Jordan normal form

Branko Ćurgus

December 5, 2013 at 13:04

Throughout this note \mathcal{V} is a nontrivial finite dimensional vector space over \mathbb{C} . We set $n = \dim \mathcal{V}$. The symbol \mathbb{N} denotes the set of positive integers and $i, j, k, l, m, n, p, q, r \in \mathbb{N}$. For $T \in \mathcal{L}(\mathcal{V})$ by $\mathcal{N}(T)$ we denote the null-space and by $\mathcal{R}(T)$ the range of T.

1 Nilpotent operators

An operator $N \in \mathcal{L}(\mathcal{V})$ is *nilpotent* if there exists $q \in \mathbb{N}$ such that $N^q = 0$. If $N^q = 0$ and $N^{q-1} \neq 0$, then q is called *the degree of nilpotency* of N.

It is not difficult to show that in a finite dimensional space \mathcal{V} the degree of nilpotency q satisfies $q \leq \dim \mathcal{V}$.

tjbn

Theorem 1.1. Let \mathcal{V} be a nontrivial finite dimensional vector space over \mathbb{C} with $n = \dim \mathcal{V}$. Let $N \in \mathcal{L}(\mathcal{V})$ be a nilpotent operator such that $m = \dim \mathcal{N}(N)$. Then there exist vectors $v_1, \ldots, v_m \in \mathcal{V}$ and positive integers q_1, \ldots, q_m such that the vectors

$$N^{q_k-1}v_k, \qquad k \in \{1, \dots, m\},$$

form a basis of $\mathcal{N}(N)$ and the vectors

$$v_k, Nv_k, \dots, N^{q_k-1}v_k, \qquad k \in \{1, \dots, m\},$$

form a basis of \mathcal{V} .

Proof. The proof is by induction on the dimension n. For n = 1, $N^d im(V) = N^1 = 0$, so the statement is trivially true for n = 1. Let $n \in \mathbb{N}$ and assume that the statement is true for any vector space of dimension less or equal to n. It is always a good idea to be specific and state what is being assumed. Let $n \in \mathbb{N}$ be such that n > 1. The following implication is our inductive hypothesis:

If \mathcal{W} is a vector space over \mathbb{C} such that $\dim \mathcal{W} < n$ and if $M \in \mathcal{L}(\mathcal{W})$ is a nilpotent operator such that $l = \dim \mathcal{N}(M)$, then there exist $w_1, \ldots, w_l \in \mathcal{W}$ and positive integers p_1, \ldots, p_l such that the vectors

$$M^{p_j-1}w_j, \qquad j \in \{1, \dots, l\},$$

form a basis of $\mathcal{N}(M)$ and the vectors

$$w_j, Mw_j, \dots, M^{p_j-1}w_j, \qquad j \in \{1, \dots, l\},$$

form a basis of \mathcal{W} .

Next we present a proof of the inductive step.

Let \mathcal{V} be a nontrivial finite dimensional vector space over \mathbb{C} with dim $\mathcal{V} = n$. Let $N \in \mathcal{L}(\mathcal{V})$ be a nilpotent operator.

First notice that if N = 0, then $\mathcal{N}(N) = \mathcal{V}$ and the claim is trivially true. In this case m = n and any basis v_1, \ldots, v_n of \mathcal{V} with positive integers $q_1 = \cdots = q_n = 1$ satisfies the requirement of the theorem. From now on we assume that $N \neq 0$.

Set $m = \dim \mathcal{N}(N)$ and $\mathcal{W} = \mathcal{R}(N)$. Since all powers of an invertible operator are invertible and a power of N is 0, N it is not invertible. Thus $m = \dim \mathcal{N}(N) \ge 1$. By the famous "rank-nullity" theorem $\dim \mathcal{W} < n$. Since $N \neq 0$, $\dim \mathcal{W} > 0$. It is clear that \mathcal{W} is invariant under N. Set $M \in \mathcal{L}(\mathcal{W})$ to be the restriction of N onto \mathcal{W} . Then $\in \mathcal{L}(\mathcal{W})$. Since N is nilpotent, M is nilpotent as well. Clearly, $\mathcal{N}(M) = \mathcal{N}(N) \cap \mathcal{R}(N)$. Set $l = \dim \mathcal{N}(M)$. The vector space \mathcal{W} and the operator M satisfy all the assumptions of the inductive hypothesis. This allows us to deduce that there exist $w_1, \ldots, w_l \in \mathcal{W}$ and positive integers p_1, \ldots, p_l such that the vectors

$$M^{p_j-1}w_j, \qquad j \in \{1, \dots, l\},\tag{1} \quad \text{eqbaNM}$$

form a basis of $\mathcal{N}(M) = \mathcal{N}(N) \cap \mathcal{R}(N)$ and the vectors

$$w_j, Mw_j, \dots, M^{p_j - 1}w_j, \qquad j \in \{1, \dots, l\},$$

$$(2) \quad eqbal$$

form a basis of $\mathcal{W} = \mathcal{R}(N)$. Since $w_j \in \mathcal{R}(N)$, there exist $v_j \in \mathcal{V}$ such that $w_j = Nv_j$ for all $j \in \{1, \ldots, l\}$. We know from (1) that the vectors

$$M^{p_1-1}w_1 = N^{p_1}v_1, \dots, M^{p_l-1}w_l = N^{p_l}v_l,$$

form a basis of $\mathcal{N}(M) = \mathcal{N}(N) \cap \mathcal{R}(N)$. Recall that $m = \dim \mathcal{N}(N)$ and $l \leq m$. Let v_{l+1}, \ldots, v_m be such that

$$N^{p_1}v_1, \dots, N^{p_l}v_l, v_{l+1}, \dots, v_m,$$
 (3) |eqbaNN

form a basis of $\mathcal{N}(N)$. (It is possible that l = m. In this case we already have a basis of $\mathcal{N}(N)$ and the last step can be skipped.)

Now let us review the stage: We started with the basis

$$w_j = Nv_j, \ Mw_j = N^2 v_j, \dots, M^{p_j - 1} w_j = N^{p_j} v_j, \qquad j \in \{1, \dots, l\},$$

of $\mathcal{W} = \mathcal{R}(N)$, with dim $\mathcal{R}(N)$ vectors to which we add the vectors v_1, \ldots, v_m . Now we have $m + \dim \mathcal{R}(N) = \dim \mathcal{N}(N) + \dim \mathcal{R}(N) = \dim \mathcal{V} = n$ vectors:

$$v_j, Nv_j, N^2v_j, \dots, N^{p_j}v_j, \quad j \in \{1, \dots, l\}, \quad v_{l+1}, \dots, v_m.$$
 (4) eqbal

For easier writing set

$$q_k = \begin{cases} p_k + 1 & \text{if } k \in \{1, \dots, l\} \\ 1 & \text{if } k \in \{l + 1, \dots, m\}. \end{cases}$$

Then (4) can be rewritten as

$$v_k, Nv_k, N^2 v_k, \dots, N^{q_k-1} v_k, \qquad k \in \{1, \dots, m\}.$$
 (5) eqball

Next we will prove that the vectors in (5) are linearly independent. Let $\alpha_{k,j} \in \mathbb{C}, j \in \{0, \ldots, q_k - 1\}, k \in \{1, \ldots, m\}$ be such that

$$\sum_{k=1}^{m} \sum_{j=0}^{q_k-1} \alpha_{k,j} N^j v_k = 0.$$
 (6) eqlin

Applying N to the last equality yields

$$\sum_{k=1}^{l} \sum_{j=0}^{q_k-2} \alpha_{k,j} N^{j+1} v_k = \sum_{k=1}^{l} \sum_{j=0}^{p_k-1} \alpha_{k,j} M^j w_k = 0.$$

Since the vectors in the last double sum are the vectors from (2) they are linearly independent. Therefore

$$\alpha_{k,0} = \dots = \alpha_{k,q_k-2} = 0, \qquad k \in \{1,\dots,l\}.$$

Substituting these values in (6) we get

$$\sum_{k=1}^{m} \alpha_{k,q_k-1} N^{q_k-1} v_k = 0.$$

But, beautifully, the vectors in the last sum are exactly the vectors in (3) which are linearly independent. Thus

$$\alpha_{k,q_k-1} = 0, \qquad k \in \{1, \dots, m\}.$$

This completes the proof that all the coefficients in (6) must be zero. Thus, the vectors in (5) are linearly independent. Since there are exactly n vectors in (5) they form a basis of \mathcal{V} . This completes the proof.

2 A Decomposition of a Vector Space

Lemma 2.1. Let \mathcal{V} be a vector space over \mathbb{F} . Let A and B be commuting linear operators on \mathcal{V} . Then $\mathcal{N}(B)$ and $\mathcal{R}(B)$ are invariant subspaces for A.

Proof. This is a very simple exercise.

pges **Proposition 2.2.** Let \mathcal{V} be a vector space over \mathbb{F} . Let $T \in \mathcal{L}(\mathcal{V})$. If λ and μ are distinct eigenvalues of T and j and k are natural numbers, then

$$\mathcal{N}((T-\lambda I)^j) \bigcap \mathcal{N}((T-\mu I)^k) = \{0_{\mathcal{V}}\}.$$

Proof. The set equality in the proposition is equivalent to the implication

$$v \in \mathcal{N}((T - \mu I)^k) \setminus \{0_{\mathcal{V}}\} \Rightarrow v \notin \mathcal{N}((T - \lambda I)^j).$$

We will prove this implication. Let $v \in \mathcal{V}$ be such that $(T - \mu I)^k v = 0_{\mathcal{V}}$ and $v \neq 0_{\mathcal{V}}$. Let $i \in \{1, \ldots, k\}$ be such that $(T - \mu I)^i v = 0_{\mathcal{V}}$ and $(T - \mu I)^{i-1} v \neq 0_{\mathcal{V}}$. Set $w = (T - \mu I)^{i-1} v$. Then w is an eigenvector of T corresponding to μ , that is $Tw = \mu w$ and $w \neq 0$. Then (as we must have proven before), for an arbitrary polynomial $p \in \mathbb{C}[z]$ we have $p(T)w = p(\mu)w$. In particular

$$(T - \lambda I)^l w = (\mu - \lambda)^l w$$
 for all $l \in \mathbb{N}$

Since $\mu - \lambda \neq 0$ and $w \neq 0_{\mathcal{V}}$ we have that

$$(T - \lambda I)^l w \neq 0_{\mathcal{V}}$$
 for all $l \in \mathbb{N}$.

Consequently,

$$(T - \lambda I)^l (T - \mu I)^{i-1} v \neq 0_{\mathcal{V}}$$
 for all $l \in \mathbb{N}$.

Since the operators $(T - \lambda I)^{l}$ and $(T - \mu I)^{i-1}$ commute we have

$$(T - \mu I)^{i-1} (T - \lambda I)^l v \neq 0_{\mathcal{V}}$$
 for all $l \in \mathbb{N}$.

Therefore $(T - \lambda I)^l v \neq 0_{\mathcal{V}}$ for all $l \in \mathbb{N}$. Hence $v \notin \mathcal{N}((T - \lambda I)^j)$. This proves the proposition.

cges Corollary 2.3. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} . Let $T \in \mathcal{L}(\mathcal{V})$. If λ and μ are distinct eigenvalues of T and j and k are natural numbers, then

$$\mathcal{N}((T-\lambda I)^j) \subseteq \mathcal{R}((T-\mu I)^k).$$

Proof. Since the operators $(T - \lambda I)^j$ and $(T - \mu I)^k$ commute, by Lemma 2.1, $\mathcal{N}((T - \lambda I)^j)$ is invariant under $(T - \mu I)^k$. Denote by S the restriction of $(T - \mu I)^k$ onto $\mathcal{N}((T - \lambda I)^j)$. Since clearly,

$$\mathcal{N}(S) = \mathcal{N}((T - \lambda I)^j) \cap \mathcal{N}((T - \mu I)^k)$$

Proposition 2.2 implies that S is an injection, and thus bijection. Hence,

$$S\left(\mathcal{N}\left((T-\lambda I)^{j}\right)\right) = \mathcal{N}\left((T-\lambda I)^{j}\right)$$

and consequently

$$\mathcal{N}((T-\lambda I)^j) = (T-\mu I)^k \Big(\mathcal{N}((T-\lambda I)^j) \Big) \subseteq \mathcal{R}((T-\mu I)^k).$$

le-red

d Lemma 2.4. Let \mathcal{V} be a vector space over \mathbb{F} . Let \mathcal{U} and \mathcal{W} be subspaces of \mathcal{V} such that

 $\mathcal{V} = \mathcal{U} \oplus \mathcal{W}.$

Let
$$S \in \mathcal{L}(V)$$
 be such that $S\mathcal{U} \subseteq \mathcal{U}$ and $S\mathcal{W} \subseteq \mathcal{W}$. If $\mathcal{N}(S) \cap \mathcal{W} = \{0\}$, then

$$\mathcal{N}((S|_{\mathcal{U}})^j) = \mathcal{N}(S^j) \quad \text{for all} \quad j \in \mathbb{N}.$$
(7) eq-ns=ns

Proof. Assume $\mathcal{N}(S) \cap \mathcal{W} = \{0\}$. We first prove the equality for j = 1. Since $\mathcal{N}(S|_{\mathcal{U}}) = \mathcal{N}(S) \cap \mathcal{U}$, the inclusion $\mathcal{N}(S|_{\mathcal{U}}) \subseteq \mathcal{N}(S)$ is clear. Let $v \in \mathcal{N}(S)$ be arbitrary. Then v = u + w with $u \in \mathcal{U}$ and $w \in \mathcal{W}$. Applying S to this identity we get 0 = Sv = Su + Sw. Since $Su \in \mathcal{U}$ and $Sw \in \mathcal{W}$, the assumption that the sum of \mathcal{U} and \mathcal{W} is direct yields Sw = 0. Since $\mathcal{N}(S) \cap \mathcal{W} = \{0\}$, we have w = 0. Thus, $v \in \mathcal{U}$, and hence $v \in \mathcal{N}(S|_{\mathcal{U}})$.

To prove (7) for arbitrary $j \in \mathbb{N}$ we will first prove that

$$\mathcal{N}(S^j) \cap \mathcal{W} = \{0\}$$
 for all $j \in \mathbb{N}$. (8) [eq-nul-j

A simple proof proceeds by mathematical induction. The statement in (8) is true for j = 1. Let $j \in \mathbb{N}$ and assume that the statement in (8) is true for j. Now assume that $w \in \mathcal{W}$ and $S^{j+1}w = 0$. Then $Sw \in \mathcal{W}$ and $S^j(Sw) = 0$. By the inductive hypothesis, that is $\mathcal{N}(S^j) \cap \mathcal{W} = \{0\}$ we conclude Sw = 0. Since $\mathcal{N}(S) \cap \mathcal{W} = \{0\}$, we deduce that w = 0.

Having (8), we can apply the equality proved in the first part of the proof to the operator S^{j} .

Corollary 2.5. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} . Let \mathcal{U} and \mathcal{W} be subspaces of \mathcal{V} such that

$$\mathcal{V} = \mathcal{U} \oplus \mathcal{W}.$$

Let $T \in \mathcal{L}(V)$ be such that $T\mathcal{U} \subseteq \mathcal{U}$ and $T\mathcal{W} \subseteq \mathcal{W}$. Then

$$\sigma(T|_{\mathcal{U}}) \cup \sigma(T|_{\mathcal{W}}) = \sigma(T). \tag{9} \quad \text{eq-sp-par}$$

q-gen-es=

If $\lambda \in \sigma(T)$ and $\lambda \notin \sigma(T|_{\mathcal{W}})$, then $\lambda \in \sigma(T|_{\mathcal{U}})$ and

$$\mathcal{N}\big((T|_{\mathcal{U}} - \lambda I)^j\big) = \mathcal{N}\big((T - \lambda I)^j\big) \quad \text{for all} \quad j \in \mathbb{N}.$$
(10)

Proof. The inclusion \subseteq in (9) is clear. To prove \supseteq , let $\lambda \in \sigma(T)$ and let $v \neq 0$ be such that $Tv = \lambda v$. Let v = u + w, with $u \in \mathcal{U}$ and $w \in \mathcal{W}$. Since $v \neq 0$ we have $u \neq 0$ or $w \neq 0$. Applying T to both sides of v = u + w and using the fact that v is an eigenvalue corresponding to λ we get $Tu + Tw = Tv = \lambda v = \lambda u + \lambda w$. Consequently, $(Tu - \lambda u) + (Tw - \lambda w) = 0$. Since the sum $\mathcal{V} = \mathcal{U} \oplus \mathcal{W}$ is direct and $Tu - \lambda u \in \mathcal{U}$ and $Tw - \lambda w \in \mathcal{W}$ we conclude $Tw - \lambda w = 0$ and $Tu - \lambda u = 0$. Since $u \neq 0$ or $w \neq 0$, we have $\lambda \in \sigma(T|_{\mathcal{U}})$ or $\lambda \in \sigma(T|_{\mathcal{W}})$.

Assume $\lambda \in \sigma(T)$ and $\lambda \notin \sigma(T|_{\mathcal{W}})$. Then $\mathcal{N}(T - \lambda I) \cap \mathcal{W} = \{0\}$. Lemma 2.4 applies to the operator $T - \lambda I$ and yields (10). Since $\lambda \in \sigma(T)$, $\mathcal{N}(T - \lambda I) \neq \{0\}$. Now (10) with j = 1 yields $\lambda \in \sigma(T|_{\mathcal{U}})$.

dect Theorem 2.6. Let \mathcal{V} be a finite dimensional vector space over \mathbb{C} , $n = \dim \mathcal{V}$ and let $T \in \mathcal{L}(\mathcal{V})$. Let $\lambda_1, \ldots, \lambda_k$, be all the distinct eigenvalues of T. Set

$$\mathcal{W}_j = \mathcal{N}((T - \lambda_j I)^n)$$
 and $\dim \mathcal{W}_j = n_j, \quad j \in \{1, \dots, k\}.$

Then

dtb dtd

co-redsp

dta (a) Each of the subspaces
$$\mathcal{W}_1, \ldots, \mathcal{W}_k$$
, is invariant under T.

(b) $\mathcal{V} = \mathcal{W}_1 \oplus \cdots \oplus \mathcal{W}_k$.

(c) Set
$$T_j = T|_{\mathcal{W}_j}$$
 and $N_j = T_j - \lambda_j I$, $j \in \{1, \dots, k\}$. Then $N_j^{n_j} = 0$, that is, N_j is a nilpotent operator on \mathcal{W}_j .

Proof. (a) Since T commutes with each of the operators $(T - \lambda_j I)^d$, $j \in \{1, \ldots, k\}$ Lemma 2.1 implies that each subspace $\mathcal{W}_1, \ldots, \mathcal{W}_k$, is an invariant subspace of T.

To prove (b) we proceed by mathematical induction on the number k of distinct eigenvalues of T. We first prove the base step. Assume that λ is the only eigenvalue of T. Let $\mathcal{B} = \{v_1, \ldots, v_n\}$ be a basis of \mathcal{V} such that the matrix $\mathsf{M}^{\mathcal{B}}_{\mathcal{B}}(T)$ is upper triangular. Then, as we proved earlier all the diagonal entries of $\mathsf{M}^{\mathcal{B}}_{\mathcal{B}}(T)$ equal to λ . From the definition of $\mathsf{M}^{\mathcal{B}}_{\mathcal{B}}(T)$ it follows that

$$(T - \lambda I) (\operatorname{span}\{v_1, \dots, v_j\}) \subseteq (\operatorname{span}\{v_1, \dots, v_j - 1\}) \quad \text{for all} \quad j \in \{2, \dots, n\}.$$

Therefore

$$(T - \lambda I)^{n}(\mathcal{V}) = (T - \lambda I)^{n-1}(T - \lambda I) (\operatorname{span}\{v_{1}, \dots, v_{n}\})$$
$$\subseteq (T - \lambda I)^{n-1} (\operatorname{span}\{v_{1}, \dots, v_{n-1}\})$$
$$\vdots$$
$$\subseteq (T - \lambda I)(T - \lambda I) (\operatorname{span}\{v_{1}, v_{2}\})$$
$$\subseteq (T - \lambda I) (\operatorname{span}\{v_{1}\})$$
$$= \{0_{\mathcal{V}}\}.$$

Thus $\mathcal{V} = \mathcal{N}((T - \lambda I)^n)$. This completes the proof of the base case.

Now we prove the inductive step. Let $k \in \mathbb{N}$ and assume that the statement is true for an operator with k distinct eigenvalues. Let T be an operator with k+1 distinct eigenvalues $\lambda_1, \ldots, \lambda_k, \lambda_{k+1}$. For convenience we set $\lambda_{k+1} = \lambda$. Then, by assumption $\lambda \neq \lambda_j$ for all $j \in \{1, \ldots, k\}$. We set

$$\mathcal{U} = \mathcal{R}((T - \lambda I)^n)$$
 and $\mathcal{W} = \mathcal{N}((T - \lambda I)^n).$

Since T and $(T - \lambda I)^n$ commute, Lemma 2.1 implies that both \mathcal{U} and \mathcal{W} are invariant under T.

Next we prove that

$$\mathcal{R}((T-\lambda I)^n) \cap \mathcal{N}((T-\lambda I)^n) = \mathcal{U} \cap \mathcal{W} = \{0\}.$$
(11) eq-triv

(Prove this as an exercise.)

By the Rank-Nullity theorem

$$\mathcal{V} = \mathcal{U} \oplus \mathcal{W}.$$
 (12) eq-ds

(Provide details as an exercise.)

By Corollary 2.3

$$\mathcal{N}((T-\lambda_j I)^n) \subseteq \mathcal{U} \quad \text{for all} \quad j \in \{1, \dots, k\}.$$
 (13) eq-incl

Let $m = \dim \mathcal{U}$. Denote by S the restriction of T onto \mathcal{U} . The inclusion in (13) implies that $\lambda_1, \ldots, \lambda_k$ are eigenvalues of S. Similarly, (11) implies that λ is not an eigenvalue of S. Now Corollary 2.5 yields

$$\sigma(S) = \{\lambda_1, \dots, \lambda_k\}.$$

The second claim of Corollary 2.5 implies

$$\mathcal{N}((T-\lambda_j I)^n) = \mathcal{N}((S-\lambda_j I)^n).$$

Since $n > m = \dim \mathcal{U}$ we have

$$\mathcal{N}((S-\lambda_j I)^m) = \mathcal{N}((S-\lambda_j I)^{m+1}) = \dots = \mathcal{N}((S-\lambda_j I)^n).$$

Therefore,

dcp

$$\mathcal{N}((T-\lambda_j I)^n) = \mathcal{N}((S-\lambda_j I)^m). \tag{14}$$

The inductive hypothesis applies to S. Therefore

$$\mathcal{U} = \mathcal{R}\big((T - \lambda I)^n\big) = \bigoplus_{j=1}^k \mathcal{N}\big((S - \lambda_j I)^m\big).$$
(15) eq-ihc

Now (15), (14), and (12) yield

$$\mathcal{V} = \bigoplus_{j=1}^{k+1} \mathcal{N} \big((T - \lambda_j I)^n \big).$$

Now we prove (c). Lemma 2.1 implies that \mathcal{W}_j is an invariant subspace of $T - \lambda_j I$. Denote by N_j the restriction of $T - \lambda_j I$ to its invariant subspace \mathcal{W}_j and by T_j the restriction of T to \mathcal{W}_j . Then, $T_j = \lambda_j I + N_j$ and the operator N_j is nilpotent.

Definition 2.7. Let $k \in \{1, ..., n\}$ be such that $\lambda_1, ..., \lambda_k$ are all the distinct eigenvalues of T. Set

$$n_j = \dim \mathcal{N}((T - \lambda_j)^n), \qquad j \in \{1, \dots, k\}.$$

The number n_i is called the *algebraic multiplicity* of the eigenvalue λ_i . The polynomial

$$p(z) = (z - \lambda_1)^{n_1} \cdots (z - \lambda_k)^{n_k}$$
(16) eqcp2

is called the *characteristic polynomial* of T.

3 The Jordan Normal Form

Let T be an operator on a vector space \mathcal{V} over \mathbb{C} . Let λ be an eigenvalue of T and let v be such that $(T - \lambda I)^l v = 0_{\mathcal{V}}$ and $(T - \lambda I)^{l-1} v \neq 0_{\mathcal{V}}$. Then the system of vectors

$$(T - \lambda I)^{l-1}v, \ (T - \lambda I)^{l-2}v, \dots, (T - \lambda I)v, \ v, \tag{17}$$

is called a *Jordan chain* of T corresponding to the eigenvalue λ . The vectors in (17) are called *generalized eigenvectors* (or *root vectors*) corresponding to the eigenvalue λ .

Let \mathcal{W} be a subspace of \mathcal{V} generated by a Jordan chain

$$v_j = (T - \lambda I)^{l - j} v, \qquad j \in \{1, \dots, l\},$$

of T. Note that the vector $v_1 = (T - \lambda I)^{l-1}v$ is an eigenvector of T corresponding to the eigenvalue λ . Therefore $Tv_1 = \lambda v_1$. We also have

$$Tv_j = (T - \lambda I)v_j + \lambda v_j = v_{j-1} + \lambda v_j, \qquad j \in \{1, \dots, l\}.$$

It follows that \mathcal{W} is an invariant subspace of T. If we denote by A the restriction of T to \mathcal{W} , then the matrix representation of A with respect to the basis $\{v_1, \ldots, v_l\}$ is

$$\begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{bmatrix}.$$
 (18) jbll

A matrix of this form is called a *Jordan block* corresponding to the eigenvalue λ . In words: a Jordan block corresponding to the eigenvalue λ is a square matrix with all elements on the main diagonal equal to λ and all elements on the superdiagonal equal to 1.

A basis for \mathcal{V} which consists of Jordan chains of T is called a *Jordan basis* for \mathcal{V} with respect to T.

If a basis \mathcal{B} for \mathcal{V} is a Jordan basis with respect to T then the matrix $\mathsf{M}_{\mathcal{B}}(T)$ has Jordan blocks of different sizes on the diagonal and all other elements of $\mathsf{M}_{\mathcal{B}}(T)$ are zeros. Each eigenvalue of T is represented in $\mathsf{M}_{\mathcal{B}}(T)$ by one or more Jordan blocks;

In the above matrix λ_1 and λ_2 are not necessarily distinct eigenvalues. A matrix of the form (19) is called the *Jordan normal form* for *T*. More precisely, a square matrix $\mathsf{M} = [a_{j,k}]$ is a *Jordan normal form* for *T* if:

(i) all elements of M outside of the main diagonal and the superdiagonal are 0,

- (ii) all elements on the main diagonal of M are eigenvalues of T,
- (iii) all elements on the superdiagonal of M are either 1 or 0, and,
- (iv) if $a_{j-1,j-1} \neq a_{j,j}$, with $j \in \{2, ..., n\}$, then $a_{j-1,j} = 0$.

Theorem 3.1. Let \mathcal{V} be a vector space over \mathbb{C} and let T be a linear operator on \mathcal{V} . Then \mathcal{V} has a Jordan basis with respect to T.

Proof. We use the notation and the results of Theorem 2.6. Let $j \in \{1, \ldots, k\}$. It is important to notice that each Jordan chain of the nilpotent operator N_j is a Jordan chain of T which corresponds to the eigenvalue λ_j . Since N_j is a nilpotent operator in $\mathcal{L}(\mathcal{W}_j)$, by Theorem 1.1 there exists a basis $\mathcal{B}_j = \{v_{j,1}, \ldots, v_{j,n_j}\}$ for \mathcal{W}_j which consists of Jordan chains of N_j . Consequently, \mathcal{B}_j consists of Jordan chains of T. Since \mathcal{V} is a direct sum of $\mathcal{W}_1, \ldots, \mathcal{W}_k$, the union $\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_k$, that is,

$$\mathcal{B} = \{v_{1,1}, \dots, v_{1,n_1}, v_{2,1}, \dots, v_{2,n_2}, \dots, v_{k,1}, \dots, v_{k,n_k}\}$$

is a basis for \mathcal{V} . This basis consists of Jordan chains of T.

The matrix $M_{\mathcal{B}}(T)$ is a block diagonal with the blocks $M_{\mathcal{B}_j}(T_j), j \in \{1, \ldots, k\}$, on the diagonal and with zeros every where else:

$$\mathsf{M}_{\mathcal{B}}^{\mathcal{B}}(T) = \begin{bmatrix} \mathsf{M}_{\mathcal{B}_{1}}^{\mathcal{B}_{1}}(T_{1}) & 0 & \cdots & 0\\ 0 & \mathsf{M}_{\mathcal{B}_{2}}^{\mathcal{B}_{2}}(T_{2}) & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \mathsf{M}_{\mathcal{B}_{k}}^{\mathcal{B}_{k}}(T_{k}) \end{bmatrix}$$

Since $T_j = \lambda_j I + N_j$, we have

$$\mathsf{M}_{\mathcal{B}_j}(T_j) = \lambda_j \mathsf{I} + \mathsf{M}_{\mathcal{B}_j}(N_j).$$

Thus all the elements on the main diagonal of $\mathsf{M}_{\mathcal{B}_j}^{\mathcal{B}_j}(T_j)$ equal λ_j and all the elements of superdiagonal of $\mathsf{M}_{\mathcal{B}_j}^{\mathcal{B}_j}(T_j)$ are either 1 or 0. If there are exactly m_j Jordan chains in the basis \mathcal{B}_j , then 0 appears exactly $m_j - 1$ times on the superdiagonal of $\mathsf{M}_{\mathcal{B}_j}^{\mathcal{B}_j}(T_j)$. Therefore $\mathsf{M}_{\mathcal{B}}^{\mathcal{B}}(T)$ is a Jordan normal form for T.