Eigensystem of a linear operator

Branko Ćurgus

February 28, 2017 at 11:18

1 Algebra of linear operators

In this section we consider a vector space \mathscr{V} over a scalar field \mathbb{F} . By $\mathscr{L}(\mathscr{V})$ we denote the vector space $\mathscr{L}(\mathscr{V}, \mathscr{V})$ of all linear operators on \mathscr{V} . The vector space $\mathscr{L}(\mathscr{V})$ with the composition of operators as an additional binary operation is an algebra in the sense of the following definition.

Definition 1.1. A vector space \mathscr{A} over a field \mathbb{F} is an *algebra* over \mathbb{F} if the following conditions are satisfied:

- (a) there exist a binary operation $\cdot : \mathscr{A} \times \mathscr{A} \to \mathscr{A}$.
- (b) (associativity) for all $x, y, z \in \mathscr{A}$ we have $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- (c) (right-distributivity) for all $x, y, z \in \mathscr{A}$ we have $(x+y) \cdot z = x \cdot z + y \cdot z$.
- (d) (*left-distributivity*) for all $x, y, z \in \mathscr{A}$ we have $z \cdot (x + y) = z \cdot x + z \cdot y$.
- (e) (respect for scaling) for all $x, y \in \mathscr{A}$ and all $\alpha \in \mathbb{F}$ we have $\alpha(x \cdot y) = (\alpha x) \cdot y = x \cdot (\alpha y)$.

The binary operation in an algebra is often referred to as *multiplication*.

The multiplicative identity in the algebra $\mathscr{L}(\mathscr{V})$ is the identity operator $I_{\mathscr{V}}$.

For $T \in \mathscr{L}(\mathscr{V})$ we recursively define nonnegative integer powers of T by $T^0 = I_{\mathscr{V}}$ and for all $n \in \mathbb{N}$ $T^n = T \circ T^{n-1}$.

For $T \in \mathscr{L}(\mathscr{V})$, set

$$\mathscr{A}_T = \operatorname{span} \{ T^k : k \in \mathbb{N} \cup \{0\} \}.$$

Clearly \mathscr{A}_T is a subspace of $\mathscr{L}(\mathscr{V})$. Moreover, we will see below that \mathscr{A}_T is a commutative subalgebra of $\mathscr{L}(\mathscr{V})$.

Recall that by definition of a span a nonzero $S \in \mathscr{L}(\mathscr{V})$ belongs to \mathscr{A}_T if and only if $\exists m \in \mathbb{N} \cup \{0\}$ and $\alpha_0, \alpha_1, \ldots, \alpha_m \in \mathbb{F}$ such that $a_m \neq 0$ and

$$S = \sum_{k=0}^{m} \alpha_k T^k.$$
(1)

The last expression reminds us of a polynomial over \mathbb{F} . Recall that by $\mathbb{F}[z]$ we denote the algebra of all polynomials over \mathbb{F} . That is

$$\mathbb{F}[z] = \bigg\{ \sum_{j=0}^{n} \alpha_j z^j : n \in \mathbb{N} \cup \{0\}, \ (\alpha_0, \dots, \alpha_n) \in \mathbb{F}^{n+1} \bigg\}.$$

Next we recall the definition of the multiplication in the algebra $\mathbb{F}[z]$. Let $m, n \in \mathbb{N} \cup \{0\}$ and

$$p(z) = \sum_{i=0}^{m} \alpha_i z^i \in \mathbb{F}[z] \quad \text{and} \quad q(z) = \sum_{j=0}^{n} \beta_j z^j \in \mathbb{F}[z].$$
(2)

Then by definition

$$(pq)(z) = \sum_{k=0}^{m+n} \left(\sum_{\substack{i+j=k\\i\in\{0,...,m\}\\j\in\{0,...,n\}}} \alpha_i \beta_j \right) z^k.$$

Since the multiplication in \mathbb{F} is commutative, it follows that pq = qp. That is $\mathbb{F}[z]$ is a commutative algebra.

The obvious alikeness of the expression (1) and the expression for the polynomial p in (2) is the motivation for the following definition. For a fixed $T \in \mathscr{L}(\mathscr{V})$ we define

$$\Xi_T: \mathbb{F}[z] \to \mathscr{L}(\mathscr{V})$$

by setting

$$\Xi_T(p) = \sum_{i=0}^m \alpha_i T^i \qquad \text{where} \qquad p(z) = \sum_{i=0}^m \alpha_i z^i \in \mathbb{F}[z]. \tag{3}$$

It is common to write p(T) for $\Xi_T(p)$.

Theorem 1.2. Let $T \in \mathscr{L}(\mathscr{V})$. The function $\Xi_T : \mathbb{F}[z] \to \mathscr{L}(\mathscr{V})$ defined in (3) is an algebra homomorphism. The range of Ξ_T is \mathscr{A}_T .

Proof. It is not difficult to prove that $\Xi_T : \mathbb{F}[z] \to \mathscr{L}(\mathscr{V})$ is linear. We will prove that $\Xi_T : \mathbb{F}[z] \to \mathscr{L}(\mathscr{V})$ is multiplicative, that is, for all $p, q \in \mathbb{F}[z]$ we have $\Xi_T(pq) = \Xi_T(p)\Xi_T(q)$. To prove this let $p, q \in \mathbb{F}[z]$ be arbitrary and given in (2). Then

$$\Xi_{T}(p)\Xi_{T}(q) = \left(\sum_{i=0}^{m} \alpha_{i}T^{i}\right) \left(\sum_{j=0}^{n} \beta_{j}T^{j}\right) \qquad \text{(by definition in (3))}$$
$$= \sum_{i=0}^{m} \sum_{j=0}^{n} \alpha_{i}\beta_{j}T^{i+j} \qquad \text{(since } \mathscr{L}(\mathscr{V}) \text{ is an algebra})$$
$$= \sum_{k=0}^{m+n} \left(\sum_{\substack{i+j=k\\i\in\{0,\dots,m\}\\j\in\{0,\dots,n\}}} \alpha_{i}\beta_{j}\right)T^{k} \qquad \text{(since } \mathscr{L}(\mathscr{V}) \text{ is a vector space})$$
$$= \Xi_{T}(pq) \qquad \text{(by definition in (3)).}$$

This proves the multiplicative property of Ξ_T .

The fact that \mathscr{A}_T is the range of Ξ_T is obvious.

Corollary 1.3. Let $T \in \mathscr{L}(\mathscr{V})$. The subspace \mathscr{A}_T of $\mathscr{L}(\mathscr{V})$ is a commutative subalgebra of $\mathscr{L}(\mathscr{V})$.

Proof. Let $Q, S \in \mathscr{A}_T$. Since \mathscr{A}_T is the range of Ξ_T there exist $p, q \in \mathbb{F}[z]$ such that $Q = \Xi_T(p)$ and $S = \Xi_T(q)$. Then, since Ξ_T is an algebra homomorphism we have

$$QS = \Xi_T(p)\Xi_T(p) = \Xi_T(pq) = \Xi_T(qp) = \Xi_T(q)\Xi_T(p) = SQ.$$

This sequence of equalities shows that $QS \in \operatorname{ran}(\Xi_T) = \mathscr{A}_T$ and QS = SQ. That is \mathscr{A}_T is closed with respect to the operator composition and the operator composition on \mathscr{A}_T is commutative.

Corollary 1.4. Let \mathscr{V} be a complex vector space and let $T \in \mathscr{L}(\mathscr{V})$ be a nonzero operator. Then for every $p \in \mathbb{C}[z]$ such that $m = \deg p \ge 1$ there exist a nonzero $\alpha \in \mathbb{C}$ and $z_1, \ldots, z_m \in \mathbb{C}$ such that

$$\Xi_T(p) = p(T) = \alpha(T - z_1 I) \cdots (T - z_m I).$$

Proof. Let $p \in \mathbb{C}[z]$ such that $m = \deg p \ge 1$. Then there exist $\alpha_0, \ldots, \alpha_m \in \mathbb{C}$ such that $\alpha_m \neq 0$ such that

$$p(z) = \sum_{k=0}^{m} \alpha_j z^j.$$

By the Fundamental Theorem of Algebra there exist nonzero $\alpha \in \mathbb{C}$ and $z_1, \ldots, z_m \in \mathbb{C}$ such that

$$p(z) = \alpha(z - z_1) \cdots (z - z_m).$$

Here $\alpha = \alpha_m$ and z_1, \ldots, z_m are the roots of p. Since Ξ_T is an algebra homomorphism we have

$$p(T) = \Xi_T(p) = \alpha \,\Xi_T(z - z_1) \,\cdots \,\Xi_T(z - z_m) = \alpha (T - z_1 I) \,\cdots \,(T - z_m I).$$

This completes the proof.

2 Existence of an eigenvalue

Lemma 2.1. Let $n \in \mathbb{N}$ and $S_1, \ldots, S_n \in \mathscr{L}(\mathscr{V})$. If S_1, \ldots, S_n are all injective, then $S_1 \cdots S_n$ is injective.

Proof. We proceed by Mathematical Induction. The base step is trivial. It is useful to prove the implication for n = 2. Assume that $S, T \in \mathscr{L}(\mathscr{V})$ are injective and let $u, v \in \mathscr{V}$ be such that $u \neq v$. Then, since T is injective, $Tu \neq Tv$. Since S is injective, $S(Tu) \neq S(Tv)$. Thus, ST is injective.

Next we prove the inductive step. Let $m \in \mathbb{N}$ and assume that $S_1 \cdots S_m$ is injective whenever $S_1, \ldots, S_m \in \mathscr{L}(\mathscr{V})$ are all injective. (This is the inductive hypothesis.) Now assume that $S_1, \ldots, S_m, S_{m+1} \in \mathscr{L}(\mathscr{V})$ are all injective. By the inductive hypothesis the operator $S = S_1 \cdots S_m$ is injective. Since by assumption $T = S_{m+1}$ is injective, the already proved claim for n = 2 yields that

$$ST = S_1 \cdots S_m S_{m+1}$$

is injective. This completes the proof.

Theorem 2.2. Let \mathscr{V} be a nontrivial finite dimensional vector space over \mathbb{C} . Let $T \in \mathscr{L}(\mathscr{V})$. Then there exists a $\lambda \in \mathbb{C}$ and $v \in \mathscr{V}$ such that $v \neq 0_{\mathscr{V}}$ and $Tv = \lambda v$.

Proof. The claim of the theorem is trivial if $T = 0_{\mathscr{L}(\mathscr{V})}$. So, assume that $T \in \mathscr{L}(\mathscr{V})$ is a nonzero operator.

Let $n = \dim \mathscr{V}$ and let $u \in \mathscr{V} \setminus \{0_{\mathscr{V}}\}$. Now consider the vectors

$$u, Tu, T^2u, \dots, T^n u. \tag{4}$$

If two of these vectors coincide, say $k, l \in \{0, ..., n\}, k < l$ are such that $T^k u = T^l u$, setting $\alpha_j = 0$ for $j \in \{0, ..., n\} \setminus \{k, l\}$ and $\alpha_k = 1$ and $\alpha_l = -1$ we obtain a nontrivial linear combination of the vectors in (4).

If the vectors in (4) are distinct, since $n = \dim \mathcal{V}$, it follows from the Steinitz Exchange Lemma that the vectors in (4) are linearly dependent.

Hence, in either case, there exist $\alpha_0, \ldots, \alpha_n \in \mathbb{C}$ and $k \in \{0, \ldots, n\}$ such that

$$\alpha_0 u + \alpha_1 T u + \alpha_2 T^2 u + \dots + \alpha_n T^n u = 0_{\mathscr{V}}$$
(5)

and $\alpha_k \neq 0$. Since $u \neq 0_{\mathscr{V}}$ it is not possible that $\alpha_j = 0$ for all $j \in \{1, \ldots, n\}$. Therefore, there exists $k \in \{1, \ldots, n\}$ such that $\alpha_k \neq 0$.

Set

$$p(z) = \alpha_0 + \alpha_1 z + \alpha_2 z^2 + \dots + \alpha_n z^n$$

Since there exists $k \in \{1, ..., n\}$ such that $\alpha_k \neq 0$, we have that $m = \deg p > 0$. By the Fundamental Theorem of Algebra there exist $\alpha \neq 0$ and $z_1, \ldots, z_m \in \mathbb{C}$ such that

$$p(z) = \alpha(z - z_1) \cdots (z - z_m).$$

Here $\alpha = \alpha_m$ and z_1, \ldots, z_m are the roots of p.

Since Ξ_T is an algebra homomorphism we have

$$p(T) = \Xi_T(p) = \alpha \,\Xi_T(z - z_1) \,\cdots \,\Xi_T(z - z_m) = \alpha (T - z_1 I) \,\cdots \,(T - z_m I).$$

Equality (5) yields that the operator p(T) is not an injection. Lemma 2.1 now implies that there exists $j \in \{1, \ldots, m\}$ such that $T-z_jI$ is not injective. That is, there exists $v \in \mathcal{V}, v \neq 0_{\mathcal{V}}$ such that

$$(T - z_i I)v = 0.$$

Setting $\lambda = z_i$ completes the proof.

Definition 2.3. Let \mathscr{V} be a vector space over \mathbb{F} , $T \in \mathscr{L}(\mathscr{V})$. A scalar $\lambda \in \mathbb{F}$ is an *eigenvalue* of T if there exists $v \in \mathscr{V}$ such that $v \neq 0$ and $Tv = \lambda v$. The subspace $\operatorname{nul}(T - \lambda I)$ of \mathscr{V} is called the *eigenspace* of T corresponding to λ

Definition 2.4. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} . Let $T \in \mathscr{L}(\mathscr{V})$. The set of all eigenvalues of T is denoted by $\sigma(T)$. It is called the *spectrum* of T.

The above proof of the existence of an eigenvalue can be adopted so that we prove more. Below we prove: $T^n = 0_{\mathscr{L}(\mathscr{V})}$ if and only if $\sigma(T) = \{0\}$.

More information proof. Let $n = \dim \mathscr{V}$ and let $u \in \mathscr{V} \setminus \{0_{\mathscr{V}}\}$. Then $n \in \mathbb{N}$. First assume that $T^n = 0_{\mathscr{L}(\mathscr{V})}$. The set

$$\mathbb{K} = \left\{ j \in \{0, \dots, n\} \, | \, T^j u \neq 0 \right\}$$

is nonempty since $0 \in \mathbb{K}$. Set $k = \min \mathbb{K}$. Then $k \in \{0, \ldots, n-1\}$, $T^k u \neq 0$ and $T(T^k u) = 0$. Thus, we can take $\lambda = 0$ and $v = T^k u$ in this case.

Now assume that $T^n \neq 0_{\mathscr{L}(\mathscr{V})}$. Then there exists $w \in \mathscr{V}$ such that $T^n w \neq 0_{\mathscr{V}}$. Consequently, none of the vectors

$$w, Tw, T^2w, \dots, T^nw \tag{6}$$

equals to $0_{\mathscr{V}}$.

If two of the vectors in (6) coincide, say $k, l \in \{0, ..., n\}$ are such that k < l and $T^k u = T^l u$, setting $\alpha_j = 0$ for $j \in \{0, ..., n\} \setminus \{k, l\}$ and $\alpha_k = 1$ and $\alpha_l = -1$ we obtain a nontrivial linear combination of the vectors in (6).

If the vectors in (6) are distinct then we have n + 1 vector in a vector space of the dimension $n = \dim \mathcal{V}$. The Steinitz Exchange Lemma implies that the vectors in (6) are linearly dependent.

Hence, in either case, there exist $\alpha_0, \ldots, \alpha_n \in \mathbb{C}$ such that

$$\alpha_0 u + \alpha_1 T u + \alpha_2 T^2 u + \dots + \alpha_n T^n u = 0_{\mathscr{V}}$$
⁽⁷⁾

and at least one among $\alpha_0, \ldots, \alpha_n$ is nonzero.

 Set

$$l = \min\{i \in \{0, \dots, n\} | \alpha_i \neq 0\}, \qquad m = \max\{i \in \{0, \dots, n\} | \alpha_i \neq 0\}.$$

Since all the vectors in (6) are nonzero we have l < m. Further set k = m - l and

$$p(z) = \alpha_l + \alpha_{l+1}z + \dots + \alpha_m z^k.$$

Then $k = \deg p > 0$ and (7) reads $p(T)T^l w = 0_{\mathscr{V}}$ with $T^l w \neq 0_{\mathscr{V}}$.

By the Fundamental Theorem of Algebra there exist $z_1, \ldots, z_k \in \mathbb{C}$ such that

$$p(z) = \alpha_m(z - z_1) \cdots (z - z_k).$$

Here z_1, \ldots, z_k are the roots of p. Since $\alpha_l \neq 0$, that is the constant coefficient of p is nonzero, we have that $z_i \neq 0$ for all $i \in \{1, \ldots, k\}$.

Since Ξ_T is an algebra homomorphism we have

$$p(T) = \Xi_T(p) = \alpha_l \,\Xi_T(z - z_1) \,\cdots \,\Xi_T(z - z_k) = \alpha_l (T - z_1 I) \,\cdots \,(T - z_k I).$$

Since $p(T)T^l w = 0_{\mathscr{V}}$ and $T^l w \neq 0_{\mathscr{V}}$ the operator p(T) is not an injection. Lemma 2.1 now implies that there exists $j \in \{1, \ldots, k\}$ such that $T - z_j I$ is not injective. That is, there exists $v \in \mathscr{V}, v \neq 0_{\mathscr{V}}$ such that

$$(T - z_j I)v = 0$$

As all the roots of p are nonzero, setting $\lambda = z_j \neq 0$ completes the proof. \Box

The next theorem can be stated in English simply as: Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Theorem 2.5. Let \mathscr{V} be a vector space over \mathbb{F} , $T \in \mathscr{L}(\mathscr{V})$ and $n \in \mathbb{N}$. Assume

- (a) $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ are such that $\lambda_i \neq \lambda_j$ for all $i, j \in \{1, \ldots, n\}$ such that $i \neq j$,
- (b) $v_1, \ldots, v_n \in \mathscr{V}$ are such that $Tv_k = \lambda_k v_k$ and $v_k \neq 0$ for all $k \in \{1, \ldots, n\}$.

Then $\{v_1, \ldots, v_n\}$ is linearly independent.

Proof. We will prove this by using the mathematical induction on n. For the base case, we will prove the claim for n = 1. Let $\lambda_1 \in \mathbb{F}$ and let $v_1 \in \mathcal{V}$ be such that $v_1 \neq 0$ and $Tv_1 = \lambda_1 v_1$. Since $v_1 \neq 0$, we conclude that $\{v_1\}$ is linearly independent.

Next we prove the inductive step. Let $m \in \mathbb{N}$ be arbitrary. The inductive hypothesis is the assumption that the following implication holds.

If the following two conditions are satisfied:
(i) μ₁,...,μ_m ∈ F are such that μ_i ≠ μ_j for all i, j ∈ {1,...,m} such that i ≠ j,
(ii) w₁,...,w_m ∈ 𝒴 are such that Tw_k = μ_kw_k and w_k ≠ 0 for all k ∈ {1,...,m},
then {w₁,...,w_m} is linearly independent.

We need to prove the following implication

If the following two conditions are satisfied: (I) $\lambda_1, \ldots, \lambda_{m+1} \in \mathbb{F}$ are such that $\lambda_i \neq \lambda_j$ for all $i, j \in \{1, \ldots, m+1\}$ such that $i \neq j$, (II) $v_1, \ldots, v_{m+1} \in \mathscr{V}$ are such that $Tv_k = \lambda_k v_k$ and $v_k \neq 0$ for all $k \in \{1, \ldots, m+1\}$, then $\{v_1, \ldots, v_{m+1}\}$ is linearly independent. Assume (I) and (II) in the red box. We need to prove that $\{v_1, \ldots, v_{m+1}\}$ is linearly independent.

Let $\alpha_1, \ldots, \alpha_{m+1} \in \mathbb{F}$ be such that

$$\alpha_1 v_1 + \dots + \alpha_m v_m + \alpha_{m+1} v_{m+1} = 0.$$
(8)

Applying $T \in \mathscr{L}(\mathscr{V})$ to both sides of (8), using the linearity of T and assumption (II) we get

$$\alpha_1 \lambda_1 v_1 + \dots + \alpha_m \lambda_m v_m + \alpha_{m+1} \lambda_{m+1} v_{m+1} = 0.$$
(9)

Multiplying both sides of (8) by λ_{m+1} we get

$$\alpha_1 \lambda_{m+1} v_1 + \dots + \alpha_m \lambda_{m+1} v_m + \alpha_{m+1} \lambda_{m+1} v_{m+1} = 0.$$

$$(10)$$

Subtracting (10) from (9) we get

$$\alpha_1(\lambda_1 - \lambda_{m+1})v_1 + \dots + \alpha_m(\lambda_m - \lambda_{m+1})v_m = 0.$$

Since by assumption (I) we have $\lambda_j - \lambda_{m+1} \neq 0$ for all $j \in \{1, \ldots, m\}$, setting

$$w_j = (\lambda_j - \lambda_{m+1})v_j, \qquad j \in \{1, \dots, m\},$$

and taking into account (II) we have

$$w_j \neq 0$$
 and $Tw_j = \lambda_j w_j$ for all $j \in \{1, \dots, m\}$. (11)

Thus, by (I) and (11), the scalars $\lambda_1, \ldots, \lambda_m$ and vectors w_1, \ldots, w_m satisfy assumptions (i) and (ii) of the inductive hypothesis (the green box). Consequently, the vectors w_1, \ldots, w_m are linearly independent. Since by (11) we have

$$\alpha_1 w_1 + \dots + \alpha_m w_m = 0,$$

it follows that $\alpha_1 = \cdots = \alpha_m = 0$. Substituting these values in (8) we get $\alpha_{m+1}v_{m+1} = 0$. Since by (II), $v_{m+1} \neq 0$ we conclude that $\alpha_{m+1} = 0$. This completes the proof of the linear independence of v_1, \ldots, v_{m+1} .

A different proof follows.

Proof. Consider operators $T - \lambda_j I$ for $j \in \{1, \ldots, n\}$. Then

$$(T - \lambda_j I)v_k = (\lambda_k - \lambda_j)v_k, \quad j,k \in \{1,\ldots,n\}.$$

Or, more precisely,

$$(T - \lambda_j I) v_k = \begin{cases} (\lambda_k - \lambda_j) v_k & j \neq k, \\ 0_{\mathscr{V}} & j = k \end{cases} \quad j, k \in \{1, \dots, n\}.$$
(12)

Let $i, k \in \{1, ..., n\}$. Repeated application of (12) yields

$$\left(\prod_{j=1,\,j\neq i}^n (T-\lambda_j I)\right) v_k = \left(\prod_{j=1,\,j\neq i}^n (\lambda_k - \lambda_j)\right) v_k,$$

or, more precisely,

$$\left(\prod_{j=1,\,j\neq i}^{n} \left(T-\lambda_{j}I\right)\right) v_{k} = \begin{cases} 0_{\mathscr{V}} & k\neq i, \\ \left(\prod_{j=1,\,j\neq k}^{n} \left(\lambda_{k}-\lambda_{j}\right)\right) v_{k} & k=i \end{cases}$$
(13)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ be such that

$$\alpha_1 v_1 + \dots + \alpha_n v_n = 0_{\mathscr{V}}.$$
 (14)

Let $k \in \{1, \ldots, n\}$ be arbitrary and apply the operator

$$\prod_{j=1,\,j\neq k}^n \left(T - \lambda_j I\right)$$

to both sides of (14). Then by (13) we get

$$\alpha_k \left(\prod_{j=1, \, j \neq k}^n \left(\lambda_k - \lambda_j \right) \right) v_k = 0_{\mathscr{V}}.$$
(15)

Since $\lambda_1, \ldots, \lambda_n$ are distinct we have

$$\prod_{j=1, \, j \neq k}^{n} \left(\lambda_k - \lambda_j \right) \neq 0,$$

and since also $v_k \neq 0_{\mathscr{V}}$, from (15) we deduce $\alpha_k = 0$. Since $k \in \{1, \ldots, n\}$ was arbitrary, the theorem is proved.

Corollary 2.6. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} and let $T \in \mathscr{L}(\mathscr{V})$. Then T has at most $n = \dim \mathscr{V}$ distinct eigenvalues.

Proof. Let \mathscr{B} be a basis of \mathscr{V} where $\mathscr{B} = \{u_1, ..., u_n\}$. Then $|\mathscr{B}| = n$ and span $\mathscr{B} = \mathscr{V}$. Let $\mathscr{C} = \{v_1, ..., v_m\}$ be eigenvectors corresponding to m distinct eigenvalues. Then \mathscr{C} is a linearly independent set with $|\mathscr{C}| = m$. By the Steinitz Exchange Lemma, $m \leq n$. Consequently, T has at most n distinct eigenvalues.

3 Existence of an upper-triangular matrix representation

Definition 3.1. A matrix $A \in \mathbb{F}^{n \times n}$ with entries a_{ij} , $i, j \in \{1, \ldots, n\}$ is called *upper triangular* if $a_{ij} = 0$ for all $i, j \in \{1, \ldots, n\}$ such that i > j.

Definition 3.2. Let \mathscr{V} be a vector space over \mathbb{F} and $T \in \mathscr{L}(\mathscr{V})$. A subspace \mathscr{U} of \mathscr{V} is called an *invariant subspace* under T if $T(\mathscr{U}) \subseteq \mathscr{U}$.

The following proposition is straightforward.

Proposition 3.3. Let $S, T \in \mathscr{L}(\mathscr{V})$ be such that ST = TS. Then nul T is invariant under S and nul S is invariant under T. In particular, all eigenspaces of T are invariant under T.

Definition 3.4. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} with $n = \dim \mathscr{V} > 0$. Let $T \in \mathscr{L}(\mathscr{V})$. A sequence of nontrivial subspaces $\mathscr{U}_1, \ldots, \mathscr{U}_n$ of \mathscr{V} such that

$$\mathscr{U}_1 \subsetneq \mathscr{U}_2 \subsetneq \cdots \subsetneq \mathscr{U}_n \tag{16}$$

and

$$T\mathscr{U}_k \subseteq \mathscr{U}_k \quad \text{for all} \quad k \in \{1, \dots, n\}$$

is called a fan for T in \mathscr{V} . A basis $\{v_1, \ldots, v_n\}$ of \mathscr{V} is called a fan basis corresponding to T if the subspaces

$$\mathscr{V}_k = \operatorname{span}\{v_1, \dots, v_k\}, \qquad k \in \{1, \dots, n\},$$

form a fan for T.

Notice that (16) implies

 $1 \leq \dim \mathscr{U}_1 < \dim \mathscr{U}_2 < \dots < \dim \mathscr{U}_n \leq n.$

Consequently, if $\mathscr{U}_1, \ldots, \mathscr{U}_n$ is a fan for T we have dim $\mathscr{U}_k = k$ for all $k \in \{1, \ldots, n\}$. In particular $\mathscr{U}_n = \mathscr{V}$.

Theorem 3.5 (Theorem 5.12). Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} with dim $\mathscr{V} = n$ and let $T \in \mathscr{L}(\mathscr{V})$. Let $\mathscr{B} = \{v_1, \ldots, v_n\}$ be a basis of \mathscr{V} and set

$$\mathscr{V}_k = \operatorname{span}\{v_1, \dots, v_k\}, \qquad k \in \{1, \dots, n\}.$$

The following statements are equivalent.

- (a) $M^{\mathscr{B}}_{\mathscr{B}}(T)$ is upper-triangular.
- (b) For all $k \in \{1, \ldots, n\}$ we have $Tv_k \in \mathscr{V}_k$.
- (c) For all $k \in \{1, \ldots, n\}$ we have $T \mathscr{V}_k \subseteq \mathscr{V}_k$.
- (d) \mathscr{B} is a fan basis corresponding to T.

Proof. (a) \Rightarrow (b). Assume that $M^{\mathscr{B}}_{\mathscr{B}}(T)$ is upper triangular. That is

$$M_{\mathscr{B}}^{\mathscr{B}}(T) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2k} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{kk} & \cdots & 0 \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix}$$

Let $k \in \{1, \ldots, n\}$ be arbitrary. Then, by the definition of $M_{\mathscr{B}}^{\mathscr{B}}(T)$,

$$C_{\mathscr{B}}(Tv_k) = \begin{bmatrix} a_{1k} \\ \vdots \\ a_{kk} \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Consequently, by the definition of $C_{\mathscr{B}}$, we have

$$Tv_k = a_{1k}v_1 + \dots + a_{kk}v_k \in \operatorname{span}\{v_1, \dots, v_k\} = \mathscr{V}_k.$$

Thus, (b) is proved.

(b) \Rightarrow (a). Assume that $Tv_k \in \mathscr{V}_k$ for all $k \in \{1, \ldots, n\}$. Let a_{ij} , $i, j \in \{1, \ldots, n\}$, be the entries of $M^{\mathscr{B}}_{\mathscr{B}}(T)$. Let $j \in \{1, \ldots, n\}$ be arbitrary. Since $Tv_j \in \mathscr{V}_j$ there exist $\alpha_1, \ldots, \alpha_j \in \mathbb{F}$ such that

$$Tv_j = \alpha_1 v_1 + \dots + \alpha_j v_j.$$

By the definition of $C_{\mathscr{B}}$ we have

$$C_{\mathscr{B}}(Tv_j) = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_j \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

On the other side, by the definition of $M_{\mathscr{B}}^{\mathscr{B}}(T)$, we have

$$C_{\mathscr{B}}(Tv_j) = \begin{bmatrix} a_{1k} \\ \vdots \\ a_{jj} \\ a_{j+1,j} \\ \vdots \\ a_{nj} \end{bmatrix}.$$

The last two equalities, and the fact that $C_{\mathscr{B}}$ is a function, imply $a_{ij} = 0$ for all $i \in \{j + 1, ..., n\}$. This proves (a).

(b) \Rightarrow (c). Suppose $Tv_k \in \mathscr{V}_k = \operatorname{span}\{v_1, \ldots, v_k\}$ for all $k \in \{1, \ldots, n\}$. Let $v \in \mathscr{V}_k$. Then $v = \alpha_1 v_1 + \cdots + \alpha_k v_k$. Applying T, we get $Tv = \alpha_1 Tv_1 + \cdots + \alpha_k Tv_k$. Thus,

$$Tv \in \operatorname{span}\{Tv_1, \dots, Tv_k\}.$$
(17)

Since

$$Tv_j \in \mathscr{V}_j \subseteq \mathscr{V}_k$$
 for all $j \in \{1, \dots, k\},$

we have

$$\operatorname{span}\{Tv_1,\ldots,Tv_k\}\subseteq\mathscr{V}_k.$$

Together with (17), this proves (c).

(c) \Rightarrow (b). Suppose $T\mathscr{V}_k \subseteq \mathscr{V}_k$ for all $k \in \{1, \ldots, n\}$. Then since $v_k \in \mathscr{V}_k$, we have $Tv_k \in \mathscr{V}_k$ for each $k \in \{1, \ldots, n\}$.

(c) \Leftrightarrow (d) follows from the definition of a fan basis corresponding to T.

Theorem 3.6 (Theorem 5.13). Let \mathscr{V} be a nonzero finite dimensional complex vector space. If dim $\mathscr{V} = n$ and $T \in \mathscr{L}(\mathscr{V})$, then there exists a basis \mathscr{B} of \mathscr{V} such that $M_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper-triangular.

Proof. We proceed by the complete induction on $n = \dim(\mathscr{V})$.

The base case is trivial. Assume dim $\mathscr{V} = 1$ and $T \in \mathscr{L}(\mathscr{V})$. Set $\mathscr{B} = \{u\}$, where $u \in \mathscr{V} \setminus \{0_{\mathscr{V}}\}$ is arbitrary. Then there exists $\lambda \in \mathbb{C}$ such that $Tu = \lambda u$. Thus, $M_{\mathscr{B}}^{\mathscr{B}}(T) = [\lambda]$.

Now we prove the inductive step. Let $m \in \mathbb{N}$ be arbitrary. The inductive hypothesis is

For every $k \in \{1, \ldots, m\}$ the following implication holds: If $\dim \mathscr{U} = k$ and $S \in \mathscr{L}(\mathscr{U})$, then there exists a basis \mathscr{A} of \mathscr{U} such that $M^{\mathscr{A}}_{\mathscr{A}}(S)$ is upper-triangular.

To complete the inductive step, we need to prove the implication:

If dim $\mathscr{V} = m + 1$ and $T \in \mathscr{L}(\mathscr{V})$, then there exists a basis \mathscr{B} of \mathscr{V} such that $M^{\mathscr{B}}_{\mathscr{B}}(T)$ is upper-triangular.

To prove the red implication assume that $\dim \mathscr{V} = m+1$ and $T \in \mathscr{L}(\mathscr{V})$. By Theorem 2.2 the operator T has an eigenvalue. Let λ be an eigenvalue of T. Set $\mathscr{U} = \operatorname{ran}(T - \lambda I)$. Because $(T - \lambda I)$ is not injective, it is not surjective, and thus $k = \dim(\mathscr{U}) < \dim(\mathscr{V}) = m+1$. That is $k \in \{1, \ldots, m\}$.

Moreover, $T\mathscr{U} \subseteq \mathscr{U}$. To show this, let $u \in \mathscr{U}$. Then $Tu = (T - \lambda I)u + \lambda u$. Since $(T - \lambda I)u \in \mathscr{U}$ and $\lambda u \in \mathscr{U}$, $Tu \in \mathscr{U}$. Hence, $S = T|_{\mathscr{U}}$ is an operator on \mathscr{U} .

By the inductive hypothesis (the green box), there exists a basis $\mathscr{A} = \{u_1, \ldots, u_k\}$ of \mathscr{U} such that $M^{\mathscr{A}}_{\mathscr{A}}(S)$ is upper-triangular. That is,

$$Tu_j = Su_j \in \operatorname{span}\{u_1, \dots, u_j\}$$
 for all $j \in \{1, \dots, k\}$.

Extend \mathscr{A} to a basis $\mathscr{B} = \{u_1, \ldots, u_k, v_1, \ldots, v_{n-k}\}$ of \mathscr{V} . Since

$$Tv_j = (T - \lambda I)v_j + \lambda v_j, \qquad j \in \{1, \dots, n - k\},$$

where $(T - \lambda I)v_j \in \mathscr{U}$, for all $j \in \{1, \ldots, n - k\}$ we have

$$Tv_j \in \operatorname{span}\{u_1, \ldots, u_m, v_j\} \subseteq \operatorname{span}\{u_1, \ldots, u_m, v_1, \ldots, v_j\}.$$

By Theorem 3.5 $M^{\mathscr{B}}_{\mathscr{B}}(T)$ is upper-triangular.

Theorem 3.7. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} with $\dim \mathscr{V} = n$, and let $T \in \mathscr{L}(\mathscr{V})$. Let $\mathscr{B} = \{v_1, \ldots, v_n\}$ be a basis of \mathscr{V} such that $M^{\mathscr{B}}_{\mathscr{B}}(T)$ is upper triangular with diagonal entries $a_{jj}, j \in \{1, \ldots, n\}$. Then T is not injective if and only if there exists $j \in \{1, \ldots, n\}$ such that $a_{jj} = 0$.

Proof. In this proof we set

$$\mathscr{V}_k = \operatorname{span}\{v_1, ..., v_k\}, \qquad k \in \{1, ..., n\}.$$

Then

$$\mathscr{V}_1 \subsetneq \mathscr{V}_2 \subsetneq \ldots \subsetneq \mathscr{V}_n \tag{18}$$

and by Theorem 3.5, $T\mathscr{V}_k \subseteq \mathscr{V}_k$.

We first prove the "only if" part. Assume that T is not injective. Consider the set

$$\mathbb{K} = \left\{ k \in \{1, ..., n\} : T \mathscr{V}_k \subsetneq \mathscr{V}_k \right\}$$

Since T is not injective, $\operatorname{nul} T \neq \{0_{\mathscr{V}}\}\)$. Thus by the Rank-Nullity Theorem, ran $T \subsetneq \mathscr{V} = \mathscr{V}_n$. Since $T\mathscr{V}_n = \operatorname{ran} T$, it follows that $T\mathscr{V}_n \subsetneq \mathscr{V}_n$. Therefore $n \in \mathbb{K}$. Hence the set \mathbb{K} is a nonempty set of positive integers. Hence, by the Well-Ordering principle min \mathbb{K} exists. Set $j = \min \mathbb{K}$.

If j = 1, then dim $\mathscr{V}_1 = 1$, but since $T\mathscr{V}_1 \subsetneq \mathscr{V}_1$ it must be that dim $T\mathscr{V}_1 = 0$. Thus $T\mathscr{V}_1 = \{0_{\mathscr{V}}\}$, so $Tv_1 = 0_v$. Hence $C_{\mathscr{B}}(T) = [0 \cdots 0]^{\top}$ and so $a_{jj} = 0$. If j > 1, then $j - 1 \in \{1, \ldots, n\}$ but $j - 1 \notin \mathbb{K}$. By Theorem 3.5, $T\mathscr{V}_{j-1} \subseteq \mathscr{V}_{j-1}$ and, since $j - 1 \notin \mathbb{K}$, $T\mathscr{V}_{j-1} \subsetneq \mathscr{V}_{j-1}$ is not true. Hence $T\mathscr{V}_{j-1} = \mathscr{V}_{j-1}$. Since $j \in \mathbb{K}$, we have $T\mathscr{V}_j \subsetneq \mathscr{V}_j$. Now we have

$$\mathscr{V}_{j-1} = T\mathscr{V}_{j-1} \subseteq T\mathscr{V}_j \subsetneq \mathscr{V}_j.$$

Consequently,

$$j-1 = \dim \mathscr{V}_{j-1} \le \dim (T\mathscr{V}_j) < \dim \mathscr{V}_j = j,$$

which implies $\dim(T\mathscr{V}_j) = j-1$ and therefore $T\mathscr{V}_j = \mathscr{V}_{j-1}$. This implies that there exist $\alpha_1, \ldots, \alpha_{j-1} \in \mathbb{F}$ such that

$$Tv_j = \alpha_1 v_1 + \dots + \alpha_{j-1} v_{j-1}.$$

By the definition of $M_{\mathscr{B}}^{\mathscr{B}}$ this implies that $a_{jj} = 0$.

Next we prove the "if" part. Assume that there exists $j \in \{1, ..., n\}$ such that $a_{jj} = 0$. Then

$$Tv_j = a_{1j}v_1 + \dots + a_{j-1,j}v_{j-1} + 0v_j \in \mathscr{V}_{j-1}.$$
(19)

By Theorem 3.5 and (18) we have

$$Tv_i \in \mathscr{V}_i \subseteq \mathscr{V}_{j-1}$$
 for all $i \in \{1, \dots, j-1\}.$ (20)

Now (19) and (20) imply $Tv_i \in \mathscr{V}_{j-1}$ for all $i \in \{1, \ldots, j\}$ and consequently $T\mathscr{V}_j \subseteq \mathscr{V}_{j-1}$. To complete the proof, we apply the Rank-Nullity theorem to the restriction $T|_{\mathscr{V}_j}$ of T to the subspace \mathscr{V}_j :

$$\dim \operatorname{nul}(T|_{\mathscr{V}_j}) + \dim \operatorname{ran}(T|_{\mathscr{V}_j}) = j.$$

Since $T\mathscr{V}_j \subseteq \mathscr{V}_{j-1}$ implies dim $\operatorname{ran}(T|_{\mathscr{V}_j}) \leq j-1$, we conclude

$$\dim \operatorname{nul}(T|_{\mathscr{V}_i}) \geq 1.$$

Thus $\operatorname{nul}(T|_{\mathscr{V}_j}) \neq \{0_{\mathscr{V}}\}$, that is, there exists $v \in \mathscr{V}_j$ such that $v \neq 0$ and $Tv = T|_{\mathscr{V}_j}v = 0$. This proves that T is not invertible.

Corollary 3.8 (Theorem 5.16). Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} with dim $\mathscr{V} = n$, and let $T \in \mathscr{L}(\mathscr{V})$. Let \mathscr{B} be a basis of \mathscr{V} such that $M_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper triangular with diagonal entries $a_{jj}, j \in \{1, \ldots, n\}$. The following statements are equivalent.

- (a) T is not injective.
- (b) T is not invertible.
- (c) 0 is an eigenvalue of T.
- (d) $\prod_{i=1}^{n} a_{ii} = 0.$
- (e) There exists $j \in \{1, \ldots, n\}$ such that $a_{jj} = 0$.

Proof. The equivalence (a) \Leftrightarrow (b) follows from the Rank-nullity theorem and it has been proved earlier. The equivalence (a) \Leftrightarrow (c) is almost trivial. The equivalence (a) \Leftrightarrow (e) was proved in Theorem 3.7 and The equivalence (d) \Leftrightarrow (e) is should have been proved in high school.

Theorem 3.9. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} with dim $\mathscr{V} = n$, and let $T \in \mathscr{L}(\mathscr{V})$. Let \mathscr{B} be a basis of \mathscr{V} such that $M_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper triangular with diagonal entries $a_{jj}, j \in \{1, \ldots, n\}$. Then

$$\sigma(T) = \left\{ a_{jj} : j \in \{1, ..., n\} \right\}.$$

Proof. Notice that $M^{\mathscr{B}}_{\mathscr{B}}: \mathscr{L}(V) \to \mathbb{F}^{n \times n}$ is a linear operator. Therefore

$$M_{\mathscr{B}}^{\mathscr{B}}(T-\lambda I) = M_{\mathscr{B}}^{\mathscr{B}}(T) - \lambda M_{\mathscr{B}}^{\mathscr{B}}(I) = M_{\mathscr{B}}^{\mathscr{B}}(T) - \lambda I_n.$$

Here I_n denotes the identity matrix in $\mathbb{F}^{n \times n}$. As $M_{\mathscr{B}}^{\mathscr{B}}(T)$ and $M_{\mathscr{B}}^{\mathscr{B}}(I) = I_n$ are upper triangular, $M_{\mathscr{B}}^{\mathscr{B}}(T - \lambda I)$ is upper triangular as well with diagonal entries $a_{jj} - \lambda, j \in \{1, ..., n\}$.

To prove a set equality we need to prove two inclusions.

First we prove \subseteq . Let $\lambda \in \sigma(T)$. Because λ is an eigenvalue, $T - \lambda I$ is not injective. Because $T - \lambda I$ is not injective, by Theorem 3.7 one of its diagonal entries is zero. So there exists $i \in \{1, ..., n\}$ such that $a_{ii} - \lambda = 0$. Thus $\lambda = a_{ii}$. So $\sigma(T) \subseteq \{a_{jj} : j \in \{1, ..., n\}\}$.

Next we prove \supseteq . Let $a_{ii} \in \{a_{jj} : j \in \{1, ..., n\}\}$ be arbitrary. Then $a_{ii} - a_{ii} = 0$. By Theorem 3.7 and the note at the beginning of this proof $T - a_{ii}I$ is not injective. This implies that a_{ii} is an eigenvalue of T. Thus $a_{ii} \in \sigma(T)$. This completes the proof.

Remark 3.10. Theorem 3.9 is identical to Theorem 5.18 in the textbook.