BASES

BRANKO ĆURGUS

Throughout this note \mathcal{V} is a vector space over a scalar field $\mathbb{F} . \mathbb{N}$ denotes the set of positive integers and $i, j, k, l, m, n, p \in \mathbb{N}$.

1. Linear independence

Definition 1.1. If $m \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ and $v_{1}, \ldots, v_{m} \in \mathcal{V}$, then

$$
\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}
$$

is called a linear combination of vectors in \mathcal{V}. A linear combination is trivial if $\alpha_{1}=\cdots=\alpha_{m}=0$; otherwise it is a nontrivial linear combination.

Definition 1.2. Let \mathcal{A} be a nonempty subset of \mathcal{V}. The span of \mathcal{A} is the set of all linear combinations of vectors in \mathcal{A}. The span of \mathcal{A} is denoted by $\operatorname{span} \mathcal{A}$. The span of the empty set is the trivial vector space $\left\{0_{\mathcal{\nu}}\right\}$; that is, the vector space which consists only of $0_{\mathcal{V}}$. If $\operatorname{span} \mathcal{A}=\mathcal{V}$, then \mathcal{A} is said to be a spanning set for \mathcal{V}.

Proposition 1.3. If \mathcal{U} is a subspace of \mathcal{V} and $\mathcal{A} \subseteq \mathcal{U}$, then $\operatorname{span} \mathcal{A} \subseteq \mathcal{U}$.
Definition 1.4. Let $\mathcal{A} \subseteq \mathcal{V}$. The set \mathcal{A} is linearly dependent if there exist $m \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ and distinct vectors $v_{1}, \ldots, v_{m} \in \mathcal{A}$ such that

$$
\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}=0_{\mathcal{V}} \quad \text { and } \quad \alpha_{k} \neq 0 \text { for some } k \in\{1, \ldots, m\} .
$$

Remark 1.5. The definition of linear dependence is equivalent to the following statement: Let $\mathcal{A} \subseteq \mathcal{V}$. The set \mathcal{A} is linearly dependent if there exist $k \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F} \backslash\{0\}$ and distinct $v_{1}, \ldots, v_{k} \in \mathcal{A}$ such that

$$
\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}=0_{\mathcal{V}} .
$$

Definition 1.6. Let $\mathcal{A} \subseteq \mathcal{V}$. The set \mathcal{A} is linearly independent if for each $m \in \mathbb{N}$ and arbitrary $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ and distinct vectors $v_{1}, \ldots, v_{m} \in \mathcal{A}$ we have

$$
\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}=0_{\mathcal{V}} \quad \text { implies } \quad \alpha_{k}=0 \text { for all } k \in\{1, \ldots, m\} .
$$

The empty set is by definition linearly independent.
It is an interesting exercise in mathematical logic to show that the last two definitions are formal negations of each other. Notice also that the last two definitions can briefly be stated as follows: A set $\mathcal{A} \subseteq \mathcal{V}$ is linearly dependent if there exists a nontrivial linear combination of vectors in \mathcal{A}

[^0]whose value is $0_{\mathcal{V}}$. A set $\mathcal{A} \subseteq \mathcal{V}$ is linearly independent if the only linear combination whose value is $0_{\mathcal{V}}$ is the trivial linear combination.

The following proposition is an immediate consequence of the definitions.
Proposition 1.7. Let $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{V}$. If \mathcal{A} is linearly dependent, then \mathcal{B} is linearly dependent. Equivalently, if \mathcal{B} is linearly independent, then \mathcal{A} is linearly independent.

Proposition 1.8. Let \mathcal{A} be a linearly independent subset of \mathcal{V}. Let $u \in \mathcal{V}$ be such that $u \notin \mathcal{A}$. Then $\mathcal{A} \cup\{u\}$ is linearly dependent if and only if $u \in \operatorname{span} \mathcal{A}$. Equivalently, $\mathcal{A} \cup\{u\}$ is linearly independent if and only if $u \notin \operatorname{span} \mathcal{A}$.

Proof. Assume that $u \in \operatorname{span} \mathcal{A}$. Then there exist $m \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ and distinct $v_{1}, \ldots, v_{m} \in \mathcal{A}$ such that $u=\sum_{j=1}^{m} \alpha_{j} v_{j}$. Then

$$
1 \cdot u-\alpha_{1} v_{1}-\cdots-\alpha_{m} v_{m}=0
$$

Since $1 \neq 0$ and $u, v_{1}, \ldots, v_{m} \in \mathcal{A} \cup\{u\}$ this proves that $\mathcal{A} \cup\{u\}$ is linearly dependent.

Now assume that $\mathcal{A} \cup\{u\}$ is linearly dependent. Then there exist $m \in \mathbb{N}$, $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ and distinct vectors $v_{1}, \ldots, v_{m} \in \mathcal{A} \cup\{u\}$ such that

$$
\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}=0_{\mathcal{V}} \quad \text { and } \quad \alpha_{k} \neq 0 \text { for some } k \in\{1, \ldots, m\} .
$$

Since \mathcal{A} is linearly independent it is not possible that $v_{1}, \ldots, v_{m} \in \mathcal{A}$. Thus, $u \in\left\{v_{1}, \ldots, v_{m}\right\}$. Hence $u=v_{j}$ for some $j \in\{1, \ldots, m\}$. Again, since \mathcal{A} is linearly independent $\alpha_{j}=0$ is not possible. Thus $\alpha_{j} \neq 0$ and consequently

$$
u=v_{j}=-\frac{1}{\alpha_{j}} \sum_{\substack{i=1 \\ i \neq j}}^{m} \alpha_{i} v_{i}
$$

Proposition 1.9. Let \mathcal{B} be a nonempty subset of \mathcal{V}. Then \mathcal{B} is linearly independent if and only if $u \notin \operatorname{span}(\mathcal{B} \backslash\{u\})$ for all $u \in \mathcal{B}$. Equivalently, \mathcal{B} is linearly dependent if and only if there exists $u \in \mathcal{B}$ such that $u \in$ $\operatorname{span}(\mathcal{B} \backslash\{u\})$.

Proof. Assume that \mathcal{B} is linearly independent. Let $u \in \mathcal{B}$ be arbitrary. Then $\mathcal{B} \backslash\{u\}$ is linearly independent by Proposition 1.7. Now, with $\mathcal{A}=\mathcal{B} \backslash\{u\}$, since $\mathcal{B}=\mathcal{A} \cup\{u\}$ is linearly independent, Proposition 1.8 yields that $u \notin$ $\operatorname{span}(\mathcal{B} \backslash\{u\})$.

We prove the converse by proving its contrapositive. Assume that \mathcal{B} is linearly dependent. Then there exist $m \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ and distinct vectors $v_{1}, \ldots, v_{m} \in \mathcal{B}$ such that

$$
\sum_{j=1}^{m} \alpha_{j} v_{j}=0 \mathcal{V} \quad \text { and } \quad \alpha_{k} \neq 0 \text { for some } k \in\{1, \ldots, m\}
$$

Consequently,

$$
v_{k}=-\frac{1}{\alpha_{k}} \sum_{\substack{j=1 \\ j \neq k}}^{m} \alpha_{j} v_{j},
$$

and thus $v_{k} \in \operatorname{span}\left(\mathcal{B} \backslash\left\{v_{k}\right\}\right)$.
The following equivalence will sometimes be helpful.
Lemma 1.10. Let \mathcal{B} be a nonempty subset of \mathcal{V} and $u \in \mathcal{B}$. Then

$$
\operatorname{span}(\mathcal{B} \backslash\{u\})=\operatorname{span} \mathcal{B} \quad \Leftrightarrow \quad u \in \operatorname{span}(\mathcal{B} \backslash\{u\})
$$

With this lemma Proposition 1.9 can be restated as
Corollary 1.11. Let \mathcal{B} be a nonempty subset of \mathcal{V}. Then \mathcal{B} is linearly independent if and only if

$$
\operatorname{span}(\mathcal{B} \backslash\{u\}) \subsetneq \operatorname{span} \mathcal{B} \quad \forall u \in \mathcal{B} .
$$

2. Finite dimensional vector spaces. Bases

Definition 2.1. A vector space \mathcal{V} over \mathbb{F} is finite dimensional if there exists a finite subset \mathcal{A} of \mathcal{V} such that $\mathcal{V}=\operatorname{span} \mathcal{A}$. A vector space which is not finite dimensional is said to be infinite dimensional.

Since the empty set is finite and since span $\emptyset=\left\{0_{\mathcal{V}}\right\}$, the trivial vector space $\left\{0_{\mathcal{V}}\right\}$ is finite dimensional.

Definition 2.2. A linearly independent spanning set is called a basis of \mathcal{V}.
The next theorem shows that each finite dimensional vector space has a basis.

Theorem 2.3. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F}. Then \mathcal{V} has a basis.

Proof. If \mathcal{V} is a trivial vector space its basis is the empty set. Let $\mathcal{V} \neq\left\{0_{\mathcal{V}}\right\}$ be a finite dimensional vector space. Let \mathcal{A} be a finite subset of \mathcal{V} such that $\mathcal{V}=\operatorname{span} \mathcal{A}$. Let $p=|\mathcal{A}|$. Set

$$
\mathbb{K}=\{k \in \mathbb{N}: \exists \mathcal{C} \subseteq \mathcal{A} \text { such that } k=|\mathcal{C}| \text { and } \operatorname{span} \mathcal{C}=\mathcal{V}\} .
$$

Since $p \in \mathbb{K}, \mathbb{K}$ is a nonempty set of positive integers. By the Well Ordering Axiom \mathbb{K} has a minimum. Set $n=\min \mathbb{K}$. By the definition of \mathbb{K} there exists $\mathcal{B} \subseteq \mathcal{V}$ such that $|\mathcal{B}|=n$ and $\operatorname{span} \mathcal{B}=\mathcal{V}$. Since $n=\min \mathbb{K}$ we have $n-1 \notin \mathbb{K}$. Let $u \in \mathcal{B}$ be arbitrary. Then $|\mathcal{B} \backslash\{u\}|=n-1$ and consequently

$$
\operatorname{span}(\mathcal{B} \backslash\{u\}) \subsetneq \mathcal{V}=\operatorname{span} \mathcal{B} .
$$

Corollary 1.11 implies that \mathcal{B} is linearly independent. Thus \mathcal{B} is a basis for \mathcal{V}.

The second proof of Theorem 2.3. If \mathcal{V} is a trivial vector space its basis is the empty set. Let $\mathcal{V} \neq\{0\}$ be a finite dimensional vector space. Let \mathcal{A} be a finite subset of \mathcal{V} such that $\mathcal{V}=\operatorname{span} \mathcal{A}$. Let $p=|\mathcal{A}|$. Set

$$
\mathbb{K}=\{|\mathcal{C}|: \mathcal{C} \subseteq \mathcal{A} \text { and } \mathcal{C} \text { is linearly independent }\}
$$

We first prove that $1 \in \mathbb{K}$. Since $\mathcal{V} \neq\{0\}$ there exists $v \in \mathcal{A}$ such that $v \neq 0_{\mathcal{V}}$. Set $\mathcal{C}=\{v\}$. Then clearly $\mathcal{C} \subseteq \mathcal{A}$ and \mathcal{C} is linearly independent. Thus $|\mathcal{C}|=1 \in \mathbb{K}$.

If $\mathcal{C} \subseteq \mathcal{A}$, then $|\mathcal{C}| \leq|\mathcal{A}|=p$. Thus $\mathbb{K} \subseteq\{0,1, \ldots, p\}$. As a subset of a finite set the set \mathbb{K} is finite. Thus \mathbb{K} has a maximum. Set $n=\max \mathbb{K}$. Since $n \in \mathbb{K}$ there exists $\mathcal{B} \subseteq \mathcal{A}$ such that \mathcal{B} is linearly independent and $n=|\mathcal{B}|$.

Next we will prove that span $\mathcal{B}=\mathcal{V}$. In fact we will prove that $\mathcal{A} \subseteq \operatorname{span} \mathcal{B}$. If $\mathcal{B}=\mathcal{A}$, then this is trivial. So Assume that $\mathcal{B} \subsetneq \mathcal{A}$ and let $u \in \mathcal{A} \backslash \mathcal{B}$ be arbitrary. Then

$$
|\mathcal{B} \cup\{u\}|=n+1 \quad \text { and } \quad \mathcal{B} \cup\{u\} \subseteq \mathcal{A} .
$$

Since $n=\max \mathbb{K}, n+1 \notin \mathbb{K}$. Therefore $\mathcal{B} \cup\{u\}$ is linearly dependent. By Proposition $1.8 u \in \operatorname{span} \mathcal{B}$. Hence $\mathcal{A} \subseteq \operatorname{span} \mathcal{B}$. By Proposition 1.3, $\mathcal{V}=$ $\operatorname{span} \mathcal{A} \subseteq \operatorname{span} \mathcal{B}$. Since span $\mathcal{B} \subseteq \mathcal{V}$ is obvious, we proved that $\operatorname{span} \mathcal{B}=\mathcal{V}$. This proves that \mathcal{B} is a basis of \mathcal{V}.

The third proof of Theorem 2.3. We will reformulate Theorem 2.3 so that we can use the Mathematical induction. Let n be a nonnegative integer. Denote by $P(n)$ the following statement: If $\mathcal{V}=\operatorname{span} \mathcal{A}$ and $|\mathcal{A}|=n$, then there exists linearly independent set $\mathcal{B} \subseteq \mathcal{A}$ such that $\mathcal{V}=\operatorname{span} \mathcal{B}$.

First we prove that $P(0)$ is true. Assume that $\mathcal{V}=\operatorname{span} \mathcal{A}$ and $|\mathcal{A}|=0$. Then $\mathcal{A}=\emptyset$. Since \emptyset is linearly independent we can take $\mathcal{B}=\mathcal{A}=\emptyset$.

Now let k be an arbitrary nonnegative integer and assume that $P(k)$ is true. That is we assume that the following implication is true: If $\mathcal{U}=\operatorname{span} \mathcal{C}$ and $|\mathcal{C}|=k$, then there exists linearly independent set $\mathcal{D} \subseteq \mathcal{C}$ such that $\mathcal{U}=\operatorname{span} \mathcal{D}$. This is the inductive hypothesis.

Next we will prove that $P(k+1)$ is true. Assume that $\mathcal{V}=\operatorname{span} \mathcal{A}$ and $|\mathcal{A}|=k+1$. Let $u \in \mathcal{A}$ be arbitrary. Set $\mathcal{C}=\mathcal{A} \backslash\{u\}$. Then $|\mathcal{C}|=k$. Set $\mathcal{U}=\operatorname{span} \mathcal{C}$. The inductive hypothesis $P(k)$ applies to the vector space \mathcal{U}. Thus we conclude that there exists a linearly independent set $\mathcal{D} \subseteq \mathcal{C}$ such that $\mathcal{U}=\operatorname{span} \mathcal{D}$.

We distinguish two cases: Case 1. $u \in \mathcal{U}=\operatorname{span} \mathcal{C}$ and Case 2. $u \notin$ $\mathcal{U}=\operatorname{span} \mathcal{C}$. In Case 1 we have $\mathcal{A} \subseteq \operatorname{span} \mathcal{C}$. Therefore, by Proposition 1.3, $\mathcal{V}=\operatorname{span} \mathcal{A} \subseteq \mathcal{U} \subseteq \mathcal{V}$. Thus $\mathcal{V}=\mathcal{U}$ and we can take $\mathcal{B}=\mathcal{D}$ in this case. In Case $2, u \notin \mathcal{U}=\operatorname{span} \mathcal{D}$. Since \mathcal{D} is linearly independent Proposition 1.8 yields that $\mathcal{D} \cup\{u\}$ is linearly independent. Set $\mathcal{B}=\mathcal{D} \cup\{u\}$. Since $\mathcal{U}=$ $\operatorname{span} \mathcal{C}=\operatorname{span} \mathcal{D} \subseteq \operatorname{span} \mathcal{B}$ we have that $\mathcal{C} \subseteq \operatorname{span} \mathcal{B}$. Clearly $u \in \operatorname{span} \mathcal{B}$. Consequently, $\mathcal{A} \subseteq \operatorname{span} \mathcal{B}$. By Proposition $1.3 \mathcal{V}=\operatorname{span} \mathcal{A} \subseteq \operatorname{span} \mathcal{B} \subseteq \mathcal{V}$. Thus $\mathcal{V}=\operatorname{span} \mathcal{B}$. As proved earlier \mathcal{B} is linearly independent and $\mathcal{B} \subseteq \mathcal{A}$. This proves $P(k+1)$ and completes the proof.

3. Dimension

Theorem 3.1 (The Steinitz exchange lemma). Let $\mathcal{A} \subseteq \mathcal{V}$ be a spanning set for \mathcal{V} such that $|\mathcal{A}|=p$. Let $\mathcal{B} \subseteq \mathcal{V}$ be a finite linearly independent set such that $|\mathcal{B}|=m$. Then $m \leq p$ and there exists $\mathcal{C} \subseteq \mathcal{A}$ such that $|\mathcal{C}|=p-m$ and $\mathcal{B} \cup \mathcal{C}$ is a spanning set for \mathcal{V}.

Proof. Let $\mathcal{A} \subseteq \mathcal{V}$ be a spanning set for \mathcal{V} such that $|\mathcal{A}|=p$.
The proof is by mathematical induction on m. Since the empty set is linearly independent the statement makes sense for $m=0$. The statement is trivially true in this case. (You should do a proof of the case $m=1$ as an exercise.)

Now let k be a nonnegative integer and assume that the following statement (the inductive hypothesis) is true: If $\mathcal{D} \subseteq \mathcal{V}$ is a linearly independent set such that $|\mathcal{D}|=k$, then $k \leq p$ and there exists $\mathcal{E} \subseteq \mathcal{A}$ such that $|\mathcal{E}|=p-k$ and $\mathcal{D} \cup \mathcal{E}$ is a spanning set for \mathcal{V}.

To prove the inductive step we will prove the following statement: If $\mathcal{B} \subseteq \mathcal{V}$ is a linearly independent set such that $|\mathcal{B}|=k+1$, then $k+1 \leq p$ and there exists $\mathcal{C} \subseteq \mathcal{A}$ such that $|\mathcal{C}|=p-k-1$ and $\mathcal{B} \cup \mathcal{C}$ is a spanning set for \mathcal{V}.

Assume that $\mathcal{B} \subseteq \mathcal{V}$ is a linearly independent set such that $|\mathcal{B}|=k+1$. Let $u \in \mathcal{B}$ be arbitrary. Set $\mathcal{D}=\mathcal{B} \backslash\{u\}$. Since $\mathcal{B}=\mathcal{D} \cup\{u\}$ is linearly independent, by Proposition 1.9 we have $u \notin \operatorname{span} \mathcal{D}$. Also, \mathcal{D} is linearly independent and $|\mathcal{D}|=k$. The inductive assumption implies that $k \leq p$ and there exists $\mathcal{E} \subseteq \mathcal{A}$ such that $|\mathcal{E}|=p-k$ and $\mathcal{D} \cup \mathcal{E}$ is a spanning set for \mathcal{V}. Since $\mathcal{D} \cup \mathcal{E}$ is a spanning set for \mathcal{V} and $u \in \mathcal{V}, u$ can be written as a linear combination of vectors in $\mathcal{D} \cup \mathcal{E}$. But, as we noticed earlier, $u \notin \operatorname{span} \mathcal{D}$. Thus, $\mathcal{E} \neq \emptyset$. Hence, $p-k=|\mathcal{E}| \geq 1$. Consequently, $k+1 \leq p$ is proved. Since $u \in \operatorname{span}(\mathcal{D} \cup \mathcal{E})$, there exist $i, j \in \mathbb{N}$ and $u_{1}, \ldots, u_{i} \in \mathcal{D}$ and $v_{1}, \ldots, v_{j} \in \mathcal{E}$ and $\alpha_{1}, \ldots, \alpha_{i}, \beta_{1}, \ldots, \beta_{j} \in \mathbb{F}$ such that

$$
u=\alpha_{1} u_{1}+\cdots+\alpha_{i} u_{i}+\beta_{1} v_{1}+\cdots+\beta_{j} v_{j}
$$

(If $\mathcal{D}=\emptyset$, then $i=0$ and the vectors from \mathcal{D} are not present in the above linear combination.) Since $u \notin \operatorname{span} \mathcal{D}$ at least one of $\beta_{1}, \ldots, \beta_{j} \in \mathbb{F}$ is nonzero. But, by dropping v-s with zero coefficients we can assume that all $\beta_{1}, \ldots, \beta_{j} \in \mathbb{F}$ are nonzero. Then

$$
v_{1}=\frac{1}{\beta_{1}}\left(u-\alpha_{1} u_{1}-\cdots-\alpha_{i} u_{i}-\beta_{2} v_{2}-\cdots-\beta_{j} v_{j}\right) .
$$

Now set $\mathcal{C}=\mathcal{E} \backslash\left\{v_{1}\right\}$. Then $|\mathcal{C}|=p-k-1$. Notice that $u, u_{1}, \ldots, u_{i} \in \mathcal{B}$ and $v_{2}, \ldots, v_{j} \in \mathcal{C}$; so the last displayed equality implies that $v_{1} \in \operatorname{span}(\mathcal{B} \cup \mathcal{C})$. Since $\mathcal{E}=\mathcal{C} \cup\left\{v_{1}\right\}$ and $\mathcal{D} \subseteq \mathcal{B}$, it follows that $\mathcal{D} \cup \mathcal{E} \subseteq \operatorname{span}(\mathcal{B} \cup \mathcal{C})$. Therefore,

$$
\mathcal{V}=\operatorname{span}(\mathcal{D} \cup \mathcal{E}) \subseteq \operatorname{span}(\mathcal{B} \cup \mathcal{C})
$$

Hence, $\operatorname{span}(\mathcal{B} \cup \mathcal{C})=\mathcal{V}$ and the proof is complete.

The following corollary is a direct logical consequence of the Steinitz exchange lemma. It is in fact a partial contrapositive of the lemma.

Corollary 3.2. Let \mathcal{B} be a finite subset of \mathcal{V}. If \mathcal{V} is a finite dimensional vector space over \mathbb{F}, then there exists $p \in \mathbb{N}$ such that $|\mathcal{B}|>p$ implies \mathcal{B} is linearly dependent.

Proof. Assume that \mathcal{B} is a finite subset of \mathcal{V} and \mathcal{V} is a finite dimensional vector space over \mathbb{F}. Then there exists a finite subset \mathcal{A} of \mathcal{V} such that $\mathcal{V}=$ $\operatorname{span} \mathcal{A}$. Set $p=|\mathcal{A}|$. Then the Steinitz exchange lemma yields the following implication: If \mathcal{B} is linearly independent, then $|\mathcal{B}| \leq p$. The contrapositive of the last implication is the claim of the corollary.

Corollary 3.3. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F}. If \mathcal{C} is an infinite subset of \mathcal{V}, then \mathcal{C} is linearly dependent.

Proof. Let $p \in \mathbb{N}$ be a number whose existence has been proved in Corollary 3.2. Let \mathcal{C} be an infinite subset of \mathcal{V}. Since \mathcal{C} is infinite it has a finite subset \mathcal{A} such that $|\mathcal{A}|=p+1$. Corollary 3.2 yields that \mathcal{A} is linearly dependent. Since $\mathcal{A} \subseteq \mathcal{C}$, by Proposition $1.7, \mathcal{C}$ is linearly dependent.

Theorem 3.4. Let \mathcal{V} be a finite dimensional vector space and let \mathcal{B} and \mathcal{C} be bases of \mathcal{V}. Then $|\mathcal{B}|=|\mathcal{C}|$.

Proof. Let \mathcal{B} and \mathcal{C} be bases of \mathcal{V}. Since both \mathcal{B} and \mathcal{C} are linearly independent Corollary 3.3 implies that they are finite. Now we can apply the Steinitz exchange lemma to the finite spanning set \mathcal{B} and the finite linearly independent set \mathcal{C}. We conclude that $|\mathcal{C}| \leq|\mathcal{B}|$. Applying again the Steinitz exchange lemma to the finite spanning set \mathcal{C} and the finite linearly independent set \mathcal{B} we conclude that $|\mathcal{B}| \leq|\mathcal{C}|$. Thus $|\mathcal{B}|=|\mathcal{C}|$.

Definition 3.5. The dimension of a finite dimensional vector space is the number of vectors in its basis.

Proposition 3.6. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} and let \mathcal{B} he a finite subset of \mathcal{V}. Then any two of the following three statements imply the remaining one.
(a) $|\mathcal{B}|=\operatorname{dim} \mathcal{V}$.
(b) $\operatorname{span} \mathcal{B}=\mathcal{V}$.
(c) \mathcal{B} is linearly independent.

Proof. The easiest implication is: (b) and (c) imply (a). This is the definition of the dimension.

It is easier to prove the partial contrapositive of the implication (a) and (b) imply (c). First observe that Theorem 3.1 yields that (b) implies $|\mathcal{B}| \geq$ $\operatorname{dim} \mathcal{V}$. Therefore a partial contrapositive of (a) and (b) imply (c) is the following implication:

$$
\text { (b) and } \operatorname{not}(c) \Rightarrow|\mathcal{B}|>\operatorname{dim} \mathcal{V} \text {. }
$$

Here is a simple proof. Assume that span $\mathcal{B}=\mathcal{V}$ and \mathcal{B} is linearly dependent. Then \mathcal{B} is nonempty and by Proposition 1.9 there exists $u \in \mathcal{B}$ such that $u \in \operatorname{span}(\mathcal{B} \backslash\{u\})$. Consequently, $\mathcal{B} \subseteq \operatorname{span}(\mathcal{B} \backslash\{u\})$ and by Proposition 1.3, $\mathcal{V}=\operatorname{span}(\mathcal{B} \backslash\{u\})$. By the Steinitz exchange lemma $|\mathcal{B} \backslash\{u\}| \geq \operatorname{dim} \mathcal{V}$. Therefore $|\mathcal{B}|>\operatorname{dim} \mathcal{V}$.

Now assume (a) and (c). Let \mathcal{A} be a basis of \mathcal{V}. By the Steinitz exchange lemma there exists $\mathcal{C} \subseteq \mathcal{A}$ such that $|\mathcal{C}|=|\mathcal{A}|-|\mathcal{B}|=0$ and $\operatorname{span}(\mathcal{B} \cup \mathcal{C})=\mathcal{V}$. Since $\mathcal{C}=\emptyset$, (b) follows.

In the following proposition we characterize infinite dimensional vector spaces.

Proposition 3.7. Let \mathcal{V} be a vector space over \mathbb{F}. Set $\mathcal{A}_{0}=\emptyset$. The following statements are equivalent.
(a) The vector space \mathcal{V} over \mathbb{F} is infinite dimensional.
(b) For every $n \in \mathbb{N}$ there exists linearly independent set $\mathcal{A}_{n} \subseteq \mathcal{V}$ such that $\left|\mathcal{A}_{n}\right|=n$ and $\mathcal{A}_{n-1} \subset \mathcal{A}_{n}$.
(c) There exists an infinite linearly independent subset of \mathcal{V}.

Proof. We first prove $(\mathrm{a}) \Rightarrow(\mathrm{b})$. Assume (a). For $n \in \mathbb{N}$, denote by $P(n)$ the following statement:

There exists linearly independent set $\mathcal{A}_{n} \subseteq \mathcal{V}$ such that $\left|\mathcal{A}_{n}\right|=n$ and

$$
\mathcal{A}_{n-1} \subset \mathcal{A}_{n} .
$$

We will prove that $P(n)$ holds for every $n \in \mathbb{N}$. Mathematical induction is a natural tool here. Since the space $\{0 \mathcal{\nu}\}$ is finite dimensional, we have $\mathcal{V} \neq\left\{0_{\mathcal{V}}\right\}$. Therefore there exists $v \in \mathcal{V}$ such that $v \neq 0 \mathcal{V}$. Set $\mathcal{A}_{1}=\{v\}$ and the proof of $P(1)$ is complete. Let $k \in \mathbb{N}$ and assume that $P(k)$ holds. That is assume that there exists linearly independent set $\mathcal{A}_{k} \subseteq \mathcal{V}$ such that $\left|\mathcal{A}_{k}\right|=k$. Since \mathcal{V} is an infinite dimensional, span \mathcal{A}_{k} is a proper subset of \mathcal{V}. Therefore there exists $u \in \mathcal{V}$ such that $u \notin \operatorname{span} \mathcal{A}_{k}$. Since \mathcal{A}_{k} is also linearly independent, Proposition 1.8 implies that $\mathcal{A}_{k} \cup\{u\}$ is linearly independent. Set $\mathcal{A}_{k+1}=\mathcal{A}_{k} \cup\{u\}$. Then, since $\left|\mathcal{A}_{k+1}\right|=k+1$ and $\mathcal{A}_{k} \subset \mathcal{A}_{k+1}$, the statement $P(k+1)$ is proved. This proves (b).

Now we prove (b) $\Rightarrow(\mathrm{c})$. Assume (b) and set $\mathcal{C}=\cup\left\{\mathcal{A}_{n}: n \in \mathbb{N}\right\}$. Then \mathcal{C} is infinite. To prove that \mathcal{C} is linearly independent, let $m \in \mathbb{N}$ be arbitrary and let v_{1}, \ldots, v_{m} be distinct vectors in \mathcal{C} and let $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ such that

$$
\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}=0 \mathcal{\nu}
$$

By the definition of \mathcal{C}, for every $k \in\{1, \ldots, m\}$ there exists $n_{k} \in \mathbb{N}$ such that $v_{k} \in \mathcal{A}_{n_{k}}$. Set $q=\max \left\{n_{k}: k \in\{1, \ldots, m\}\right\}$. By the inclusion property of the sequence \mathcal{A}_{n}, we have $\mathcal{A}_{n_{k}} \subseteq \mathcal{A}_{q}$ for all $k \in\{1, \ldots, m\}$. Therefore, $v_{k} \in \mathcal{A}_{q}$ for all $k \in\{1, \ldots, m\}$. Since the set \mathcal{A}_{q} is linearly independent we conclude that $\alpha_{k}=0_{\mathbb{F}}$ for all $k \in\{1, \ldots, m\}$. This proves (c).

The implication $(\mathrm{c}) \Rightarrow(\mathrm{a})$ is a partial contrapositive of Corollary 3.3. This completes the proof.

4. SUBSPACES

Proposition 4.1. Let \mathcal{U} be a subspace of \mathcal{V}. If \mathcal{U} is infinite dimensional, then \mathcal{V} is infinite dimensional. Equivalently, if \mathcal{V} is finite dimensional, then \mathcal{U} is finite dimensional. (In plain English, every subspace of a finite dimensional vector space is finite dimensional.)

Proof. Assume that \mathcal{U} is infinite dimensional. Then, by the sufficient part of Proposition 3.7, for every $n \in \mathbb{N}$ there exists $\mathcal{A} \subseteq \mathcal{U}$ such that $|\mathcal{A}|=n$ and \mathcal{A} is linearly independent. Since $\mathcal{U} \subseteq \mathcal{V}$, we have that for every $n \in$ \mathbb{N} there exists $\mathcal{A} \subseteq \mathcal{V}$ such that $|\mathcal{A}|=n$ and \mathcal{A} is linearly independent. Now by the necessary part of Proposition 3.7 we conclude that \mathcal{V} is infinite dimensional.

Theorem 4.2. Let \mathcal{V} be a finite dimensional vector space and let \mathcal{U} be a subspace of \mathcal{V}. Then there exists a subspace \mathcal{W} of \mathcal{V} such that $\mathcal{V}=\mathcal{U} \oplus \mathcal{W}$.

Proof. Let \mathcal{B} be a basis of \mathcal{V} and let \mathcal{A} a basis of \mathcal{U}. By Proposition 4.1, the Steinitz exchange lemma applies to the finite spanning set \mathcal{B} and the finite linearly independent set \mathcal{A}. Consequently, there exists $\mathcal{C} \subseteq \mathcal{B}$ such that $|\mathcal{C}|=|\mathcal{B}|-|\mathcal{A}|$ and such that $\operatorname{span}(\mathcal{A} \cup \mathcal{C})=\mathcal{V}$. Applying the Steinitz exchange lemma again to the linearly independent set \mathcal{B} and the spanning set $\mathcal{A} \cup \mathcal{C}$ we conclude that $|\mathcal{A} \cup \mathcal{C}| \geq|\mathcal{B}|$. Since clearly $|\mathcal{A} \cup \mathcal{C}| \leq|\mathcal{A}|+|\mathcal{C}|=|\mathcal{B}|$ we have $|\mathcal{A} \cup \mathcal{C}|=|\mathcal{A}|+|\mathcal{C}|=|\mathcal{B}|=\operatorname{dim} \mathcal{V}$. Now the statement (a) and (b) imply (c) from Proposition 3.6 yields that $\mathcal{A} \cup \mathcal{C}$ is a basis of \mathcal{V}. Set $\mathcal{W}=\operatorname{span} \mathcal{C}$. Then, since $\mathcal{A} \cup \mathcal{C}$ is a basis of $\mathcal{V}, \mathcal{V}=\mathcal{U}+\mathcal{W}$. It is not difficult to show that $\mathcal{U} \cap \mathcal{W}=\left\{0_{\mathcal{V}}\right\}$. Thus $\mathcal{V}=\mathcal{U} \oplus \mathcal{W}$. This proves the theorem.

Lemma 4.3. Let \mathcal{V} be a finite dimensional vector space and let \mathcal{U} and \mathcal{W} be subspaces of \mathcal{V} such that $\mathcal{V}=\mathcal{U} \oplus \mathcal{W}$. Then $\operatorname{dim} \mathcal{V}=\operatorname{dim} \mathcal{U}+\operatorname{dim} \mathcal{W}$.

Proof. Let \mathcal{A} and \mathcal{B} be basis of \mathcal{U} and \mathcal{W} respectively. Using $\mathcal{V}=\mathcal{U}+\mathcal{W}$, it can be proved that $\mathcal{A} \cup \mathcal{B}$ spans \mathcal{V}. Using $\mathcal{U} \cap \mathcal{W}=\left\{0_{\mathcal{V}}\right\}$, it can be shown that $\mathcal{A} \cup \mathcal{B}$ is linearly independent and $\mathcal{A} \cap \mathcal{B}=\emptyset$. Therefore $\mathcal{A} \cup \mathcal{B}$ is a basis of \mathcal{V} and consequently $\operatorname{dim} \mathcal{V}=|\mathcal{A} \cup \mathcal{B}|=|\mathcal{A}|+|\mathcal{B}|=\operatorname{dim} \mathcal{U}+\operatorname{dim} \mathcal{V}$.

Theorem 4.4. Let \mathcal{V} be a finite dimensional vector space and let \mathcal{U} and \mathcal{W} be subspaces of \mathcal{V} such that $\mathcal{V}=\mathcal{U}+\mathcal{W}$. Then

$$
\operatorname{dim} \mathcal{V}=\operatorname{dim} \mathcal{U}+\operatorname{dim} \mathcal{W}-\operatorname{dim}(\mathcal{U} \cap \mathcal{W})
$$

Proof. Since $\mathcal{U} \cap \mathcal{W}$ is a subspace of \mathcal{U}, Theorem 4.2 implies that there exists a subspace \mathcal{U}_{1} of \mathcal{U} such that

$$
\mathcal{U}=\mathcal{U}_{1} \oplus(\mathcal{U} \cap \mathcal{W}) \quad \text { and } \quad \operatorname{dim} \mathcal{U}=\operatorname{dim} \mathcal{U}_{1}+\operatorname{dim}(\mathcal{U} \cap \mathcal{W})
$$

Similarly, there exists a subspace \mathcal{W}_{1} of \mathcal{W} such that $\mathcal{W}=\mathcal{W}_{1} \oplus(\mathcal{U} \cap \mathcal{W})$ and $\operatorname{dim} \mathcal{W}=\operatorname{dim} \mathcal{W}_{1}+\operatorname{dim}(\mathcal{U} \cap \mathcal{W})$. Next we will prove that $\mathcal{V}=\mathcal{U} \oplus \mathcal{W}_{1}$. Let $v \in \mathcal{V}$ be arbitrary. Since $\mathcal{V}=\mathcal{U}+\mathcal{W}$ there exist $u \in \mathcal{U}$ and $w \in \mathcal{W}$ such that $v=u+w$. Since $\mathcal{W}=\mathcal{W}_{1} \oplus(\mathcal{U} \cap \mathcal{W})$ there exist $w_{1} \in \mathcal{W}_{1}$ and $x \in \mathcal{U} \cap \mathcal{W}$ such that $w=w_{1}+x$. Then $v=u+w_{1}+x=(u+x)+w_{1}$.

Since $u+x \in \mathcal{U}$ this proves that $\mathcal{V}=\mathcal{U}+\mathcal{W}_{1}$. Clearly $\mathcal{U} \cap \mathcal{W}_{1} \subseteq \mathcal{U} \cap \mathcal{W}$ and $\mathcal{U} \cap \mathcal{W}_{1} \subseteq \mathcal{W}_{1}$. Thus,

$$
\mathcal{U} \cap \mathcal{W}_{1} \subseteq(\mathcal{U} \cap \mathcal{W}) \cap \mathcal{W}_{1}=\left\{0_{\mathcal{V}}\right\} .
$$

Hence, $\mathcal{U} \cap \mathcal{W}_{1}=\left\{0_{\mathcal{V}}\right\}$. This proves $\mathcal{V}=\mathcal{U} \oplus \mathcal{W}_{1}$. By Lemma 4.3, $\operatorname{dim} \mathcal{V}=$ $\operatorname{dim} \mathcal{U}+\operatorname{dim} \mathcal{W}_{1}=\operatorname{dim} \mathcal{U}+\operatorname{dim} \mathcal{W}-\operatorname{dim}(\mathcal{U} \cap \mathcal{V})$. This completes the proof.

Combining the previous theorem and Lemma 4.3 we get the following corollary.

Corollary 4.5. Let \mathcal{V} be a finite dimensional vector space and let \mathcal{U} and \mathcal{W} be subspaces of \mathcal{V} such that $\mathcal{V}=\mathcal{U}+\mathcal{W}$. Then the sum $\mathcal{U}+\mathcal{W}$ is direct if and only if $\operatorname{dim} \mathcal{V}=\operatorname{dim} \mathcal{U}+\operatorname{dim} \mathcal{W}$.

The previous corollary holds for any number of subspaces of \mathcal{V}. The proof is by mathematical induction on the number of subspaces.

Proposition 4.6. Let \mathcal{V} be a finite dimensional vector space and let \mathcal{U}_{1}, \ldots, \mathcal{U}_{m} be subspaces of \mathcal{V} such that $\mathcal{V}=\mathcal{U}_{1}+\cdots+\mathcal{U}_{m}$. Then the sum $\mathcal{U}_{1}+\cdots+\mathcal{U}_{m}$ is direct if and only if $\operatorname{dim} \mathcal{V}=\operatorname{dim} \mathcal{U}_{1}+\cdots+\operatorname{dim} \mathcal{U}_{m}$.

[^0]: Date: February 3, 2015 at21:32.

