\mathcal{V}) \text{ is an algebra})$$
$$= \sum_{k=0}^{m+n} \left(\sum_{i+j=k} \alpha_i \beta_j\right) T^k \qquad \text{(since } \mathcal{L}(\mathcal{V}) \text{ is a vector space})$$
$$= \Xi_T(pq) \qquad \text{(by definition in (3)).}$$

This proves the multiplicative property of Ξ_T .

The fact that \mathcal{A}_T is the range of Ξ_T is obvious.

Corollary 1.3. Let $T \in \mathcal{L}(\mathcal{V})$. The subspace \mathcal{A}_T of $\mathcal{L}(\mathcal{V})$ is a commutative subalgebra of $\mathcal{L}(\mathcal{V})$.

Proof. Let $Q, S \in \mathcal{A}_T$. Since \mathcal{A}_T is the range of Ξ_T there exist $p, q \in \mathbb{F}[z]$ such that $Q = \Xi_T(p)$ and $S = \Xi_T(q)$. Then, since Ξ_T is an algebra homomorphism we have

$$QS = \Xi_T(p)\Xi_T(p) = \Xi_T(pq) = \Xi_T(qp) = \Xi_T(q)\Xi_T(p) = SQ.$$

This sequence of equalities shows that $QS \in \operatorname{ran}(\Xi_T) = \mathcal{A}_T$ and QS = SQ. That is \mathcal{A}_T is closed with respect to the operator composition and the operator composition on \mathcal{A}_T is commutative.

Corollary 1.4. Let \mathcal{V} be a complex vector space and let $T \in \mathcal{L}(\mathcal{V})$ be a nonzero operator. Then for every $p \in \mathbb{C}[z]$ such that deg $p \geq 1$ there exist a nonzero $\alpha \in \mathbb{C}$ and $z_1, \ldots, z_m \in \mathbb{C}$ such that

$$\Xi_T(p) = p(T) = \alpha(T - z_1 I) \cdots (T - z_m I).$$

Proof. Let $p \in \mathbb{C}[z]$ such that $m = \deg p \ge 1$. Then there exist $\alpha_0, \ldots, \alpha_m \in \mathbb{C}$ such that $\alpha_m \ne 0$ such that

$$p(z) = \sum_{k=0}^{m} \alpha_j z^j.$$

By the Fundamental Theorem of Algebra there exist nonzero $\alpha \in \mathbb{C}$ and $z_1, \ldots, z_m \in \mathbb{C}$ such that

$$p(z) = \alpha(z - z_1) \cdots (z - z_m).$$

Here $\alpha = \alpha_m$ and z_1, \ldots, z_m are the roots of p. Since Ξ_T is an algebra homomorphism we have

$$p(T) = \Xi_T(p) = \alpha \,\Xi_T(z - z_1) \,\cdots \,\Xi_T(z - z_m) = \alpha (T - z_1 I) \,\cdots \,(T - z_m I).$$

This completes the proof.

Lemma 1.5. Let $n \in \mathbb{N}$ and $S_1, \ldots, S_n \in \mathcal{L}(\mathcal{V})$. If S_1, \ldots, S_n are all injective, then $S_1 \cdots S_n$ is injective.

Proof. We proceed by Mathematical Induction. The base step is trivial. It is useful to prove the implication for n = 2. Assume that $S, T \in \mathcal{L}(\mathcal{V})$ are injective and let $u, v \in \mathcal{V}$ be such that $u \neq v$. Then, since T is injective, $Tu \neq Tv$. Since S is injective, $S(Tu) \neq S(Tv)$. Thus, ST is injective.

Next we prove the inductive step. Let $m \in \mathbb{N}$ and assume that $S_1 \cdots S_m$ is injective whenever $S_1, \ldots, S_m \in \mathcal{L}(\mathcal{V})$ are all injective. (This is the inductive hypothesis.) Now assume that $S_1, \ldots, S_m, S_{m+1} \in \mathcal{L}(\mathcal{V})$ are all injective. By the inductive hypothesis the operator $S = S_1 \cdots S_m$ is injective. Since by assumption $T = S_{m+1}$ is injective, the already proved claim for n = 2 yields that

$$ST = S_1 \cdots S_m S_{m+1}$$

is injective. This completes the proof.

Theorem 1.6. Let \mathcal{V} be a nontrivial finite dimensional vector space over \mathbb{C} . Let $T \in \mathcal{L}(\mathcal{V})$. Then there exists a $\lambda \in \mathbb{C}$ and $v \in \mathcal{V}$ such that $v \neq 0_v$ and $Tv = \lambda v$.

Proof. The claim of the theorem is trivial if T is a scalar multiple of the identity operator. So, assume that $T \in \mathcal{L}(\mathcal{V})$ is not a scalar multiple of the identity operator.

Since $\mathcal{L}(\mathcal{V})$ is finite dimensional and $\mathbb{C}[z]$ is infinite dimensional, by the Rank-nullity theorem the operator Ξ_T is not injective. Thus $\operatorname{nul}(\Xi_T) \neq \{0_v\}$. Hence, there exists a $p \in \mathbb{C}[z]$ such that $p \neq 0_{\mathbb{C}[z]}$ and $\Xi_T(p) = p(T) = 0_{\mathcal{L}(\mathcal{V})}$. Since $p \neq 0_{\mathbb{C}[z]}$ then deg $p \geq 0$. Note that if deg p = 0 then p(z) = c for some $c \in \mathbb{C}$ for all $z \in \mathbb{C}$. Thus $\Xi_T(p) = p(T) = cI_{\mathcal{V}}$. This is not possible since we assume that T is not a scalar multiple of the identity. Hence deg p > 0. By Corollary 1.4 there exists $\alpha \neq 0$ and $z_1, \ldots, z_m \in \mathbb{C}$ such that

$$0_{\mathcal{L}(\mathcal{V})} = \Xi_T(p) = p(T) = \alpha(T - z_1 I) \cdots (T - z_m I).$$

Since $0_{\mathcal{L}(\mathcal{V})}$ is not injective, Lemma 1.5 implies that there exists $j \in \{1, \ldots, m\}$ such that $T - z_j I$ is not injective. That is, there exists $v \in \mathcal{V}, v \neq 0_{\mathcal{V}}$ such that

$$(T - z_j I)v = 0.$$

Setting $\lambda = z_j$ completes the proof.

Remark 1.7. Note that the proof in the textbook is different. The proof in the textbook is somewhat more elementary since it does not use the Rank-nullity theorem.

Definition 1.8. Let \mathcal{V} be a vector space over \mathbb{F} , $T \in \mathcal{L}(\mathcal{V})$. A scalar $\lambda \in \mathbb{F}$ is an *eigenvalue* of T if there exists $v \in \mathcal{V}$ such that $v \neq 0$ and $Tv = \lambda v$. The subspace $\operatorname{nul}(T - \lambda I)$ of \mathcal{V} is called the *eigenspace* of T corresponding to λ

Definition 1.9. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} . Let $T \in \mathcal{L}(\mathcal{V})$. The set of all eigenvalues of T is denoted by $\sigma(T)$. It is called the *spectrum* of T.

The next theorem can be stated in English simply as: Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Theorem 1.10. Let \mathcal{V} be a vector space over \mathbb{F} , $T \in \mathcal{L}(\mathcal{V})$ and $n \in \mathbb{N}$. If the following two conditions are satisfied:

(a) $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ are such that $\lambda_i \neq \lambda_j$ for all $i, j \in \{1, \ldots, n\}$ such that $i \neq j$,

(b) $v_1, \ldots, v_n \in \mathcal{V}$ are such that $Tv_k = \lambda_k v_k$ and $v_k \neq 0$ for all $k \in \{1, \ldots, n\}$,

then $\{v_1, \ldots, v_n\}$ is linearly independent.

_		_

Proof. We will prove this by using the mathematical induction on n. For the base case, we will prove the claim for n = 1. Let $\lambda_1 \in \mathbb{F}$ and let $v_1 \in \mathcal{V}$ be such that $v_1 \neq 0$ and $Tv_1 = \lambda_1 v_1$. Since $v_1 \neq 0$, we conclude that $\{v_1\}$ is linearly independent.

Next we prove the inductive step. Let $m \in \mathbb{N}$ be arbitrary. The inductive hypothesis is the assumption that the following implication holds.

If the following two conditions are satisfied: (i) $\mu_1, \ldots, \mu_m \in \mathbb{F}$ are such that $\mu_i \neq \mu_j$ for all $i, j \in \{1, \ldots, m\}$ such that $i \neq j$, (ii) $w_1, \ldots, w_m \in \mathcal{V}$ are such that $Tw_k = \mu_k w_k$ and $w_k \neq 0$ for all $k \in \{1, \ldots, m\}$, then $\{w_1, \ldots, w_m\}$ is linearly independent.

We need to prove the following implication

If the following two conditions are satisfied: (I) $\lambda_1, \ldots, \lambda_{m+1} \in \mathbb{F}$ are such that $\lambda_i \neq \lambda_j$ for all $i, j \in \{1, \ldots, m+1\}$ such that $i \neq j$, (II) $v_1, \ldots, v_{m+1} \in \mathcal{V}$ are such that $Tv_k = \lambda_k v_k$ and $v_k \neq 0$ for all $k \in \{1, \ldots, m+1\}$, then $\{v_1, \ldots, v_{m+1}\}$ is linearly independent.

Assume (I) and (II) in the red box. We need to prove that $\{v_1, \ldots, v_{m+1}\}$ is linearly independent. Let $\alpha_1, \ldots, \alpha_{m+1} \in \mathbb{F}$ be such that

$$\alpha_1 v_1 + \dots + \alpha_m v_m + \alpha_{m+1} v_{m+1} = 0.$$
(4)

Applying $T \in \mathcal{L}(\mathcal{V})$ to both sides of (4), using the linearity of T and assumption (II) we get

$$\alpha_1 \lambda_1 v_1 + \dots + \alpha_m \lambda_m v_m + \alpha_{m+1} \lambda_{m+1} v_{m+1} = 0.$$
(5)

Multiplying both sides of (4) by λ_{m+1} we get

$$\alpha_1 \lambda_{m+1} v_1 + \dots + \alpha_m \lambda_{m+1} v_m + \alpha_{m+1} \lambda_{m+1} v_{m+1} = 0.$$
(6)

Subtracting (6) from (5) we get

$$\alpha_1(\lambda_1 - \lambda_{m+1})v_1 + \dots + \alpha_m(\lambda_m - \lambda_{m+1})v_m = 0$$

Since by assumption (I) we have $\lambda_j - \lambda_{m+1} \neq 0$ for all $j \in \{1, \ldots, m\}$, setting

$$w_j = (\lambda_j - \lambda_{m+1})v_j, \qquad j \in \{1, \dots, m\},$$

and taking into account (II) we have

$$w_j \neq 0$$
 and $Tw_j = \lambda_j w_j$ for all $j \in \{1, \dots, m\}.$ (7)

Thus, by (I) and (7), the scalars $\lambda_1, \ldots, \lambda_m$ and vectors w_1, \ldots, w_m satisfy assumptions (i) and (ii) of the inductive hypothesis (the green box). Consequently, the vectors w_1, \ldots, w_m are linearly independent. Since by (7) we have

 $\alpha_1 w_1 + \dots + \alpha_m w_m = 0,$

it follows that $\alpha_1 = \cdots = \alpha_m = 0$. Substituting these values in (4) we get $\alpha_{m+1}v_{m+1} = 0$. Since by (II), $v_{m+1} \neq 0$ we conclude that $\alpha_{m+1} = 0$. This completes the proof of the linear independence of v_1, \ldots, v_{m+1} .

Corollary 3: Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} and let $T \in \mathcal{L}(\mathcal{V})$. Then T has at most $n = \dim \mathcal{V}$ distinct eigenvalues.

Proof. Let \mathcal{B} be a basis of \mathcal{V} where $\mathcal{B} = \{u_1, ..., u_n\}$. Then $|\mathcal{B}| = n$ and span $\mathcal{B} = \mathcal{V}$. Let $\mathcal{C} = \{v_1, ..., v_m\}$ be eigenvectors corresponding to m distinct eigenvalues. Then \mathcal{C} is a linearly independent set with $|\mathcal{C}| = m$. By the Steinitz Exchange Lemma, $m \leq n$. Consequently, T has at most n distinct eigenvalues.

Definition 1.11. Let \mathcal{V} be a vector space over \mathbb{F} and $T \in \mathcal{L}(V)$. A subspace \mathcal{U} of \mathcal{V} is called an *invariant* subspace under T if $T(\mathcal{U}) \subseteq \mathcal{U}$.

The following proposition is straightforward.

Proposition 1.12. Let $S, T \in \mathcal{L}(\mathcal{V})$ be such that ST = TS. Then nul T is invariant under S and nul S is invariant under T. In particular, all eigenspaces of T are invariant under T.

Definition 1.13. A matrix $A \in \mathbb{F}^{n \times n}$ with entries $a_{ij}, i, j \in \{1, \ldots, n\}$ is called *upper triangular* if $a_{i,j} = 0$ for all $i, j \in \{1, \ldots, n\}$ such that i > j.

Definition 1.14. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} with $n = \dim \mathcal{V} > 0$. Let $T \in \mathcal{L}(\mathcal{V})$. A sequence of nontrivial subspaces $\mathcal{U}_1, \ldots, \mathcal{U}_n$ of \mathcal{V} such that

$$\mathcal{U}_1 \subsetneq \mathcal{U}_2 \subsetneq \cdots \subsetneq \mathcal{U}_n \tag{8}$$

and

 $T\mathcal{U}_k \subseteq \mathcal{U}_k$ for all $k \in \{1, \ldots, n\}$

is called a fan for T in V. A basis $\{v_1, \ldots, v_n\}$ of V is called a fan basis corresponding to T if the subspaces

$$\mathcal{V}_k = \operatorname{span}\{v_1, \dots, v_k\}, \qquad k \in \{1, \dots, n\},$$

form a fan for T.

Notice that (8) implies

$$1 \leq \dim \mathcal{U}_1 < \dim \mathcal{U}_2 < \cdots < \dim \mathcal{U}_n \leq n.$$

Consequently, if $\mathcal{U}_1, \ldots, \mathcal{U}_n$ is a fan for T we have dim $\mathcal{U}_k = k$ for all $k \in \{1, \ldots, n\}$. In particular $\mathcal{U}_n = \mathcal{V}$.

Theorem 1.15 (Theorem 5.12). Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} with dim $\mathcal{V} = n$ and let $T \in \mathcal{L}(\mathcal{V})$. Let $\mathcal{B} = \{v_1, \ldots, v_n\}$ be a basis of \mathcal{V} and set

$$\mathcal{V}_k = \operatorname{span}\{v_1, \dots, v_k\}, \qquad k \in \{1, \dots, n\}$$

The following statements are equivalent.

- (a) $M_{\mathcal{B}}^{\mathcal{B}}(T)$ is upper-triangular.
- (b) $Tv_k \in \mathcal{V}_k$ for all $k \in \{1, \ldots, n\}$.
- (c) $T\mathcal{V}_k \subseteq \mathcal{V}_k$ for all $k \in \{1, \ldots, n\}$.
- (d) \mathcal{B} is a fan basis corresponding to T.

Proof. (a) \Rightarrow (b). Assume that $M^{\mathcal{B}}_{\mathcal{B}}(T)$ is upper triangular. That is

$$M_{\mathcal{B}}^{\mathcal{B}}(T) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2k} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{kk} & \cdots & 0 \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix}$$

Let $k \in \{1, \ldots, n\}$ be arbitrary. Then, by the definition of $M_{\mathcal{B}}^{\mathcal{B}}(T)$,

$$C_{\mathcal{B}}(Tv_k) = \begin{bmatrix} a_{1k} \\ \vdots \\ a_{kk} \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Consequently, by the definition of $C_{\mathcal{B}}$, we have

$$Tv_k = a_{1k}v_1 + \dots + a_{kk}v_k \in \operatorname{span}\{v_1, \dots, v_k\} = \mathcal{V}_k.$$

Thus, (b) is proved.

(b) \Rightarrow (a). Assume that $Tv_k \in \mathcal{V}_k$ for all $k \in \{1, \ldots, n\}$. Let $a_{ij}, i, j \in \{1, \ldots, n\}$, be the entries of $M_{\mathcal{B}}^{\mathcal{B}}(T)$. Let $j \in \{1, \ldots, n\}$ be arbitrary. Since $Tv_j \in \mathcal{V}_j$ there exist $\alpha_1, \ldots, \alpha_j \in \mathbb{F}$ such that

$$Tv_j = \alpha_1 v_1 + \dots + \alpha_j v_j.$$

By the definition of $C_{\mathcal{B}}$ we have

$$C_{\mathcal{B}}(Tv_j) = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_j \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

On the other side, by the definition of $M^{\mathcal{B}}_{\mathcal{B}}(T)$, we have

$$C_{\mathcal{B}}(Tv_j) = \begin{bmatrix} a_{1k} \\ \vdots \\ a_{jj} \\ a_{j+1,j} \\ \vdots \\ a_{nj} \end{bmatrix}.$$

The last two equalities, and the fact that $C_{\mathcal{B}}$ is a function, imply $a_{ij} = 0$ for all $i \in \{j + 1, ..., n\}$. This proves (a).

(b) \Rightarrow (c). Suppose $Tv_k \in \mathcal{V}_k = span\{v_1, \ldots, v_k\}$ for all $k \in \{1, \ldots, n\}$. Let $v \in \mathcal{V}_k$. Then $v = \alpha_1 v_1 + \cdots + \alpha_k v_k$. Applying T, we get $Tv = \alpha_1 Tv_1 + \cdots + \alpha_k Tv_k$. Thus,

$$Tv \in \operatorname{span}\{Tv_1, \dots, Tv_k\}.$$
(9)

Since

$$Tv_j \in \mathcal{V}_j \subset \mathcal{V}_k$$
 for all $j \in \{1, \dots, k\},$

we have

$$\operatorname{span}\{Tv_1,\ldots,Tv_k\}\subseteq \mathcal{V}_k.$$

Together with (9), this proves (c).

(c) \Rightarrow (b). Suppose $T\mathcal{V}_k \subseteq \mathcal{V}_k$ for all $k \in \{1, \ldots, n\}$. Then since $v_k \in \mathcal{V}_k$, we have $Tv_k \in \mathcal{V}_k$ for each $k \in \{1, \ldots, n\}$.

(c) \Leftrightarrow (d) follows from the definition of a fan basis corresponding to T.

Theorem 1.16. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} with dim $\mathcal{V} = n$, and let $T \in \mathcal{L}(\mathcal{V})$. Let $\mathcal{B} = \{v_1, \ldots, v_n\}$ be a basis of \mathcal{V} such that $M^{\mathcal{B}}_{\mathcal{B}}(T)$ is upper triangular with diagonal entries a_{jj} , $j \in \{1, \ldots, n\}$. Then T is not injective if and only if there exists $j \in \{1, \ldots, n\}$ such that $a_{jj} = 0$.

Proof. In this proof we set

$$\mathcal{V}_k = \operatorname{span}\{v_1, ..., v_k\}, \quad k \in \{1, ..., n\}.$$

Then

$$\mathcal{V}_1 \subsetneq \mathcal{V}_2 \subsetneq \dots \subsetneq \mathcal{V}_n \tag{10}$$

and by Theorem 1.15, $T\mathcal{V}_k \subseteq \mathcal{V}_k$.

We first prove the "only if" part. Assume that T is not injective. Consider the set

$$\mathbb{K} = \left\{ k \in \{1, ..., n\} : T\mathcal{V}_k \subsetneq \mathcal{V}_k \right\}$$

Since T is not injective, nul $T \neq \{0_{\mathcal{V}}\}$. Thus by the Rank-Nullity Theorem, ran $T \subsetneq \mathcal{V} = \mathcal{V}_n$. Since $T\mathcal{V}_n = \operatorname{ran} T$, it follows that $T\mathcal{V}_n \subsetneq \mathcal{V}_n$. Therefore $n \in \mathbb{K}$. Hence the set \mathbb{K} is a nonempty set of positive integers. Hence, by the Well-Ordering principle min \mathbb{K} exists. Set $j = \min \mathbb{K}$.

If j = 1, then dim $\mathcal{V}_1 = 1$, but since $T\mathcal{V}_1 \subsetneq \mathcal{V}_1$ it must be that dim $T\mathcal{V}_1 = 0$. Thus $T\mathcal{V}_1 = \{0_{\mathcal{V}}\}$, so $Tv_1 = 0_v$. Hence $C_{\mathcal{B}}(T) = [0 \cdots 0]^{\top}$ and so $a_{jj} = 0$. If j > 1, then $j - 1 \in \{1, \ldots, n\}$ but $j - 1 \notin \mathbb{K}$. By Theorem 1.15, $T\mathcal{V}_{j-1} \subseteq \mathcal{V}_{j-1}$ and, since $j - 1 \notin \mathbb{K}$, $T\mathcal{V}_{j-1} \subsetneq \mathcal{V}_{j-1}$ is not true. Hence $T\mathcal{V}_{j-1} = \mathcal{V}_{j-1}$. Since $j \in \mathbb{K}$, we have $T\mathcal{V}_j \subsetneq \mathcal{V}_j$. Now we have

$$\mathcal{V}_{j-1} = T\mathcal{V}_{j-1} \subseteq T\mathcal{V}_j \subsetneq \mathcal{V}_j.$$

Consequently,

$$j-1 = \dim \mathcal{V}_{j-1} \le \dim (T\mathcal{V}_j) < \dim \mathcal{V}_j = j,$$

which implies dim $(T\mathcal{V}_j) = j - 1$ and therefore $T\mathcal{V}_j = \mathcal{V}_{j-1}$. This implies that there exist $\alpha_1, \ldots, \alpha_{j-1} \in \mathbb{F}$ such that

$$Tv_j = \alpha_1 v_1 + \dots + \alpha_{j-1} v_{j-1}$$

By the definition of $M_{\mathcal{B}}^{\mathcal{B}}$ this implies that $a_{ij} = 0$.

Next we prove the "if" part. Assume that there exists $j \in \{1, ..., n\}$ such that $a_{jj} = 0$. Then

$$Tv_j = a_{1j}v_1 + \dots + a_{j-1,j}v_{j-1} + 0v_j \in \mathcal{V}_{j-1}.$$
(11)

By Theorem 1.15 and (10) we have

$$Tv_i \in \mathcal{V}_i \subseteq \mathcal{V}_{j-1}$$
 for all $i \in \{1, \dots, j-1\}.$ (12)

Now (11) and (12) imply $Tv_i \in \mathcal{V}_{j-1}$ for all $i \in \{1, \ldots, j\}$ and consequently $T\mathcal{V}_j \subseteq \mathcal{V}_j$. To complete the proof, we apply the Rank-Nullity theorem to the restriction $T|_{\mathcal{V}_j}$ of T to the subspace \mathcal{V}_j :

 $\dim \operatorname{nul}(T|_{\mathcal{V}_j}) + \dim \operatorname{ran}(T|_{\mathcal{V}_j}) = j.$

Since $T\mathcal{V}_j \subseteq \mathcal{V}_j$ implies dim ran $(T|_{\mathcal{V}_j}) \leq j-1$, we conclude

$$\dim \operatorname{nul}(T|_{\mathcal{V}_i}) \ge 1.$$

Thus nul $(T|_{\mathcal{V}_j}) \neq \{0_{\mathcal{V}}\}$, that is, there exists $v \in \mathcal{V}_j$ such that $v \neq 0$ and $Tv = T|_{\mathcal{V}_j}v = 0$. This proves that T is not invertible.

Corollary 1.17 (Theorem 5.16). Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} with dim $\mathcal{V} = n$, and let $T \in \mathcal{L}(\mathcal{V})$. Let \mathcal{B} be a basis of \mathcal{V} such that $M_{\mathcal{B}}^{\mathcal{B}}(T)$ is upper triangular with diagonal entries a_{jj} , $j \in \{1, \ldots, n\}$. The following statements are equivalent.

- (a) T is not injective.
- (b) T is not invertible.
- (c) 0 is an eigenvalue of T.
- (d) $\prod_{i=1}^{n} a_{ii} = 0.$
- (e) There exists $j \in \{1, \ldots, n\}$ such that $a_{jj} = 0$.

Proof. The equivalence (a) \Leftrightarrow (b) follows from the Rank-nullity theorem and it has been proved earlier. The equivalence (a) \Leftrightarrow (c) is almost trivial. The equivalence (a) \Leftrightarrow (e) was proved in Theorem 1.16 and The equivalence (d) \Leftrightarrow (e) is should have been proved in high school.

Theorem 1.18. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} with dim $\mathcal{V} = n$, and let $T \in \mathcal{L}(\mathcal{V})$. Let \mathcal{B} be a basis of \mathcal{V} such that $M^{\mathcal{B}}_{\mathcal{B}}(T)$ is upper triangular with diagonal entries a_{jj} , $j \in \{1, \ldots, n\}$. Then

$$\sigma(T) = \{a_{jj} : j \in \{1, ..., n\}\}.$$

Proof. Notice that $M^{\mathcal{B}}_{\mathcal{B}}: \mathcal{L}(V) \to \mathbb{F}^{n \times n}$ is a linear operator. Therefore

$$M_{\mathcal{B}}^{\mathcal{B}}(T-\lambda I) = M_{\mathcal{B}}^{\mathcal{B}}(T) - \lambda M_{\mathcal{B}}^{\mathcal{B}}(I) = M_{\mathcal{B}}^{\mathcal{B}}(T) - \lambda I_n.$$

Here I_n denotes the identity matrix in $\mathbb{F}^{n \times n}$. As $M^{\mathcal{B}}_{\mathcal{B}}(T)$ and $M^{\mathcal{B}}_{\mathcal{B}}(I) = I_n$ are upper triangular, $M^{\mathcal{B}}_{\mathcal{B}}(T - \lambda I)$ is upper triangular as well with diagonal entries $a_{jj} - \lambda, j \in \{1, ..., n\}$.

To prove a set equality we need to prove two inclusions.

First we prove \subseteq . Let $\lambda \in \sigma(T)$. Because λ is an eigenvalue, $T - \lambda I$ is not injective. Because $T - \lambda I$ is not injective, by Theorem 1.16 one of its diagonal entries is zero. So there exists $i \in \{1, ..., n\}$ such that $a_{ii} - \lambda = 0$. Thus $\lambda = a_{ii}$. So $\sigma(T) \subseteq \{a_{jj} : j \in \{1, ..., n\}\}$.

Next we prove \supseteq . Let $a_{ii} \in \{a_{jj} : j \in \{1, ..., n\}\}$ be arbitrary. Then $a_{ii} - a_{ii} = 0$. By Theorem 1.16 and the note at the beginning of this proof $T - a_{ii}I$ is not injective. This implies that a_{ii} is an eigenvalue of T. Thus $a_{ii} \in \sigma(T)$. This completes the proof.

Remark 1.19. Theorem 1.18 is identical to Theorem 5.18 in the textbook.

Theorem 1.20 (Theorem 5.13). Let \mathcal{V} be a nonzero finite dimensional complex vector space. If dim $\mathcal{V} = n$ and $T \in \mathcal{L}(\mathcal{V})$, then there exists a basis \mathcal{B} of \mathcal{V} such that $M_{\mathcal{B}}^{\mathcal{B}}(T)$ is upper-triangular.

Proof. We proceed by the complete induction on $n = \dim(\mathcal{V})$.

The base case is trivial. Assume dim $\mathcal{V} = 1$ and $T \in \mathcal{L}(\mathcal{V})$. Set $\mathcal{B} = \{v\}$, where $u \in \mathcal{V} \setminus \{0_u\}$ is arbitrary. Then there exists $\lambda \in \mathbb{C}$ such that $Tu = \lambda u$. Then, $M_{\mathcal{B}}^{\mathcal{B}}(T) = [\lambda]$.

Now we prove the inductive step. Let $m \in \mathbb{N}$ be arbitrary. The inductive hypothesis is

For every $k \in \{1, \ldots, m\}$ the following implication holds: If dim $\mathcal{U} = k$ and $S \in \mathcal{L}(\mathcal{U})$, then there exists a basis \mathcal{A} of \mathcal{U} such that $M^{\mathcal{A}}_{\mathcal{A}}(S)$ is upper-triangular.

We complete the inductive step, we need to prove the implication:

If dim $\mathcal{V} = m + 1$ and $T \in \mathcal{L}(\mathcal{V})$, then there exists a basis \mathcal{B} of \mathcal{V} such that $M_{\mathcal{B}}^{\mathcal{B}}(T)$ is upper-triangular.

To prove the red implication assume that $\dim \mathcal{V} = m + 1$ and $T \in \mathcal{L}(\mathcal{V})$. By Theorem 1.6 the operator T has an eigenvalue. Let λ be an eigenvalue of T. Set $\mathcal{U} = \operatorname{ran}(T - \lambda I)$. Because $(T - \lambda I)$ is not injective, it is not surjective, and thus $k = \dim(\mathcal{U}) < \dim(\mathcal{V}) = m + 1$. That is $k \in \{1, \ldots, m\}$.

Moreover, $T\mathcal{U} = \mathcal{U}$. To show this, let $u \in \mathcal{U}$. Then $Tu = (T - \lambda I)u + \lambda u$. Since $(T - \lambda I)u \in \mathcal{U}$ and $\lambda u \in \mathcal{U}$, $Tu \in \mathcal{U}$. Hence, $S = T|_{\mathcal{U}}$ is an operator on \mathcal{U} .

By the inductive hypothesis (the green box), there exists a basis $\mathcal{A} = \{u_1, \ldots, u_k\}$ of \mathcal{U} such that $M^{\mathcal{A}}_{\mathcal{A}}(S)$ is upper-triangular. That is,

$$Tu_j = Su_j \in \operatorname{span}\{u_1, \dots, u_j\}$$
 for all $j \in \{1, \dots, k\}$.

Extend \mathcal{A} to a basis $\mathcal{B} = \{u_1, \ldots, u_k, v_1, \ldots, v_{n-k}\}$ of \mathcal{V} . Since

$$Tv_j = (T - \lambda I)v_j + \lambda v_j, \qquad j \in \{1, \dots, n - k\}$$

where $(T - \lambda I)v_j \in \mathcal{U}$, we have

 $Tv_j \in \operatorname{span}\{u_1, \dots, u_m, v_j\} \subseteq \operatorname{span}\{u_1, \dots, u_m, v_1, \dots, v_j\} \quad \text{for all} \quad j \in \{1, \dots, n-k\}.$

By Theorem 1.15, $M_{\mathcal{B}}^{\mathcal{B}}(T)$ is upper-triangular.

2 Inner Product Spaces

We will first introduce several "dot-product-like" objects. We start with the most general.

Definition 2.1. Let \mathcal{V} be a vector space over a scalar field \mathbb{F} . A function

 $[\,\cdot\,,\cdot\,]:\mathcal{V}\times\mathcal{V}\to\mathbb{F}$

is a sesquilinear form on \mathcal{V} if the following two conditions are satisfied.

- (a) (linearity in the first variable) $\forall \alpha, \beta \in \mathbb{F} \quad \forall u, v, w \in \mathcal{V} \quad [\alpha u + \beta v, w] = \alpha [u, w] + \beta [v, w].$
- (b) (anti-linearity in the second variable) $\forall \alpha, \beta \in \mathbb{F} \quad \forall u, v, w \in \mathcal{V} \quad [u, \alpha v + \beta w] = \overline{\alpha}[u, v] + \overline{\beta}[u, w].$

Example 2.2. Let $M \in \mathbb{C}^{n \times n}$ be arbitrary. Then

$$[\mathbf{x}, \mathbf{y}] = (M\mathbf{x}) \cdot \mathbf{y}, \qquad \mathbf{x}, \mathbf{y} \in \mathbb{C}^n,$$

is a sesquilinear form on the complex vector space \mathbb{C}^n . Here \cdot denotes the usual dot product in \mathbb{C} .

Theorem 2.3. Let \mathcal{V} be a vector space over a scalar field \mathbb{F} and let $[\cdot, \cdot] : \mathcal{V} \times \mathcal{V} \to \mathbb{F}$ be a sesquilinear form on \mathcal{V} . If $i \in \mathbb{F}$, then

$$[u,v] = \frac{1}{4} \sum_{k=0}^{3} i^{k} [u + i^{k}v, u + i^{k}v]$$
(13)

for all $u, v \in \mathcal{V}$.

Corollary 2.4. Let \mathcal{V} be a vector space over a scalar field \mathbb{F} and let $[\cdot, \cdot] : \mathcal{V} \times \mathcal{V} \to \mathbb{F}$ be a sesquilinear form on \mathcal{V} . If $i \in \mathbb{F}$ and [v, v] = 0 for all $v \in \mathcal{V}$, then [u, v] = 0 for all $u, v \in \mathcal{V}$.

Definition 2.5. Let \mathcal{V} be a vector space over a scalar field \mathbb{F} . A sesquilinear form $[\cdot, \cdot] : \mathcal{V} \times \mathcal{V} \to \mathbb{F}$ is *hermitian* if

(c) (hermiticity) $\forall u, v \in \mathcal{V} \quad \overline{[u, v]} = [v, u].$

A hermitian sesquilinear form is also called an *inner product*.

Let $[\cdot, \cdot]$ be an inner product on \mathcal{V} . The hermiticity of $[\cdot, \cdot]$ implies that $\overline{[v, v]} = [v, v]$ for all $v \in \mathcal{V}$. Thus $[v, v] \in \mathbb{R}$ for all $v \in \mathcal{V}$. The natural trichotomy that arises is the motivation for the following definition.

Definition 2.6. An inner product $[\cdot, \cdot]$ on \mathcal{V} is called *nonnegative* if $[v, v] \ge 0$ for all $v \in \mathcal{V}$, it is called *nonpositive* if $[v, v] \le 0$ for all $v \in \mathcal{V}$, and it is called *indefinite* if there exist $u \in \mathcal{V}$ and $v \in \mathcal{V}$ such that [u, u] < 0 and [v, v] > 0.

The following implication that you might have learned in high school will be useful below.

Theorem 2.7 (High School Theorem). Let a, b, c be real numbers. Assume $a \ge 0$. Then the following implication holds:

$$\forall x \in \mathbb{Q} \quad ax^2 + bx + c \ge 0 \qquad \Rightarrow \qquad b^2 - 4ac \le 0. \tag{14}$$

Theorem 2.8 (Cauchy-Bunyakovsky-Schwartz Inequality). Let \mathcal{V} be a vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a nonnegative inner product on \mathcal{V} . Then

$$\forall u, v \in \mathcal{V} \quad |\langle u, v \rangle|^2 \le \langle u, u \rangle \langle v, v \rangle.$$
(15)

The equality occurs in (15) if and only if there exists $\alpha, \beta \in \mathbb{F}$ not both 0 such that $\langle \alpha u + \beta v, \alpha u + \beta v \rangle = 0$.

Proof. Let $u, v \in \mathcal{V}$ be arbitrary. Since $\langle \cdot, \cdot \rangle$ is nonnegative we have

$$\forall t \in \mathbb{Q} \qquad \left\langle u + t \langle u, v \rangle v, u + t \langle u, v \rangle v \right\rangle \ge 0.$$
(16)

Since $\langle \cdot, \cdot \rangle$ is a sesquilinear hermitian form on \mathcal{V} , (16) is equivalent to

$$\forall t \in \mathbb{Q} \qquad \langle u, u \rangle + 2t |\langle u, v \rangle|^2 + t^2 |\langle u, v \rangle|^2 \langle v, v \rangle \ge 0.$$
(17)

As $\langle v, v \rangle \geq 0$, the High School Theorem applies and (17) implies

$$4|\langle u,v\rangle|^4 - 4|\langle u,v\rangle|^2\langle u,u\rangle\langle v,v\rangle \le 0.$$
(18)

Again, since $\langle u, u \rangle \geq 0$ and $\langle v, v \rangle \geq 0$, (18) is equivalent to

$$|\langle u, v \rangle|^2 \le \langle u, u \rangle \langle v, v \rangle$$

Since $u, v \in \mathcal{V}$ were arbitrary, (15) is proved.

Corollary 2.9. Let \mathcal{V} be a vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a nonnegative inner product on \mathcal{V} . Then the following two implications are equivalent.

- (i) If $v \in \mathcal{V}$ and $\langle u, v \rangle = 0$ for all $u \in \mathcal{V}$, then v = 0.
- (ii) If $v \in \mathcal{V}$ and $\langle v, v \rangle = 0$, then v = 0.

Proof. Assume that the implication (i) holds and let $v \in \mathcal{V}$ be such that $\langle v, v \rangle = 0$. Let $u \in \mathcal{V}$ be arbitrary. By the the CBS inequality

$$|\langle u, v \rangle|^2 \le \langle u, u \rangle \langle v, v \rangle = 0.$$

Thus, $\langle u, v \rangle = 0$ for all $u \in \mathcal{V}$. By (i) we conclude v = 0. This proves (ii).

The converse is trivial. However, here is a proof. Assume that the implication (ii) holds. To prove (i), let $v \in \mathcal{V}$ and assume $\langle u, v \rangle = 0$ for all $u \in \mathcal{V}$. Setting u = v we get $\langle v, v \rangle = 0$. Now (ii) yields v = 0.

Definition 2.10. Let \mathcal{V} be a vector space over a scalar field \mathbb{F} . An inner product $[\cdot, \cdot]$ on \mathcal{V} is *nondegenerate* if the following implication holds

(d) (nondegenerecy) $u \in \mathcal{V}$ and [u, v] = 0 for all $v \in \mathcal{V}$ implies u = 0.

It follows from Corollary 2.9 that a nonnegative inner product $\langle \cdot, \cdot \rangle$ on \mathcal{V} is nondegenerate if and only if $\langle v, v \rangle = 0$ implies v = 0. A nonnegative nondegenerate inner product is also called *positive definite inner* product. Since this is the most often encountered inner product we give its definition as it commonly given in textbooks.

Definition 2.11. Let \mathcal{V} be a vector space over a scalar field \mathbb{F} . A function $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{F}$ is called a *positive definite inner product* on \mathcal{V} if the following conditions are satisfied;

 $\begin{array}{ll} \text{(a)} & \forall \, u, v, w \in \mathcal{V} \quad \forall \, \alpha, \beta \in \mathbb{F} \\ \text{(b)} & \forall \, u, v \in \mathcal{V} \quad \langle u, v \rangle = \overline{\langle v, u \rangle}, \\ \text{(c)} & \forall \, v \in \mathcal{V} \quad \langle v, v \rangle \geq 0, \\ \text{(d)} & \text{If} \, v \in \mathcal{V} \text{ and } \langle v, v \rangle = 0, \text{ then } v = 0. \end{array}$

■ Branko Ćurgus revised up to here. ■

Theorem 2.12. Pythagorean Theorem

Let $u, v \in \mathcal{V}$. Then $\langle u, v \rangle = 0 \implies \langle u + v, u + v \rangle = \langle u, u \rangle + \langle v, v \rangle$ Furthermore, if $v_1, \dots, v_n \in \mathcal{V}$ and $\langle v_j, j_k \rangle = 0$ whenever $j \neq k$ then $\langle \sum_{j=1}^n v_j, \sum_{k=1}^n v_k \rangle = \sum_{j=1}^n \langle v_j, v_j \rangle$

Proof. For two vectors.

$$\begin{aligned} \langle u + v, u + v \rangle &= \langle u, u + v \rangle + \langle v, u + v \rangle \\ &= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle \\ &= \langle u, u \rangle + 2Re \langle u, v \rangle + \langle v, v \rangle \\ &= \langle u, u \rangle + \langle v, v \rangle \end{aligned}$$

November 8 (The Gram-Schmidt orthogonalization was proven the previous day)

Theorem 2.13 (Gram-Schmidt). If \mathcal{V} is a finite dimensional vector space with positive definite inner product $\langle \cdot, \cdot \rangle$, then \mathcal{V} has an orthonormal basis.

Corollary 2.14. If \mathcal{V} is a complex vector space with positive definite inner product and $T \in \mathcal{L}(\mathcal{V})$ then there exists an orthonormal basis B such that $\mathsf{M}^B_B(T)$ is upper-triangular.

Definition 2.15. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be a finite dimensional positive definite inner product space and $A \subset \mathcal{V}$. We define $A^{\perp} = \{v \in \mathcal{V} : \langle v, a \rangle = 0 \forall a \in A\}.$

Claim (Not proven in class): A^{\perp} is a subspace of \mathcal{V} .

Theorem 2.16. If \mathcal{U} is a subspace of \mathcal{V} , then $\mathcal{V} = \mathcal{U} \oplus \mathcal{U}^{\perp}$.

Proof. Let $v \in \mathcal{U}$ and $v \in \mathcal{U}^{\perp}$. Then $\langle v, v \rangle = 0$. Since the $\langle \cdot, \cdot \rangle$ is positive definite, this implies $v = 0_{\mathcal{V}}$. Note that since \mathcal{U} is a subspace of \mathcal{V} , \mathcal{U} inherits the positive definite inner product space. Thus \mathcal{U} is a finite dimensional positive definite inner product space. Thus there exists an orthonormal basis of \mathcal{U} , $\mathcal{B} = \{u_1, u_2, \ldots u_k\}$.

Let $v \in \mathcal{V}$ be arbitrary. By the Gram-Schmidt process,

$$v = \left(\sum_{j=1}^{k} \langle v, u_j \rangle u_j\right) + \left(v - \sum_{j=1}^{k} \langle v, u_j \rangle u_j\right),$$

where the first summand is in \mathcal{U} and the second summand is in \mathcal{U}^{\perp} . More succinctly, we write this as v = w + (v - w) where $w = \sum_{j=1}^{k} \langle v, u_j \rangle u_j$. We prove w is unique: $u \in \mathcal{U}^{\perp}$ if and only if $\langle w, u_j \rangle = 0$ for all $j \in \{1, \ldots, k\}$. The forward direction is trivial (from the definition of \mathcal{U}^{\perp}). To prove the reverse direction, let $u \in \mathcal{U}$ be arbitrary. Then there exist $\alpha_j \in \mathbb{F}$ such that $u = \sum_{j=1}^{k} \alpha_j u_j$. Now calculate

$$\langle w, u \rangle = \left\langle w, \sum_{j=1}^{k} \alpha_j u_j \right\rangle = \sum_{j=1}^{k} \bar{\alpha}_j \langle w, u_j \rangle = 0.$$

The last equality follows from the assumption. Thus $u \in \mathcal{U}^{\perp}$.

Now for every $i \in \{1, \ldots k\}$,

$$\langle v - w, u_i \rangle = \left\langle v - \sum_{j=1}^k \langle v, u_j \rangle u_j, u_i \right\rangle = \langle v, u_i \rangle - \sum_{j=1}^k \langle v, u_j \rangle \langle u_j, u_i \rangle = \langle v, u_i \rangle - \langle v, u_i \rangle = 0.$$

Definition 2.17. By the previous theorem, if \mathcal{U} is a subspace of \mathcal{V} , then $\mathcal{V} = \mathcal{U} \oplus \mathcal{U}^{\perp}$ implies for all $v \in \mathcal{V}$, there exists a unique $u \in \mathcal{U}$ such that $(v - u) \in \mathcal{U}^{\perp}$ and v = u + (v - u). This defines a function which we call the **orthogonal projection** of v onto \mathcal{U} as $P_{\mathcal{U}} : \mathcal{V} \to \mathcal{U}$ such that $P_{\mathcal{U}}(v) = u$.

Since \mathcal{U} is a subspace of \mathcal{V} , $P_{\mathcal{U}} \in \mathcal{L}(\mathcal{V})$. Furthermore, ran $P_{\mathcal{U}} = \mathcal{U}$, nul $P_{\mathcal{U}} = \mathcal{U}^{\perp}$, and $(P_{\mathcal{U}})^2 = P_{\mathcal{U}}$ (idempotent).

Proposition 2.18. Let \mathcal{U} be a subspace of \mathcal{V} , $v \in \mathcal{V}$ be arbitrary. Let $u_0 \in \mathcal{U}$. Then $||v - u_0|| \leq ||v - u||$ for every $u \in \mathcal{U}$ if and only if $P_{\mathcal{U}}(v) = u_0$ and $v - u_0 \in \mathcal{U}^{\perp}$.

Proof. (\Leftarrow): Assume $v \in \mathcal{V}$, $u, u_0 \in \mathcal{U}$, $v - u_0 \in \mathcal{U}^{\perp}$. Then $||v - u||^2 = ||v - u_0 + u_0 + u||^2$, where $v - u_0 \in \mathcal{U}^{\perp}$ and $u_0 + u \in \mathcal{U}$. By the pythagorean theorem,

$$||v - u_0 + u_0 + u||^2 = ||v - u_0||^2 + ||u_0 - u||^2 \ge ||v - u_0||^2.$$

(⇒) Assume $||v - u_0|| \le ||v - u||$ for all $u \in \mathcal{U}$. We show $v - u_0 \in \mathcal{U}^{\perp}$. This direction of the proof was given on November 9.

■■ Stuff from November 19, 2013 ■■

Lemma 2.19. Let \mathcal{V} be a vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathcal{V} . Let \mathcal{U} be a subspace of \mathcal{V} and let $T \in \mathcal{L}(\mathcal{V})$. The subspace \mathcal{U} is invariant under T if and only if the subspace \mathcal{U}^{\perp} is invariant under T^* .

Proof. By the definition of adjoint we have

$$\langle Tu, v \rangle = \langle u, T^*v \rangle \tag{19}$$

for all $u, v \in \mathcal{V}$. Assume $T\mathcal{U} \subset \mathcal{U}$. From (19) we get

 $0 = \langle Tu, v \rangle = \langle u, T^*v \rangle \qquad \forall u \in \mathcal{U} \quad \text{and} \quad \forall v \in \mathcal{U}^{\perp}.$

Therefore, $T^*v \in \mathcal{U}^{\perp}$ for all $v \in \mathcal{U}^{\perp}$. This proves "only if" part.

The proof of the "if" part is similar.

In the proof of the next theorem we use δ_{ij} to represent the Kronecker delta function, that is $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ otherwise.

Theorem 2.20 (Spectral theorem for normal operators). Let \mathcal{V} be a finite dimensional complex vector space with a positive definite inner product $\langle \cdot, \cdot \rangle$. Let $T \in \mathcal{L}(\mathcal{V})$. Then T is normal if and only if there exists an orthonormal basis of \mathcal{V} which consists of eigenvectors of T.

Proof. Set $n = \dim \mathcal{V}$. We first prove "only if" part. Assume that T is normal. Set

$$\mathbb{K} = \left\{ k \in \{1, \dots, n\} : \text{ such that } \langle w_i, w_j \rangle = \delta_{ij} \text{ and } Tw_j = \lambda_j w_j \\ \text{ for all } i, j \in \{1, \dots, k\} \end{array} \right\}$$

Clearly $1 \in \mathbb{K}$. Since \mathbb{K} is finite, $m = \max \mathbb{K}$ exists. Clearly, $m \leq n$.

Next we will prove that $k \in \mathbb{K}$ and k < n implies that $k + 1 \in \mathbb{K}$. Assume $k \in \mathbb{K}$ and k < n. Let $w_1, \ldots, w_k \in \mathcal{V}$ and $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$ be such that $\langle w_i, w_j \rangle = \delta_{ij}$ and $Tw_j = \lambda_j w_j$ for all $i, j \in \{1, \ldots, k\}$. Set

$$\mathcal{W} = \operatorname{span}\{w_1, \ldots, w_k\}.$$

Since w_1, \ldots, w_k are eigenvectors of T we have $TW \subseteq W$. By Lemma 2.19, $T^*(W^{\perp}) \subseteq W^{\perp}$. Thus, $T^*|_{W^{\perp}} \in \mathcal{L}(W^{\perp})$. Since dim W = k < n we have dim $(W^{\perp}) = n - k \ge 1$. Since W^{\perp} is a complex vector space the operator $T^*|_{W^{\perp}}$ has an eigenvalue μ with the corresponding unit eigenvector u. Clearly, $u \in W^{\perp}$ and $T^*u = \mu u$. Since T^* is normal, we have $Tu = \overline{\mu}u$. Since $u \in W^{\perp}$ and $Tu = \overline{\mu}u$, setting $w_{k+1} = u$ and $\lambda_{k+1} = \overline{\mu}$ we have

$$\langle w_i, w_j \rangle = \delta_{ij}$$
 and $Tw_j = \lambda_j w_j$ for all $i, j \in \{1, \dots, k, k+1\}$.

Thus $k + 1 \in \mathbb{K}$. Consequently, k < m. Thus, for $k \in \mathbb{K}$, we have proved the implication

$$k < n \qquad \Rightarrow \qquad k < m$$

The contrapositive of this implication is: For $k \in \mathbb{K}$, we have

$$k \ge m \qquad \Rightarrow \qquad k \ge n$$

In particular, for $m \in \mathbb{K}$ we have m = m implies $m \ge n$. Since $m \le n$ is also true, this proves that m = n. That is, $n \in \mathbb{K}$. This implies that there exist $u_1, \ldots, u_n \in \mathcal{V}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that $\langle u_i, u_j \rangle = \delta_{ij}$ and $Tu_j = \lambda_j u_j$ for all $i, j \in \{1, \ldots, n\}$.

Since u_1, \ldots, u_n are orthonormal, they are linearly independent. Since $n = \dim \mathcal{V}$, it turns out that u_1, \ldots, u_n form a basis of \mathcal{V} . This completes the proof.

To prove the converse assume that there exist an orthonormal basis of \mathcal{V} which consist of eigenvectors of T. That is, assume that there exists $u_1, \ldots, u_n \in \mathcal{V}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that $\langle u_i, u_j \rangle = \delta_{ij}$ and $Tu_j = \lambda_j u_j$ for all $i, j \in \{1, \ldots, n\}$.

Let $j \in \{1, \ldots, n\}$ be arbitrary. Since u_1, \ldots, u_n form an orthonormal basis we have

$$T^*u_j = \langle T^*u_j, u_1 \rangle u_1 + \langle T^*u_j, u_2 \rangle u_2 + \dots + \langle T^*u_j, u_n \rangle u_n$$

= $\langle u_j, Tu_1 \rangle u_1 + \langle u_j, Tu_2 \rangle u_2 + \dots + \langle u_j, Tu_n \rangle u_n$
= $\langle u_j, \lambda_1 u_1 \rangle u_1 + \langle u_j, \lambda_2 u_2 \rangle u_2 + \dots + \langle u_j, \lambda_n u_n \rangle u_n$
= $\overline{\lambda_1} \langle u_j, u_1 \rangle u_1 + \overline{\lambda_2} \langle u_j, u_2 \rangle u_2 + \dots + \overline{\lambda_n} \langle u_j, u_n \rangle u_n$
= $\overline{\lambda_j} u_j.$

Thus, $T^*u_j = \overline{\lambda_j}u_j$ for all $j \in \{1, \ldots, n\}$. Consequently,

$$TT^*u_j = T(\overline{\lambda_j}u_j) = \overline{\lambda_j}Tu_j = \overline{\lambda_j}\lambda_ju_j = |\lambda_j|^2u_j,$$

and also

$$T^*Tu_j = T^*(\lambda_j u_j) = \lambda_j T^*u_j = \lambda_j \overline{\lambda_j} u_j = |\lambda_j|^2 u_j.$$

Thus, $TT^*u_j = T^*Tu_j$ for all $j \in \{1, \ldots, n\}$. Since u_1, \ldots, u_n form a basis of \mathcal{V} this implies $TT^*v = T^*Tv$ for all $v \in \mathcal{V}$, that is, T is normal.