Problem 1. Let \mathcal{V} be a finite dimensional vector space and let $T: \mathcal{V} \longrightarrow \mathcal{V}$ be a linear map. Put $T^{0}=I, T^{1}=T$, and $T^{j}=T^{j-1} \circ T$, for $j \in \mathbb{N}$.
(a) Prove that there exists $k \in \mathbb{N}$ such that $\operatorname{nul}\left(T^{k}\right)=\operatorname{nul}\left(T^{k+1}\right)$.
(b) For k from (a) we have $\operatorname{nul}\left(T^{k}\right)=\operatorname{nul}\left(T^{l}\right)$ for each $l \in \mathbb{N}, l>k$.
(c) Explore $\operatorname{ran}\left(T^{j}\right)$ with $j \in \mathbb{N}$ in the spirit of the (a) and (b). Formulate your statements and prove them.

Problem 2. Let $\mathbb{C}[z]$ be the set of all polynomials with complex coefficients. For $n \in \mathbb{N}$ by $\mathbb{C}[z]_{<n}$ we denote the complex vector subspace of $\mathbb{C}[z]$ of all polynomials whose degree is less than n. (You do not need to prove this.) By $D: \mathbb{C}[z] \rightarrow \mathbb{C}[z]$ we denote the differentiation operator

$$
(D f)(z)=f^{\prime}(z), \quad f \in \mathbb{C}[z]
$$

Let \mathcal{Q} be a nontrivial finite dimensional subspace of $\mathbb{C}[z]$. Then $D \mathcal{Q} \subseteq \mathcal{Q}$ if and only if there exists $n \in \mathbb{N}$ such that $\mathcal{Q}=\mathbb{C}[z]_{<n}$.
Problem 3. Let $m \in \mathbb{N}$, let $z_{1}, \ldots, z_{m} \in \mathbb{C}$ be distinct complex numbers and let $l_{1}, \ldots, l_{m} \in \mathbb{N}$. Set $n=\sum_{j=1}^{m} l_{j}$. By $\mathbb{C}[z]_{<n}$ we denote the complex vector space of all polynomials with coefficients in \mathbb{C} whose degree is less than n. Prove that the function $T: \mathbb{C}[z]_{<n} \rightarrow \mathbb{C}^{n}$ defined by

$$
T p=\left[p\left(z_{1}\right) \cdots p^{\left(l_{1}-1\right)}\left(z_{1}\right) \cdots p\left(z_{m}\right) \cdots p^{\left(l_{m}-1\right)}\left(z_{m}\right)\right]^{\top}, \quad p \in \mathbb{C}[z]_{<n}
$$

is an isomorphism. In the definition of T, for $p \in \mathbb{C}[z]_{<n}$ and $j \in \mathbb{N}, p^{(j)}$ denotes the j th derivative of p.
Problem 4. Let $(\mathcal{V},\langle\cdot, \cdot\rangle)$ be an inner product space over a scalar field \mathbb{F} with a positive definite inner product $\langle\cdot, \cdot\rangle$. Let $\|\cdot\|$ be the corresponding norm on \mathcal{V}. That is, for $v \in \mathcal{V},\|v\|:=\sqrt{\langle v, v\rangle}$. Find a necessary and sufficient condition (in terms of the vectors $v_{1}, \ldots, v_{k} \in \mathcal{V}$) for the following equality

$$
\left\|v_{1}+\cdots+v_{k}\right\|=\left\|v_{1}\right\|+\cdots+\left\|v_{k}\right\|
$$

Problem 5. Let \mathcal{V} be a finite dimensional vector space over a scalar field \mathbb{F} and $n=\operatorname{dim} \mathcal{V}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be a basis of \mathcal{V} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathcal{V}. Suppose that $x_{1}, x_{2}, \ldots, x_{n}$ are arbitrary scalars in \mathbb{F}. Prove that there exists a vector $v \in \mathcal{V}$, such that

$$
\left\langle v, v_{j}\right\rangle=x_{j} \text { for all } j \in\{1, \ldots, n\}
$$

Problem 6. Let \mathcal{V} be a finite dimensional vector space over a scalar field \mathbb{F}. Assume that $\operatorname{dim} \mathcal{V}>1$. Let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathcal{V}. Let x and y be fixed nonzero vectors in \mathcal{V}. Define the operator $T \in \mathcal{L}(\mathcal{V})$ by

$$
T v=v-\langle v, x\rangle y, \quad v \in \mathcal{V} .
$$

You do not need to prove that $T \in \mathcal{L}(\mathcal{V})$. Answer the following questions and provide complete rigorous justifications.
(a) Determine all eigenvalues and the corresponding eigenspaces of T. Provide a proof that you indeed found all the eigenvalues.
(b) Determine an explicit formula for T^{*}.
(c) Describe all operators Q on \mathcal{V} for which $T Q=Q T$.
(d) Determine a necessary and sufficient condition for T to be normal.
(e) Determine a necessary and sufficient condition for T to be self-adjoint.

