MATH 504 $\begin{aligned} & \text { Assignment } 1 \\ & \text { October 15, } 2013\end{aligned}$

Name
Problem 1. Let D be a finite set and let \mathbb{F} be a scalar field. Then the set of all functions defined on D with values in \mathbb{F} is a vector space over \mathbb{F} with the addition and scalar multiplication of functions defined pointwise. This space is denoted by \mathbb{F}^{D}.
(a) Prove that \mathbb{F}^{D} is finite dimensional if and only if D is finite.
(b) If D is finite, then $\operatorname{dim}\left(\mathbb{F}^{D}\right)=|D|$.

Problem 2. Consider the vector space $\mathbb{R}^{\mathbb{R}}$ of all real valued functions defined on \mathbb{R}. This vector space is considered over the field \mathbb{R}. The purpose of this exercise is to study some special subspaces of the vector space $\mathbb{R}^{\mathbb{R}}$. Let γ be an arbitrary (fixed) real number. Consider the set

$$
\mathcal{S}_{\gamma}:=\left\{f \in \mathbb{R}^{\mathbb{R}}: \exists a, b \in \mathbb{R} \text { such that } f(t)=a \sin (\gamma t+b) \quad \forall t \in \mathbb{R}\right\}
$$

(a) Do you see exceptional values for γ for which the set \mathcal{S}_{γ} is particularly simple?
(b) Prove that \mathcal{S}_{γ} is a subspace of $\mathbb{R}^{\mathbb{R}}$.
(c) For each $\gamma \in \mathbb{R}$ find a basis for \mathcal{S}_{γ}. Plot the function $\gamma \mapsto \operatorname{dim} \mathcal{S}_{\gamma}$.

Problem 3. Let \mathcal{V} be a vector space over \mathbb{F}. Let \mathcal{A} be a linearly independent subset of \mathcal{V}. Let $u \in \mathcal{V}$ be arbitrary. By $u+\mathcal{A}$ we denote the set of vectors $\{u+v: v \in \mathcal{A}\}$.
(a) Prove the following implication. If $w \notin \operatorname{span} \mathcal{A}$, then $w+\mathcal{A}$ is a linearly independent set.
(b) Is the converse of the implication in (a) true?
(c) Let $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{F}$, let v_{1}, \ldots, v_{n} be distinct vectors in \mathcal{A} and let $w=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$. Find a necessary and sufficient condition (in terms of $\alpha_{1}, \ldots, \alpha_{n}$) for the linear independence of the vectors $v_{1}+w, \ldots, v_{n}+w$.
Problem 4. Let \mathcal{V} and \mathcal{W} be vector spaces over a scalar field \mathbb{F}. Assume that $\operatorname{dim} \mathcal{V}=m$ and $\operatorname{dim} \mathcal{W}=n$. Let $T: \mathcal{V} \rightarrow \mathcal{W}$ be a linear mapping. Prove that we can choose a basis \mathcal{B} of \mathcal{V} and a basis \mathcal{C} of \mathcal{W} such that for some integer $k, 0 \leq k \leq \min \{m, n\}$ we have

$$
\mathrm{M}_{\mathcal{C}}^{\mathcal{B}}(T)=\left[\begin{array}{ll}
\mathrm{I}_{k \times k} & 0_{k \times(m-k)} \\
0_{(n-k) \times k} & 0_{(n-k) \times(m-k)}
\end{array}\right]
$$

Problem 5. Let \mathcal{V} be a finite dimensional vector space over a field \mathbb{F} and let $T: \mathcal{V} \rightarrow \mathcal{V}$ be a linear mapping. Put $T^{2}:=T \circ T$.
(a) Discover and prove an inclusion relation between $\operatorname{nul}(T)$ and $\operatorname{nul}\left(T^{2}\right)$, and between $\operatorname{ran}(T)$ and $\operatorname{ran}\left(T^{2}\right)$.
(b) If $\operatorname{ran}(T)=\operatorname{ran}\left(T^{2}\right)$, prove that $(\operatorname{ran}(T)) \cap(\operatorname{nul}(T))=\left\{0_{\mathcal{V}}\right\}$.
(c) If $\operatorname{ran}(T)=\operatorname{ran}\left(T^{2}\right)$, prove that \mathcal{V} is a direct sum of $\operatorname{ran}(T)$ and $\operatorname{nul}(T)$.

Problem 6. Let \mathcal{V} be a vector space over \mathbb{F} and $T \in \mathcal{L}(\mathcal{V})$. Assume that that there exists a function $f: \mathcal{V} \rightarrow \mathbb{F}$ such that $T v=f(v) v$ for each $v \in \mathcal{V}$. Prove that T is a multiple of the identity mapping, that is, there exists $\alpha \in \mathbb{F}$ such that $T v=\alpha v$ for each $v \in \mathcal{V}$. (A plain English explanation: The equation $T v=f(v) v$ is telling us that T scales each vector in \mathcal{V} by the scaling coefficient $f(v)$. The point of the problem is to prove that T must scale each vector by the same coefficient. This is a consequence of the linearity of T.)

Problem 7. Let \mathcal{U}, \mathcal{V} and \mathcal{W} be nontrivial finite dimensional vector spaces over a scalar field \mathbb{F}.
(a) Let $S \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ be an arbitrary fixed operator. Define

$$
\mathbf{S}: \mathcal{L}(\mathcal{V}, \mathcal{W}) \rightarrow \mathcal{L}(\mathcal{U}, \mathcal{W}) \quad \text { by } \quad \mathbf{S}(T)=T S, \quad T \in \mathcal{L}(\mathcal{V}, \mathcal{W})
$$

Prove that \mathbf{S} is injective iff S is surjective. Prove that \mathbf{S} is surjective iff S is injective.
(b) Let $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ be an arbitrary fixed operator. Define

$$
\mathbf{T}: \mathcal{L}(\mathcal{U}, \mathcal{V}) \rightarrow \mathcal{L}(\mathcal{U}, \mathcal{W}) \quad \text { by } \quad \mathbf{T}(S)=T S, \quad S \in \mathcal{L}(\mathcal{U}, \mathcal{V})
$$

In (a) we characterized injectivity and surjectivity of \mathbf{S}. Formulate and prove an analogous statement for \mathbf{T}.

