
1 The Spectral Theorem

Theorem 1.1 (Thm 7.9). Let V be a finite dimensional vector space over C and 〈 · , · 〉 be a positive definite
inner product on V. Let T ∈ L(V). Then V has an orthonormal basis of eigenvectors if and only if T is
normal.

Proof. (⇐) Assume T is normal. Set n = dim(V). Then there exists an orthonormal basis B =
{u1, . . . , un} of V such that MB

B
(T ) is upper-triangular. Thus,

MB
B (T ) =











〈Tu1, u1〉 〈Tu2, u1〉 · · · 〈Tun, u1〉
0 〈Tu2, u2〉 · · · 〈Tun, u2〉
...

...
. . .

...
0 0 · · · 〈Tun, un〉











Let v ∈ V. Then v = 〈v, u1〉u1 + . . . + 〈vun〉un. Since TUj ⊆ Uj , we have Tuj ∈ span{u1, . . . , uj},
∀ j ∈ {1, . . . , n}. It follows that Tuj = 〈Tuju1〉u1 + . . .+ 〈Tujuj〉uj .

Now MB
B
(T ∗) =

(

MB
B
(T )
)∗

=
[

CB(T ∗u1) · · · CB(T ∗un)
]

and ‖Tu1‖2 = ‖T ∗u1‖2. It follows that

‖Tu1‖2 = |〈Tu1, u1〉|2 and ‖T ∗u1‖2 =
∑n

j=1 |〈Tuj , u1〉|2. Thus, we have 〈Tuj , u1〉 = 0, for j = 2, . . . , n. A

similar argument for ‖Tuj‖2, ∀ j ∈ {2, . . . , n}, shows that all nondiagonal entries are zero.

(⇒) Now assume {u1, . . . , un} is an orthonormal basis of V such that Tuj = λjuj , ∀ j ∈ {1, . . . , n}.

Then MB
B
(T ) =







λ1 0
. . .

0 λn






and MB

B
(T ∗) =







λ1 0
. . .

0 λn






.

Since MB
B
(TT ∗) = MB

B
(T )MB

B
(T ∗) =







λ1λ1 0
. . .

0 λnλn






= MB

B
(T ∗T ), we have TT ∗ = T ∗T . Hence, T

is normal.

2 Invariance under a linear operator

Theorem 2.1. Let V be a finite dimensional vector space over C. Let 〈·, ·〉 be a positive definite inner
product on V. Let T ∈ L(V) be normal. Lastly, let U be a subspace of V. Then

TU ⊆ U ⇔ TU⊥ ⊆ U⊥

(Recall that we have previously proved that for any T ∈ L(V), TU ⊆ U ⇔ T ∗U⊥ ⊆ U⊥. Hence if T is
normal, showing that any one of U or U⊥ is invariant under either T or T ∗ implies that the rest are, also.)

Proof. Assume TU ⊆ U . We know V = U ⊕ U⊥. Let u1, . . . , um be an orthonormal basis of U and
um+1, . . . , un be an orthonormal basis of U⊥. Then u1, . . . , un is an orthonormal basis of V. If j ∈ {1, . . . ,m}
then uj ∈ U , so Tuj ∈ U . Hence

Tuj =
m
∑

k=1

〈Tuj , uk〉uk.

Also, clearly,

T ∗uj =
n
∑

k=1

〈T ∗uj, uk〉uk.
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On the most recent exam, we proved that ‖Tuj‖2 =
∑m

k=1 |〈Tuj , uk〉|2. Further, by normality, ‖Tuj‖2 =
‖T ∗uj‖2. Hence

m
∑

j=1

‖Tuj‖2 =
m
∑

j=1

‖T ∗uj‖2

=
m
∑

j=1

n
∑

k=1

|〈T ∗uj, uk〉|2

=

m
∑

j=1

n
∑

k=1

|〈uj , Tuk〉|2 (by the definition of T ∗)

=

m
∑

j=1

n
∑

k=1

|〈Tuk, uj〉|2 (by hermiticity)

=

m
∑

j=1

n
∑

k=1

|〈Tuk, uj〉|2 (because moduli are real)

=
m
∑

j=1

(

m
∑

k=1

|〈Tuk, uj〉|2 +
n
∑

k=m+1

|〈Tuk, uj〉|2
)

=

m
∑

j=1

m
∑

k=1

|〈Tuk, uj〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈Tuk, uj〉|2

=

m
∑

k=1

m
∑

j=1

|〈Tuk, uj〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈Tuj , uk〉|2 (by exchanging the order of summation)

=
m
∑

j=1

m
∑

k=1

|〈Tuj , uk〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈Tuj , uk〉|2 (by reindexing)

=

m
∑

j=1

‖Tuj‖2 +
m
∑

j=1

n
∑

k=m+1

|〈Tuj , uk〉|2,

implying
∑m

j=1

∑n
k=m+1 |〈Tuj , uk〉|2 = 0. As each term is nonnegative, we conclude that |〈Tuj , uk〉|2 = 0

for all j ∈ {1, . . . , n} and all k ∈ {1, . . . , n}. Thus |〈T ∗uj, uk〉|2 = 0,∀ 1 ≤ j ≤ m,m + 1 ≤ k ≤ n. Hence
〈T ∗uj, uk〉 = 0,∀ 1 ≤ j ≤ m,m+ 1 ≤ k ≤ n. Thus

T ∗uj =

m
∑

k=1

〈T ∗uj, uk〉uk.

Therefore T ∗U ⊆ U . Then, because we know that U is invariant under T if and only if U⊥ is invariant
under T ∗, we conclude that TU⊥ ⊆ U⊥.

(Alternate proof)

Proof. Assume T is normal. Then there exists an orthonormal basis {u1, . . . , un} and {λ1, . . . , λn} ⊆ C

such that
Tuj = λjuj ⇐⇒ T ∗uj = λjuj , j ∈ {1, . . . , n}.

Let v be arbitrary in V. We can write

Tv =
n
∑

j=1

λj〈v, uj〉uj
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and

T ∗v =

n
∑

j=1

λj〈v, uj〉uj .

Set p(z) = a0+a1z+ · · ·+amzm ∈ C[z]. Then p(Tv) =
∑n

j=1 p(λj)〈v, uj〉uj . We need a p ∈ C[z] such that

p(λj) = λj, ∀j ∈ {1, . . . , n}. We proved in the homework (assignment 2, #3), that if S : C[z]<n → C
n is

defined by
Sp = [p(z1) · · · p(l1−1)(z1) · · · p(zm) · · · p(lm−1)(zm)]⊺,

then S is an isomorphism. Hence by the surjectivity of S, we can find p ∈ C[z] such that p(λj) = λj, ∀j ∈
{1, . . . , n}, Thus p(Tv) = T ∗v. Now assume TU ⊆ U . It follows that T kU ⊆ U for all k ∈ N and also that
αTU ⊆ U for all α ∈ C. Hence p(T )U = T ∗U ⊆ U .

(Thm 7.18 Axler)

Let V be a finite dimensional vector space over C with a positive definite inner product. Let T ∈ L(V)
be normal. Let U be a subspace of V. Then TU ⊆ U ⇐⇒ T (U⊥) ⊆ U⊥.

Proof. Assume TU ⊆ U . Let u ∈ U . Then Tu ∈ U . Let w ∈ U⊥. Then 0 = 〈Tu,w〉 = 〈u, T ∗w〉, which
implies T ∗w ∈ U⊥. Hence, T ∗(U⊥) ⊆ U⊥.

Now V = U ⊕U⊥. Let n = dim(V). Let {u1, . . . , um} be an orthonormal basis of U and {um+1, . . . , un}
be an orthonormal basis of U⊥. Then B = {u1, . . . , un} is an orthonormal basis of V such that

MB
B (T ) =





















u1 ... um um+1 ... un

u1 〈Tu1, um〉 . . . 〈Tum, u1〉
...

...
. . .

... B
um 〈Tu1, u1〉 . . . 〈Tum, um〉

um+1

... 0 C
un





















Take j ∈ {1, . . . ,m}. Then Tuj =
∑m

k=1〈Tuj , uk〉uk. Calculate ‖Tuj‖2 =
∑m

k=1 |〈Tuj , uk〉|2 and
‖T ∗uj‖2 =

∑n
k=1 |〈T ∗uj , uk〉|2. Since T is normal,

∑m
j=1 ‖Tuj‖2 =

∑m
j=1 ‖T ∗uj‖2. Now we have

m
∑

j=1

m
∑

k=1

|〈Tuj , uk〉|2 =

m
∑

j=1

m
∑

k=1

|〈T ∗uj, uk〉|2 +
n
∑

k=m+1

|〈T ∗uj , uk〉|2

=
m
∑

j=1

m
∑

k=1

|〈T ∗uj , uk〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj, uk〉|2.

Since |〈T ∗uj , uk〉|2 = |〈uj , Tuk〉|2 = |〈Tuk, uj〉|2, it follows that 〈T ∗uj , uk〉 = 0, ∀ j ∈ {1, . . . ,m},
∀ k ∈ {m+ 1, . . . , n}. Thus, B = 0. Hence, T ∗uj ∈ U , ∀ j ∈ {1, . . . ,m}, which implies T ∗U ⊆ U .

Considering MB
B
(T ) for j ∈ {m + 1, . . . , n}, we have Tuj ∈ span{um+1, . . . , un}. Thus, Tuj ∈ U⊥,

which implies T (U⊥) ⊆ U⊥. Finally, letting U = U⊥, a similar argument shows that TU ⊆ U .

3 Polar Decomposition

Consider an analogy between L(V) and C. The adjoint of T , T ∗, is analogous to z, the conjugate of
z, although T ∗T = TT ∗ only when T is normal, whereas zz = zz, ∀z ∈ C. Self-adjoint maps in L(V)
correspond to R ⊂ C. The set of unitary operators, i.e. all T ∈ L(V) such that T ∗T = I, correspond to
Π = {z ∈ C : |z| = 1}. Whence given that all z ∈ C have a polar decomposition, i.e. for all z there exists
an r ≥ 0 and a u ∈ C such that |u| = 1, such that z = ru, there exists an equivalent concept in L(V).
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Definition 3.1. An operator P ∈ L(V) is nonnegative if 〈Pv, v〉 ≥ 0, ∀v ∈ V. Please note, Axler uses the
term “positive” to describe such an operator. Also note, if an operator is nonnegative, that implies that it
is self-adjoint, and hence normal.

Definition 3.2. An operator U ∈ L(V) is unitary if U∗U = I. An operator is unitary if and only if it is
angle preserving:

〈u, v〉 = 〈Iu, v〉 for any u, v ∈ V
= 〈U∗Uu, v〉
= 〈Uu,Uv〉.

Theorem 3.3. For all nonnegative P ∈ L(V) there exists a unique nonnegative Q ∈ L(V) such that
P = Q2. We will use

√
P to denote this Q.

Proof. (This is a proof for existence only.) By the spectral theorem, we know there exists an orthonormal
basis u1, . . . , un and eigenvalues λ1, . . . , λn ≥ 0 such that Pv =

∑n
j=1 λj〈v, uj〉uj . Set

Qv =
n
∑

j=1

√

λj〈v, uj〉uj .

Notice that nulP = nulQ. Also, the eigenvalues of Q are in the form
√

λj.

Theorem 3.4. (Polar Decomposition in L(V)) For all T ∈ L(V) there exists a unitary operator U in L(V)
and a nonnegative P ∈ L(V) such that T = UP .

Proof. First, notice that T ∗T is nonnegative: 〈T ∗Tv, v〉 = 〈Tv, Tv〉 = ||Tv||2 ≥ 0. Set P =
√
T ∗T . Then

nulP = nul(T ∗T ) ⊇ nul(T ). Let v ∈ nul(T ∗T ). Then T ∗Tv = 0. Thus 〈T ∗Tv, v〉 = 〈Tv, Tv〉 = 0.
Hence ||Tv|| = 0, implying Tv = 0. Therefore v is in nulT , for all v ∈ nul(T ∗T ). Thus by symmetric
containment, nulP = nul(T ∗T ) = nulT . Then, by the rank-nullity theorem, dim ran(P ) = dim ran(T ).
Consider ψ : ran(P ) → ran(T ) such that Pv 7→ Tv. Suppose Pv1 = Pv2. Then v1 − v2 ∈ nulP = nulT .
Thus v1 − v2 ∈ nulT . Thus Tv1 = Tv2. Hence ψ is injective. Thus by injectivity and the dimension
argument, ψ is a bijection. Let v,w ∈ V. Consider

〈ψPv, ψPw〉 = 〈Tv, Tw〉
= 〈T ∗Tv,w〉
= 〈P 2v,w〉
= 〈P ∗Pv,w〉 (because P is self-adjoint)

= 〈Pv, Pw〉

Thus ψ is angle-preserving on ran(P ). Let us consider (ran(P ))⊥. Let v1, . . . , vm be an orthonormal basis
on (ran(P ))⊥ and let u1, . . . , um be an orthonormal basis on (ran(T ))⊥. Define U1 : (ran(P ))

⊥ → (ran(T ))⊥

by

U1v = U1





m
∑

j=1

〈v, vj〉vj





=

m
∑

j=1

〈v, vj〉uj .
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Thus

〈U1v, U1w〉 =
m
∑

j=1

〈v, vj〉〈w, vj〉

= 〈v,w〉
Hence U1 is unitary on (ran(P ))⊥. Define U : V → V by

Uv = ψPv + U1(I − P )v.

Notice that Pv ∈ (ran(P )) and (I − P )v ∈ (ran(P ))⊥. We claim that U is unitary:

〈Uv,Uw〉 = 〈ψPv + U1(I − P )v, ψPw + U1(I − P )w〉
= 〈ψPv, ψPw〉 + 〈U1(I − P )v, U1(I − P )w〉
= 〈Tv, Tw〉+ 〈(I − T )v, (I − T )w〉
= 〈v,w〉

Hence U is unitary. Thus we can write T = U ◦
√
T ∗T , where U is unitary and

√
T ∗T is nonnegative.

(Thm 7.41 Axler)

If T ∈ L(V), then there exists an isometry S ∈ L(V) such that T = S
√
T ∗T .

Proof. Suppose T ∈ L(V). Let v ∈ V. Then

‖Tv‖2 = 〈Tv, Tv〉 = 〈T ∗Tv, v〉 = 〈
√
T ∗T

√
T ∗Tv, v〉 = 〈

√
T ∗Tv,

√
T ∗Tv〉 = ‖

√
T ∗Tv‖2.

Thus, ‖Tv‖ = ‖
√
T ∗Tv‖, ∀ v ∈ V.

Define S1 : ran(
√
T ∗T ) → ran(T ) by S1(

√
T ∗Tv) = Tv. We need to check that S1 is well-defined.

Let v1, v2 ∈ V such that
√
T ∗Tv1 =

√
T ∗Tv2. Then ‖Tv1 − Tv2‖ = ‖T (v1 − v2)‖ = ‖

√
T ∗T (v1 − v2)‖

= ‖
√
T ∗Tv1 −

√
T ∗Tv2‖ = 0. Thus, Tv1 = Tv2, and S1 is well-defined.

Since S1 maps ran(
√
T ∗T ) onto ran(T ), for every u ∈ ran(

√
T ∗T ), we have ‖S1u‖ = ‖u‖.

Now we need to show nul(T ∗T ) = nul(T ). First of all, we have nul(T ) ⊆ nul(T ∗T ). For the other
direction, let v ∈ nul(T ∗T ). Then T ∗Tv = 0 =⇒ 〈T ∗Tvv = 0 =⇒ 〈TvTv = 0 =⇒ Tv = 0 =⇒ v ∈
nul(T ). Thus, nul(T ∗T ) ⊆ nul(T ), so that nul(T ∗T ) = nul(T ).

Since nul(
√
T ∗T ) = nul(T ∗T ), we have nul(

√
T ∗T ) = nul(T ). By the Rank-Nullity theorem, it follows

that dim(ran(
√
T ∗T )) = dim(ran(T )). Hence, dim(ran(

√
T ∗T ))⊥ = dim(ran(T ))⊥.

Let {u1, . . . , um} be an orthonormal basis of (ran(
√
T ∗T ))⊥ and {v1, . . . , vn} be an orthonormal basis

of (ran(T ))⊥. Define S2 : (ran(
√
T ∗T ))⊥ → (ran(T ))⊥ by S2

(

∑m
j=1〈v, uj〉uj

)

=
∑m

j=1〈v, uj〉vj . We have

‖S2w‖ = ‖w‖, ∀w ∈ (ran(
√
T ∗T ))⊥, since ‖S2w‖ =

∑m
j=1 |〈v, uj〉|2 = ‖w‖.

Now let S : V → V be defined by S(v) = S1u + S2w where v = u + w with u ∈ ran(
√
T ∗T ) and

w ∈ (ran(
√
T ∗T ))⊥. For each v ∈ V, we have S(

√
T ∗Tv) = S1(

√
T ∗Tv) = Tv. Thus, T = S

√
T ∗T .

To show that S is an isometry, let v ∈ V such that v = u + w where u ∈ ran(
√
T ∗T ) and w ∈

(ran(
√
T ∗T ))⊥. Then ‖Sv‖2 = ‖S1u + S2w‖2 = ‖S1u‖2 + ‖S2w‖2 (since S1u ⊥ S2w), = ‖u‖2 + ‖w‖2 =

‖v‖2.
Thm 7.46 Singular-Value Decomposition.

Suppose T ∈ L(V) has singular values s1, . . . , sn. Then there exist an orthonormal bases {u1, . . . , un}
and {v1, . . . , vn} such that Tv = s1〈v, u1〉v1 + · · · + sn〈v, un〉vn.

Proof. By the spectral theorem applied to
√
T ∗T , there exists an orthonormal basis {u1, . . . , un} of V

such that
√
T ∗Tuj = sjuj, ∀ j ∈ {1, . . . , n}. Let v ∈ V. Then v = 〈vu1u1 + . . .+ 〈vunun. Applying

√
T ∗T

to both sides, we get
√
T ∗Tv = s1〈vu1u1 + . . .+ sn〈vunun.
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By polar decomposition, there exists an isometry S ∈ L(V) such that T = S
√
T ∗T . Applying S to

both sides, we get S
√
T ∗Tv = Tv = s1〈v, u1〉Su1 + · · ·+ sn〈v, un〉Sun. Now let vj = Suj , ∀ j ∈ {1, . . . , n}.

Since S is an isometry, {v1, . . . , vn} is an orthonormal of V. Hence, Tv = s1〈v, u1〉v1 + · · · + sn〈v, un〉vn,
∀ v ∈ V.

4 Cauchy-Bunyakovsky-Schwarz Inequality

Theorem 4.1. (Cauchy-Bunyakovsky-Schwarz Inequality) If (V, 〈·, ·〉) is an inner product space, where
〈·, ·〉 is a nonnegative inner product, then ∀ u, v ∈ V,

|〈u, v〉|2 ≤ 〈u, u〉〈v, v〉,

or equivalently,
|〈u, v〉| ≤ ||u|| ||v||,

with equality if and only if there exists α, β, not both zero, in F such that

〈αu+ βv, αu+ βv〉 = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . Branko Ćurgus’ comment starts here. . . . . . . . . . . . . . . . . . . . . . . . . . . .

I don’t see that the proof below proves what the claim.

There are two claims.

Assume that V a vector space over F and 〈 · , · 〉 is a nonnegative inner product on V.
The first claim is:

Let u, v ∈ V and α, β ∈ F. Then

|α|2 + |β|2 > 0 and 〈αu+ βv, αu+ βv〉 = 0 ⇒ |〈u, v〉|2 = 〈u, u〉〈v, v〉.

This is the easier part of the proof. I do not see that it is proved below. I will prove it here.

Assume |α|2 + |β|2 > 0 and 〈αu+ βv, αu+ βv〉 = 0. We consider two cases α 6= 0 and β 6= 0. Assume
α 6= 0. Set w = αu+ βv. Then 〈w,w〉 = 0. Also u = γv + δw where γ = −β/α and δ = 1/α. Notice that
the Cauchy-Bunyakovsky-Schwarz inequality and 〈w,w〉 = 0 implies that 〈w, x〉 = 0 for all x ∈ V. Now we
calculate

|〈u, v〉|2 = |〈γv + δw, v〉|2

= |γ〈v, v〉 + δ〈w, v〉|2

= |γ〈v, v〉|2

= |γ|2〈v, v〉〈v, v〉
= 〈γv, γv〉〈v, v〉
= 〈γv + δw, γv + δw〉〈v, v〉
= 〈u, u〉〈v, v〉.

This completes the proof of the first claim.

The proof of the second claim is more complicated.

The second claim is:

Let u, v ∈ V. Then

|〈u, v〉|2 = 〈u, u〉〈v, v〉 ⇒ ∃ α, β ∈ F s.t. |α|2 + |β|2 > 0 and 〈αu+ βv, αu + βv〉 = 0.
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To create α, β ∈ F one has to go back to the proof of the Cauchy-Bunyakovsky-Schwarz inequality and
use the high school theorem to create α and β. A correct proof of this must offer a way of creating α and
β.

. . . . . . . . . . . . . . . . . . . . . . . . . . . Branko Ćurgus’ comment ends here. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof. (Proof of equality condition only) We know that when 〈·, ·〉 is positive definite, |〈u, v〉|2 = 〈u, u〉〈vv〉
if and only if u and v are linearly independent (Axler). When 〈·, ·〉 is nonnegative, but not positive definite,
there exists a u0 6= 0 in V such that 〈u0, u0〉 = 0. Hence 〈u0, u0〉〈v, v〉 = 0 for all v ∈ V. From the inequality,
we know |〈u0, v〉|2 ≤ 0, but by the non-negativity of 〈·, ·〉 we also know that |〈u0, v〉|2 ≥ 0. Hence

|〈u0, v〉|2 = 0 = 〈u0, u0〉〈v, v〉,∀v ∈ V.

To say that u, v are linearly independent is equivalent to saying there exists α, β, not both zero, in F, such
that αu+βv = 0 implies 〈αu+βv, αu+βv〉 = 0. Thus if 〈·, ·〉 is nonnegative, whenever 〈αu+βv, αu+βv〉 = 0
for some α, β not both zero, we have equality. Suppose |〈u, v〉|2 = 〈u, u〉〈v, v〉. Then either u or v is such
that 〈u, u〉 = 0 or 〈v, v〉 = 0. If, without loss of generality, 〈u, u〉 = 0, then for any nonzero α and for
β = 0, 〈αu+ βv, αu + βv〉 = 0. If u, v 6= 0, and neither 〈u, u〉 = 0 nor 〈v, v〉 = 0, then it must be that u, v
are linearly independent. Hence 〈αu+ βv, αu + βv〉 = 0. Thus in either case we have equality if and only
if there exists α, β, not both zero, in F such that 〈αu+ βv, αu+ βv〉 = 0.

For an example, suppose V = C[0, 1], the set of all continuous functions on the interval [0, 1]. The
inner product 〈f, g〉 =

∫ 1
0 f(x)g(x)dx, where

∫

dx denotes the Riemann integral, is a positive definite inner
product V. However, with the corresponding norm the space V is not complete. Since the completeness is
the founding principle of analysis one needs to complete this space. The completion leads to the concept
of the Lebesgue integral. We consider the space of all measurable functions f on [0, 1] such that the
Lebesgue integral

∫ 1
0 (f(x))

2dµ is finite. The corresponding inner product 〈f, g〉 =
∫ 1
0 f(x)g(x)µ(dx),

where µ denotes the Lebesgue measure, is not positive definite. It is a nonnegative inner product. Hence
the Cauchy-Bunyakovsky-Schwarz Inequality holds for the inner product

∫ 1
0 f(x)g(x)µ(dx).

5 Jordan Normal Form

Let V be vector space over C. Let dimV = n. Let T ∈ L(V). Consider the set of nilpotent operators in
L(V): {N ∈ L(V) : ∃k ∈ N such that Nk = 0}. We define the degree of nilpotency of N to be q such that
N q = 0, but N q−1 6= 0. For an example, suppose n = 3 and there exists a basis B of V such that

MB
B (N) =





0 1 0
0 0 1
0 0 0



 .

Suppose B = {v1, v2, v3}. Notice that v1 is an eigenvector of N , with eigenvalue 0. Also, Nv2 = v1 and
Nv3 = v2. Because MB

B
(N) is upper triangular, span{v3, Nv3, N2v3} is invariant under N . The sequence

v3, Nv3, N
2v3 is an example of a Jordan chain. If v ∈ V, l ∈ N and N is nilpotent, we define a Jordan

chain to be {v,Nv, . . . ,N l−1v}, where N l−1v is an eigenvector (and hence 6= 0) and N lv = 0. The span of
a Jordan chain is an invariant subspace for N .

Theorem 5.1. Every Jordan chain is linearly independent.

Proof. The proof will proceed by induction on l. When l = 1, the chain is v1, which is clearly linearly
independent since it is an eigenvector, which is by definition different from 0. Next, let m ∈ N be arbitrary
and assume that each Jordan chain of length m is linearly independent. Consider a Jordan chain of
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length m+1: {w,Nw, . . . ,Nmw} is a Jordan chain of a nilpotent linear operator N . Suppose there exists
α0, . . . , αm such that

α0w + α1Nw + · · · + αmN
mw = 0.

Take N of both sides of the equation:

N(α0w + α1Nw + · · ·+ αmN
mw) = N(0)

α0N(w) + α1N(Nw) + · · ·+ αm−1N(Nm−1w) + αmN(Nmw) = 0 (by linearity)

α0Nw + α1N
2w + · · · + αm−1N

mw + αmN
m+1w = 0

α0Nw + α1N
2w + · · ·+ αm−1N

mw + 0 = 0 (because the chain is Jordan)

Notice that {Nw,N2w, . . . ,Nmw} is a Jordan chain of N of length m. Hence by the inductive hypothesis,
{Nw,N2w, . . . ,Nmw} is linearly independent, so αj = 0 for all j ∈ {0, . . . ,m− 1}. Thus

αmN
mw = 0.

Thus as Nmw 6= 0, αm = 0. Thence αj = 0 for all j ∈ {0, . . . ,m}. So {w,Nw, . . . ,Nm+1w} is linearly
independent.

Theorem 5.2. Let N be nilpotent in L(V). Then there exists a basis B of V that consists of Jordan chains
corresponding to N .

Before we begin the proof, a point of clarification: if {w,Nw, . . . ,N l−1w} is a Jordan chain, for any k ∈
{0, . . . , l−2}, {w,Nw, . . . ,Nkw} is not a Jordan chain, becauseNk+1w 6= 0, but {Nkw,Nk+1w, . . . ,N l−1w}
is.

Proof. Let dimV. Let N be nilpotent in L(V). Let dimN (N) = m. Then there exists {v1 . . . , vm} ∈ V and
q1, . . . , qm ∈ N such that {N q1−1v1, N

qm−1vm} is a basis forN (N). We claim that vj , Nvj . . . N
qj−1vj},∀j ∈

{1 . . . m} is a basis for V.
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