MATH 504 Assignment 2 November 4, 2013

Problem 1. Let \mathcal{V} be a finite dimensional vector space and let $T : \mathcal{V} \longrightarrow \mathcal{V}$ be a linear map. Put $T^0 = I, T^1 = T$, and $T^j = T^{j-1} \circ T$, for $j \in \mathbb{N}$.

- (a) Prove that there exists $k \in \mathbb{N}$ such that $\operatorname{nul}(T^k) = \operatorname{nul}(T^{k+1})$.
- (b) For k from (a) we have $\operatorname{nul}(T^k) = \operatorname{nul}(T^l)$ for each $l \in \mathbb{N}, l > k$.
- (c) Explore $\operatorname{ran}(T^j)$ with $j \in \mathbb{N}$ in the spirit of the (a) and (b). Formulate your statements and prove them.

Problem 2. Let $\mathbb{C}[z]$ be the set of all polynomials with complex coefficients. For $n \in \mathbb{N}$ by $\mathbb{C}[z]_{\leq n}$ we denote the complex vector subspace of $\mathbb{C}[z]$ of all polynomials whose degree is less than n. (You do not need to prove this.) By $D : \mathbb{C}[z] \to \mathbb{C}[z]$ we denote the differentiation operator

$$(Df)(z) = f'(z), \quad f \in \mathbb{C}[z].$$

Let \mathcal{Q} be a nontrivial finite dimensional subspace of $\mathbb{C}[z]$. Then $D\mathcal{Q} \subseteq \mathcal{Q}$ if and only if there exists $n \in \mathbb{N}$ such that $\mathcal{Q} = \mathbb{C}[z]_{\leq n}$.

Problem 3. Let $m \in \mathbb{N}$, let $z_1, \ldots, z_m \in \mathbb{C}$ be distinct complex numbers and let $l_1, \ldots, l_m \in \mathbb{N}$. Set $n = \sum_{j=1}^m l_j$. By $\mathbb{C}[z]_{<n}$ we denote the complex vector space of all polynomials with coefficients in \mathbb{C} whose degree is less than n. Prove that the function $T : \mathbb{C}[z]_{<n} \to \mathbb{C}^n$ defined by

$$Tp = \left[p(z_1) \cdots p^{(l_1-1)}(z_1) \cdots p(z_m) \cdots p^{(l_m-1)}(z_m) \right]^{\top}, \qquad p \in \mathbb{C}[z]_{< n},$$

is an isomorphism. In the definition of T, for $p \in \mathbb{C}[z]_{\leq n}$ and $j \in \mathbb{N}$, $p^{(j)}$ denotes the *j*th derivative of p.

Problem 4. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be an inner product space over a scalar field \mathbb{F} with a positive definite inner product $\langle \cdot, \cdot \rangle$. Let $\|\cdot\|$ be the corresponding norm on \mathcal{V} . That is, for $v \in \mathcal{V}$, $\|v\| := \sqrt{\langle v, v \rangle}$. Find a necessary and sufficient condition (in terms of the vectors $v_1, \ldots, v_k \in \mathcal{V}$) for the following equality

$$||v_1 + \dots + v_k|| = ||v_1|| + \dots + ||v_k||$$

Problem 5. Let \mathcal{V} be a finite dimensional vector space over a scalar field \mathbb{F} and $n = \dim \mathcal{V}$. Let v_1, v_2, \ldots, v_n be a basis of \mathcal{V} and let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathcal{V} . Suppose that x_1, x_2, \ldots, x_n are arbitrary scalars in \mathbb{F} . Prove that there exists a vector $v \in \mathcal{V}$, such that

$$\langle v, v_j \rangle = x_j$$
 for all $j \in \{1, \dots, n\}$.

Problem 6. Let \mathcal{V} be a finite dimensional vector space over a scalar field \mathbb{F} . Assume that dim $\mathcal{V} > 1$. Let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathcal{V} . Let x and y be fixed nonzero vectors in \mathcal{V} . Define the operator $T \in \mathcal{L}(\mathcal{V})$ by

$$Tv = v - \langle v, x \rangle y, \qquad v \in \mathcal{V}$$

You do not need to prove that $T \in \mathcal{L}(\mathcal{V})$. Answer the following questions and provide complete rigorous justifications.

- (a) Determine all eigenvalues and the corresponding eigenspaces of T. Provide a proof that you indeed found <u>all</u> the eigenvalues.
- (b) Determine an explicit formula for T^* .
- (c) Describe all operators Q on \mathcal{V} for which TQ = QT.
- (d) Determine a necessary and sufficient condition for T to be normal.
- (e) Determine a necessary and sufficient condition for T to be self-adjoint.

Name _