MATH 504 Assignment 1 October 15, 2013

Name

Problem 1. Let D be a finite set and let \mathbb{F} be a scalar field. Then the set of all functions defined on D with values in \mathbb{F} is a vector space over \mathbb{F} with the addition and scalar multiplication of functions defined pointwise. This space is denoted by \mathbb{F}^{D} .

- (a) Prove that \mathbb{F}^D is finite dimensional if and only if D is finite.
- (b) If D is finite, then $\dim(\mathbb{F}^D) = |D|$.

Problem 2. Consider the vector space $\mathbb{R}^{\mathbb{R}}$ of all real valued functions defined on \mathbb{R} . This vector space is considered over the field \mathbb{R} . The purpose of this exercise is to study some special subspaces of the vector space $\mathbb{R}^{\mathbb{R}}$. Let γ be an arbitrary (fixed) real number. Consider the set

$$\mathcal{S}_{\gamma} := \left\{ f \in \mathbb{R}^{\mathbb{R}} : \exists \ a, b \in \mathbb{R} \ \text{ such that } \ f(t) = a \sin(\gamma t + b) \ \forall \ t \in \mathbb{R} \right\}.$$

- (a) Do you see exceptional values for γ for which the set S_{γ} is particularly simple?
- (b) Prove that S_{γ} is a subspace of $\mathbb{R}^{\mathbb{R}}$.
- (c) For each $\gamma \in \mathbb{R}$ find a basis for S_{γ} . Plot the function $\gamma \mapsto \dim S_{\gamma}$.

Problem 3. Let \mathcal{V} be a vector space over \mathbb{F} . Let \mathcal{A} be a linearly independent subset of \mathcal{V} . Let $u \in \mathcal{V}$ be arbitrary. By $u + \mathcal{A}$ we denote the set of vectors $\{u + v : v \in \mathcal{A}\}$.

- (a) Prove the following implication. If $w \notin \operatorname{span} \mathcal{A}$, then $w + \mathcal{A}$ is a linearly independent set.
- (b) Is the converse of the implication in (a) true?
- (c) Let $\alpha_1, \dots, \alpha_n \in \mathbb{F}$, let v_1, \dots, v_n be distinct vectors in \mathcal{A} and let $w = \alpha_1 v_1 + \dots + \alpha_n v_n$. Find a necessary and sufficient condition (in terms of $\alpha_1, \dots, \alpha_n$) for the linear independence of the vectors $v_1 + w, \dots, v_n + w$.

Problem 4. Let \mathcal{V} and \mathcal{W} be vector spaces over a scalar field \mathbb{F} . Assume that dim $\mathcal{V} = m$ and dim $\mathcal{W} = n$. Let $T : \mathcal{V} \to \mathcal{W}$ be a linear mapping. Prove that we can choose a basis \mathcal{B} of \mathcal{V} and a basis \mathcal{C} of \mathcal{W} such that for some integer $k, 0 \leq k \leq \min\{m, n\}$ we have

$$\mathsf{M}_{\mathcal{C}}^{\mathcal{B}}(T) = \begin{bmatrix} \mathsf{I}_{k \times k} & \mathsf{0}_{k \times (m-k)} \\ \mathsf{0}_{(n-k) \times k} & \mathsf{0}_{(n-k) \times (m-k)} \end{bmatrix} .$$

Problem 5. Let \mathcal{V} be a finite dimensional vector space over a field \mathbb{F} and let $T : \mathcal{V} \to \mathcal{V}$ be a linear mapping. Put $T^2 := T \circ T$.

- (a) Discover and prove an inclusion relation between nul(T) and $nul(T^2)$, and between ran(T) and $ran(T^2)$.
- (b) If $\operatorname{ran}(T) = \operatorname{ran}(T^2)$, prove that $(\operatorname{ran}(T)) \cap (\operatorname{nul}(T)) = \{0_{\mathcal{V}}\}$.
- (c) If $\operatorname{ran}(T) = \operatorname{ran}(T^2)$, prove that \mathcal{V} is a direct sum of $\operatorname{ran}(T)$ and $\operatorname{nul}(T)$.

Problem 6. Let \mathcal{V} be a vector space over \mathbb{F} and $T \in \mathcal{L}(\mathcal{V})$. Assume that that there exists a function $f: \mathcal{V} \to \mathbb{F}$ such that Tv = f(v)v for each $v \in \mathcal{V}$. Prove that T is a multiple of the identity mapping, that is, there exists $\alpha \in \mathbb{F}$ such that $Tv = \alpha v$ for each $v \in \mathcal{V}$. (A plain English explanation: The equation Tv = f(v)v is telling us that T scales each vector in \mathcal{V} by the scaling coefficient f(v). The point of the problem is to prove that T must scale each vector by the same coefficient. This is a consequence of the linearity of T.)

Problem 7. Let \mathcal{U}, \mathcal{V} and \mathcal{W} be nontrivial finite dimensional vector spaces over a scalar field \mathbb{F} .

(a) Let $S \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ be an arbitrary fixed operator. Define

$$\mathbf{S}: \mathcal{L}(\mathcal{V}, \mathcal{W}) \to \mathcal{L}(\mathcal{U}, \mathcal{W})$$
 by $\mathbf{S}(T) = TS, \quad T \in \mathcal{L}(\mathcal{V}, \mathcal{W}).$

Prove that \mathbf{S} is injective iff S is surjective. Prove that \mathbf{S} is surjective iff S is injective.

(b) Let $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ be an arbitrary fixed operator. Define

 $\mathbf{T}: \mathcal{L}(\mathcal{U}, \mathcal{V}) \to \mathcal{L}(\mathcal{U}, \mathcal{W}) \qquad \text{by} \qquad \mathbf{T}(S) = TS, \quad S \in \mathcal{L}(\mathcal{U}, \mathcal{V}).$

In (a) we characterized injectivity and surjectivity of \mathbf{S} . Formulate and prove an analogous statement for \mathbf{T} .