
Inner Product Spaces

Branko Ćurgus
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1 Inner Product Spaces

We will first introduce several “dot-product-like” objects. We start with the
most general.

Definition 1.1. Let V be a vector space over a scalar field F. A function

[ · , · ] : V × V → F

is a sesquilinear form on V if the following two conditions are satisfied.

(a) (linearity in the first variable) ∀α, β ∈ F ∀u, v, w ∈ V

[αu+ βv,w] = α[u,w] + β[v,w].

(b) (anti-linearity in the second variable) ∀α, β ∈ F ∀u, v, w ∈ V [u, αv+
βw] = α[u, v] + β[u,w].

Example 1.2. Let M ∈ Cn×n be arbitrary. Then

[x,y] = (Mx) · y, x,y ∈ Cn,

is a sesquilinear form on the complex vector space Cn. Here · denotes the
usual dot product in C.

An abstract form of the Pythagorean Theorem holds for sesquilinear
forms.

Theorem 1.3 (Pythagorean Theorem). Let [ · , · ] be a sesquilinear form on

a vector space V over a scalar field F. If v1, · · · , vn ∈ V are such that

[vj , vk] = 0 whenever j 6= k, j, k ∈ {1, . . . , n}, then
[

n
∑

j=1

vj ,

n
∑

k=1

vk

]

=

n
∑

j=1

[vj , vj].
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Proof. Assume that [vj , vk] = 0 whenever j 6= k, j, k ∈ {1, . . . , n} and apply
the additivity of the sesquilinear form in both variables to get:

[

n
∑

j=1

vj ,
n
∑

k=1

vk

]

=
n
∑

j=1

n
∑

k=1

[vj , vk]

=

n
∑

j=1

[vj , vj ].

Theorem 1.4 (Polarization identity). Let V be a vector space over a scalar

field F and let [ · , · ] : V × V → F be a sesquilinear form on V . If i ∈ F,

then

[u, v] =
1

4

3
∑

k=0

ik
[

u+ ikv, u+ ikv
]

(1)

for all u, v ∈ V .

Corollary 1.5. Let V be a vector space over a scalar field F and let [ · , · ] :
V × V → F be a sesquilinear form on V . If i ∈ F and [v, v] = 0 for all

v ∈ V , then [u, v] = 0 for all u, v ∈ V .

Definition 1.6. Let V be a vector space over a scalar field F. A sesquilinear
form [ · , · ] : V × V → F is hermitian if

(c) (hermiticity) ∀u, v ∈ V [u, v] = [v, u].

A hermitian sesquilinear form is also called an inner product.

Corollary 1.7. Let V be a vector space over a scalar field F such that i ∈ F.

Let [ · , · ] : V ×V → F be a sesquilinear form on V . Then [ · , · ] is hermitian

if and only if [v, v] ∈ R for all v ∈ V .

Proof. The “only if” direction follows from the definition of a hermitian
sesquilinear form. To prove “if” direction assume that [v, v] ∈ R for all
v ∈ V . Let u, v ∈ V be arbitrary. By assumption

[

u+ ikv, u+ ikv
]

∈ R for
all k ∈ {0, 1, 2, 3}. Therefore

[u, v] =
1

4

3
∑

k=0

(−i)k
[

u+ ikv, u+ ikv
]

=
1

4

3
∑

k=0

(−i)kik(−i)k
[

(−i)ku+ v, (−i)ku+ v
]
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=
1

4

3
∑

k=0

(−i)k
[

v + (−i)ku, v + (−i)ku
]

.

Notice that the values of (−i)k at k = 0, 1, 2, 3, in this particular order are:
1,−i,−1, i. These are exactly the values of ik in the order k = 0, 3, 2, 1.
Therefore rearranging the order of terms in the last four-term-sum we have

1

4

3
∑

k=0

(−i)k
[

v + (−i)ku, v + (−i)ku
]

=
1

4

3
∑

k=0

ik
[

v + iku, v + iku
]

.

Together with Theorem 1.4, the last two displayed equalities yield [u, v] =
[v, u].

Let [ · , · ] be an inner product on V . The hermiticity of [ · , · ] implies
that [v, v] = [v, v] for all v ∈ V . Thus [v, v] ∈ R for all v ∈ V . The natural
trichotomy that arises is the motivation for the following definition.

Definition 1.8. An inner product [ · , · ] on V is called nonnegative if [v, v] ≥
0 for all v ∈ V , it is called nonpositive if [v, v] ≤ 0 for all v ∈ V , and it is
called indefinite if there exist u ∈ V and v ∈ V such that [u, u] < 0 and
[v, v] > 0.

2 Nonnegative inner products

The following implication that you might have learned in high school will
be useful below.

Theorem 2.1 (High School Theorem). Let a, b, c be real numbers. Assume

a ≥ 0. Then the following implication holds:

∀x ∈ Q ax2 + bx+ c ≥ 0 ⇒ b2 − 4ac ≤ 0. (2)

Theorem 2.2 (Cauchy-Bunyakovsky-Schwartz Inequality). Let V be a vec-

tor space over F and let 〈 · , · 〉 be a nonnegative inner product on V . Then

∀u, v ∈ V |〈u, v〉|2 ≤ 〈u, u〉〈v, v〉. (3)

The equality occurs in (3) if and only if there exists α, β ∈ F not both 0 such

that 〈αu+ βv, αu + βv〉 = 0.
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Proof. Let u, v ∈ V be arbitrary. Since 〈·, ·〉 is nonnegative we have

∀ t ∈ Q
〈

u+ t〈u, v〉v, u + t〈u, v〉v
〉

≥ 0. (4)

Since 〈·, ·〉 is a sesquilinear hermitian form on V , (4) is equivalent to

∀ t ∈ Q 〈u, u〉+ 2t|〈u, v〉|2 + t2|〈u, v〉|2〈v, v〉 ≥ 0. (5)

As 〈v, v〉 ≥ 0, the High School Theorem applies and (5) implies

4|〈u, v〉|4 − 4|〈u, v〉|2〈u, u〉〈v, v〉 ≤ 0. (6)

Again, since 〈u, u〉 ≥ 0 and 〈v, v〉 ≥ 0, (6) is equivalent to

|〈u, v〉|2 ≤ 〈u, u〉〈v, v〉.

Since u, v ∈ V were arbitrary, (3) is proved.
Next we prove the claim related to the equality in (3). We first prove the

“if” part. Assume that u, v ∈ V and α, β ∈ F are such that |α|2 + |β|2 > 0
and

〈αu+ βv, αu+ βv〉 = 0

We need to prove that |〈u, v〉|2 = 〈u, u〉〈v, v〉.
Since |α|2+ |β|2 > 0, we have two cases α 6= 0 or β 6= 0. We consider the

case α 6= 0. The case β 6= 0 is similar. Set w = αu + βv. Then 〈w,w〉 = 0
and u = γv + δw where γ = −β/α and δ = 1/α. Notice that the Cauchy-
Bunyakovsky-Schwarz inequality and 〈w,w〉 = 0 imply that 〈w, x〉 = 0 for
all x ∈ V . Now we calculate

|〈u, v〉| = |〈γv + δw, v〉| = |γ〈v, v〉 + δ〈w, v〉| = |γ〈v, v〉| = |γ|〈v, v〉

and
〈u, u〉 = 〈γv + δw, γv + δw〉 = 〈γv, γv〉 = |γ|2〈v, v〉.

Thus,
|〈u, v〉|2 = |γ|2〈v, v〉2 = 〈u, u〉〈v, v〉.

This completes the proof of the “if” part.
To prove the “only if” part, assume |〈u, v〉|2 = 〈u, u〉〈v, v〉. If 〈v, v〉 = 0,

then with α = 0 and β = 1 we have

〈αu+ βv, αu+ βv〉 = 〈v, v〉 = 0.
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If 〈v, v〉 6= 0, then with α = 〈v, v〉 and β = −〈u, v〉 we have |α|2 + |β|2 > 0
and

〈αu+ βv, αu+ βv〉 = 〈v, v〉
(

〈v, v〉〈u, u〉− |〈u, v〉|2 − |〈u, v〉|2 + |〈u, v〉|2
)

= 0.

This completes the proof of the characterization of equality in the Cauchy-
Bunyakovsky-Schwartz Inequality.

Corollary 2.3. Let V be a vector space over F and let 〈 · , · 〉 be a nonnegative

inner product on V . Then the following two implications are equivalent.

(i) If v ∈ V and 〈u, v〉 = 0 for all u ∈ V , then v = 0.

(ii) If v ∈ V and 〈v, v〉 = 0, then v = 0.

Proof. Assume that the implication (i) holds and let v ∈ V be such that
〈v, v〉 = 0. Let u ∈ V be arbitrary. By the the CBS inequality

|〈u, v〉|2 ≤ 〈u, u〉〈v, v〉 = 0.

Thus, 〈u, v〉 = 0 for all u ∈ V . By (i) we conclude v = 0. This proves (ii).
The converse is trivial. However, here is a proof. Assume that the

implication (ii) holds. To prove (i), let v ∈ V and assume 〈u, v〉 = 0 for all
u ∈ V . Setting u = v we get 〈v, v〉 = 0. Now (ii) yields v = 0.

Definition 2.4. Let V be a vector space over a scalar field F. An inner
product [ · , · ] on V is nondegenerate if the following implication holds

(d) (nondegenerecy) u ∈ V and [u, v] = 0 for all v ∈ V implies u = 0.

We conclude this section with a characterization of the best approxima-
tion property.

Theorem 2.5 (Best Approximation-Orthogonality Theorem). Let (V , 〈·, ·〉)
be an inner product space with a nonnegative inner product. Let U be a

subspace of V . Let v ∈ V and u0 ∈ U . Then

∀u ∈ U 〈v − u0, v − u0〉 ≤ 〈v − u, v − u〉. (7)

if and only if

∀u ∈ U 〈v − u0, u〉 = 0. (8)
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Proof. First we prove the “only if” part. Assume (7). Let u ∈ U be
arbitrary. Set α = 〈v − u0, u〉. Clearly α ∈ F. Let t ∈ Q ⊆ F be arbitrary.
Since u0 − tαu ∈ U , (7) implies

∀ t ∈ Q 〈v − u0, v − u0〉 ≤ 〈v − u0 + tαu, v − u0 + tαu〉. (9)

Now recall that α = 〈v − u0, u〉 and expand the right-hand side of (9):

〈v − u0 + tαu, v − u0 + tαu〉 = 〈v − u0, v − u0〉+ 〈v − u0, tαu〉
+ 〈tαu, v − u0〉+ 〈tαu, tαu〉

= 〈v − u0, v − u0〉+ tα〈v − u0, u〉
+ tα〈u, v − u0〉+ t2|α|2〈u, u〉

= 〈v − u0, v − u0〉+ 2t|α|2 + t2|α|2〈u, u〉.

Thus (9) is equivalent to

∀ t ∈ Q 0 ≤ 2t|α|2 + t2|α|2〈u, u〉. (10)

By the High School Theorem, (10) implies

4|α|4 − 4|α|2〈u, u〉 0 = 4|α|4 ≤ 0.

Consequently α = 〈v−u0, u〉 = 0. Since u ∈ U was arbitrary, (8) is proved.
For the “if” part assume that (8) is true. Let u ∈ U be arbitrary. Notice

that u0 − u ∈ U and calculate

〈v − u, v − u〉 = 〈v − u0 + u0 − u, v − u0 + u0 − u〉
by (8) and Pythag. thm. = 〈v − u0, v − u0〉+ 〈u0 − u, u0 − u〉

since 〈u0 − u, u0 − u〉 ≥ 0 ≥ 〈v − u0, v − u0〉.

This proves (7).

3 Positive definite inner products

It follows from Corollary 2.3 that a nonnegative inner product 〈 · , · 〉 on V

is nondegenerate if and only if 〈v, v〉 = 0 implies v = 0. A nonnegative
nondegenerate inner product is also called positive definite inner product.
Since this is the most often encountered inner product we give its definition
as it commonly given in textbooks.
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Definition 3.1. Let V be a vector space over a scalar field F. A function
〈 · , · 〉 : V × V → F is called a positive definite inner product on V if the
following conditions are satisfied;

(a) ∀u, v, w ∈ V ∀α, β ∈ F 〈αu+ βv, v〉 = α〈u,w〉 + β〈v,w〉,
(b) ∀u, v ∈ V 〈u, v〉 = 〈v, u〉,
(c) ∀ v ∈ V 〈v, v〉 ≥ 0,

(d) If v ∈ V and 〈v, v〉 = 0, then v = 0.

A positive definite inner product gives rise to a norm.

Theorem 3.2. Let (V , 〈 · , · 〉) be a vector space over F with a positive defi-

nite inner product 〈 · , · 〉. The function ‖ · ‖ : V → R defined by

‖v‖ =
√

〈v, v〉, v ∈ V ,

is a norm on V . That is for all u, v ∈ V and all α ∈ F we have ‖v‖ ≥ 0,
‖αv‖ = |α|‖v‖, ‖u+ v‖ ≤ ‖u‖ + ‖v‖ and ‖v‖ = 0 implies v = 0V .

Definition 3.3. Let (V , 〈 · , · 〉) be a vector space over F with a positive
definite inner product 〈 · , · 〉. A set of vectors A ⊂ V is said to form an
orthogonal system in V if for all u, v ∈ A we have 〈u, v〉 = 0 whenever u 6= v
and for all v ∈ A we have 〈v, v〉 > 0. An orthogonal system A is called an
orthonormal system if for all v ∈ A we have 〈v, v〉 = 1.

Proposition 3.4. Let (V , 〈 · , · 〉) be a vector space over F with a positive

definite inner product 〈 · , · 〉. Let u1, . . . , un be an orthogonal system in V .

If v =
∑n

j=1 αjuj , then αj = 〈v, uj〉/〈uj , uj〉. In particular, an orthogonal

system is linearly independent.

Theorem 3.5 (The Gram-Schmidt orthogonalization). Let (V , 〈 · , · 〉) be a

vector space over F with a positive definite inner product 〈 · , · 〉. Let n ∈
N and let v1, . . . , vn be linearly independent vectors in V . Let the vectors

u1, . . . , un be defined recursively by

u1 = v1,

uk+1 = vk+1 −
k
∑

j=1

〈vk+1, uj〉
〈uj , uj〉

uj , k ∈ {1, . . . , n− 1}.

Then the vectors u1, . . . , un form an orthogonal system which has the same

fan as the given vectors v1, . . . , vn.
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Proof. We will prove by Mathematical Induction the following statement:
For all k ∈ {1, . . . , n} we have:

(a) 〈uk, uk〉 > 0 and 〈uj , uk〉 = 0 whenever j ∈ {1, . . . , k − 1};
(b) vectors u1, . . . , uk are linearly independent;

(c) span{u1, . . . , uk} = span{v1, . . . , vk}.

For k = 1 statements (a), (b) and (c) are clearly true. Let m ∈
{1, . . . , n − 1} and assume that statements (a), (b) and (c) are true for
all k ∈ {1, . . . ,m}.

Next we will prove that statements (a), (b) and (c) are true for k = m+1.
Recall the definition of um+1:

um+1 = vm+1 −
m
∑

j=1

〈vm+1, uj〉
〈uj , uj〉

uj .

By the Inductive Hypothesis we have span{u1, . . . , um} = span{v1, . . . , vm}.
Since v1 . . . , vm+1 are linearly independent, vm+1 6∈ span{u1, . . . , um}. There-
fore, um+1 6= 0V . That is 〈um+1, um+1〉 > 0. Let k ∈ {1, . . . ,m} be arbi-
trary. Then by the Inductive Hypothesis we have that 〈uj , uk〉 = 0 whenever
j ∈ {1, . . . ,m} and j 6= k. Therefore,

〈um+1, uk〉 = 〈vm+1, uk〉 −
m
∑

j=1

〈vm+1, uj〉
〈uj , uj〉

〈uj , uk〉

= 〈vm+1, uk〉 − 〈vm+1, uk〉
= 0.

This proves claim (a). To prove claim (b) notice that by the Inductive Hy-
pothesis u1, . . . , um are linearly independent and um+1 6∈ span{u1, . . . , um}
since vm+1 6∈ span{u1, . . . , um}. To prove claim (c) notice that the definition
of um+1 implies um+1 ∈ span{v1, . . . , vm+1}. Since by the inductive hypoth-
esis span{u1, . . . , um} = span{v1, . . . , vm}, we have span{u1, . . . , um+1} ⊆
span{v1, . . . , vm+1}. The converse inclusion follows from the fact that vm+1 ∈
span{u1, . . . , um+1}.

It is clear that the claim of the theorem follows from the claim that has
been proven.

The following two statements are immediate consequences of the Gram-
Schmidt orthogonalization process.
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Corollary 3.6. If V is a finite dimensional vector space with positive defi-

nite inner product 〈 · , · 〉, then V has an orthonormal basis.

Corollary 3.7. If V is a complex vector space with positive definite inner

product and T ∈ L (V ) then there exists an orthonormal basis B such that

M
B
B
(T ) is upper-triangular.

Definition 3.8. Let (V , 〈 · , · 〉) be a positive definite inner product space
and A ⊂ V . We define A ⊥ = {v ∈ V : 〈v, a〉 = 0 ∀ a ∈ A }.

The following is a simple proposition.

Proposition 3.9. Let (V , 〈 · , · 〉) be a positive definite inner product space

and A ⊂ V . Then A⊥ is a subspace of V .

Theorem 3.10. Let (V , 〈 · , · 〉) be a positive definite inner product space

and let U be a finite dimensional subspace of V . Then V = U ⊕ U ⊥.

Proof. We first prove that V = U ⊕ U ⊥. Note that since U is a subspace
of V , U inherits the positive definite inner product from V . Thus U is a
finite dimensional positive definite inner product space. Thus there exists
an orthonormal basis of U , B = {u1, u2, . . . uk}.

Let v ∈ V be arbitrary. Then

v =





k
∑

j=1

〈v, uj〉uj



+



v −
k
∑

j=1

〈v, uj〉uj



 ,

where the first summand is in U . We will prove that the second summand
is in U ⊥. Set w =

∑k
j=1〈v, uj〉uj ∈ U . We claim that v − w ∈ U ⊥. To

prove this claim let u ∈ U be arbitrary. Since B is an orhonormal basis of
U , by Proposition 3.4 we have

u =

k
∑

j=1

〈u, uj〉uj .

Therefore

〈v − w, u〉 = 〈v, u〉 −
k
∑

j=1

〈v, uj〉〈uj , u〉

= 〈v, u〉 −
〈

v,

k
∑

j=1

〈u, uj〉uj
〉
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= 〈v, u〉 − 〈v, u〉
= 0.

Thus 〈v − w, u〉 = 0 for all u ∈ U . That is v − w ∈ U ⊥. This proves that
V = U ⊕ U ⊥.

To prove that the sum is direct, let v ∈ U and v ∈ U ⊥. Then 〈v, v〉 =
0. Since 〈 · , · 〉 is positive definite, this implies v = 0V . The theorem is
proved.

Corollary 3.11. Let (V , 〈 · , · 〉) be a positive definite inner product space

and let U be a finite dimensional subspace of V . Then
(

U ⊥
)⊥

= U .

Exercise 3.12. Let (V , 〈 · , · 〉) be a positive definite inner product space

and let U be a subspace of V . Prove that
((

U ⊥
)⊥)⊥

= U ⊥.

Recall that an arbitrary direct sum V = U ⊕W gives rise to a projection
operator PU ‖W , the projection of V onto U parallel to W .

If V = U ⊕ U ⊥, then the resulting projection of V onto U parallel to
U ⊥ is called the orthogonal projection of V onto U ; it is denoted simply by
PU . By definition for every v ∈ V ,

u = PU v ⇔ u ∈ U and v − u ∈ U
⊥.

As for any projection we have PU ∈ L (V ), ranPU = U , nulPU = U ⊥,
and (PU )2 = PU .

Theorems 3.10 and 2.5 yield the following solution of the best approx-
imation problem for finite dimensional subspaces of a vector space with a
positive definite inner product.

Corollary 3.13. Let (V , 〈 · , · 〉) be a vector space with a positive definite

inner product and let U be a finite dimensional subspace of V . For arbitrary

v ∈ V the vector PU v ∈ U is the unique best approximation for v in U .

That is
∥

∥v − PU v
∥

∥ ≤ ‖v − u‖ for all u ∈ U .

4 The definition of an adjoint operator

Let V be a vector space over F. The space L (V ,F) is called the dual space
of V ; it is denoted by V ∗.
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Theorem 4.1. Let V be a finite dimensional vector space over F and let

〈 · , · 〉 be a positive definite inner product on V . Define the mapping

Φ : V → V
∗

as follows: for w ∈ V we set

(

Φ(w)
)

(v) = 〈v,w〉 for all v ∈ V .

Then Φ is a anti-linear bijection.

Proof. Clearly, for each w ∈ V , Φ(w) ∈ V ∗. The mapping Φ is anti-linear,
since for α, β ∈ F and u,w ∈ V , for all v ∈ V we have

(

Φ(αu+ βw)
)

(v) = 〈v, αu + βw〉
= α〈v, u〉 + β〈v,w〉
= α

(

Φ(u)
)

(v) + β
(

Φ(w)
)

(v)

=
(

αΦ(u) + βΦ(w)
)

(v).

Thus Φ(αu+ βw) = αΦ(u) + βΦ(w). This proves anti-linearity.
To prove injectivity of Φ, let u,w ∈ V be such that Φ(u) = Φ(w). Then

(

Φ(u)
)

(v) =
(

Φ(w)
)

(v) for all v ∈ V . By the definition of Φ this means
〈v, u〉 = 〈v,w〉 for all v ∈ V . Consequently, 〈v, u − w〉 = 0 for all v ∈ V .
In particular, with v = u− w we have 〈u − w, u − w〉 = 0. Since 〈 · , · 〉 is a
positive definite inner product, it follows that u−w = 0V , that is u = w.

To prove that Φ is a surjection we use the assumption that V is finite
dimensional. Then there exists an orthonormal basis u1, . . . , un of V . Let
ϕ ∈ V ∗ be arbitrary. Set

w =
n
∑

j=1

ϕ(uj)uj.

The proof that Φ(w) = ϕ follows. Let v ∈ V be arbitrary.

(

Φ(w)
)

(v) = 〈v,w〉

=

〈

v,

n
∑

j=1

ϕ(uj)uj

〉

=
n
∑

j=1

ϕ(uj)〈v, uj〉
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=

n
∑

j=1

〈v, uj〉ϕ(uj)

= ϕ

(

n
∑

j=1

〈v, uj〉uj
)

= ϕ(v).

The theorem is proved.

The mapping Φ from the previous theorem is convenient to define the
adjoint of a linear operator. In the next definition we will deal with two
positive definite inner product spaces. To emphasize the different inner
products and different mappings Φ we will use subscripts.

Let
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be two finite dimensional vector spaces
over the same scalar field F and with positive definite inner products. Let
T ∈ L (V ,W ). We define the adjoint T ∗ : W → V of T by

T ∗w = Φ−1
V

(

ΦW (w) ◦ T
)

, w ∈ W . (11)

Since ΦW and Φ−1
V

are anti-linear, T ∗ is linear For arbitrary α1, α1 ∈ F

and w1, w2 ∈ V we have

T ∗(α1w1 + α2w2) = Φ−1
V

(

ΦW (α1w1 + α2w2) ◦ T
)

= Φ−1
V

((

α1ΦW (w1) + α2ΦW (w2)
)

◦ T
)

= Φ−1
V

(

α1 ΦW (w1) ◦ T + α2ΦW (w2) ◦ T
)

= α1 Φ
−1
V

(

ΦW (w1) ◦ T
)

+ α2 Φ
−1
V

(

ΦW (w2) ◦ T
)

= α1 T
∗w1 + α2 T

∗w2.

Thus, T ∗ ∈ L (W ,V ).
Next we will deduce the most important property of T ∗. By the definition

of T ∗ : W → V , for a fixed arbitrary w ∈ W we have

T ∗w = Φ−1
V

(

ΦW (w) ◦ T
)

.

This is equivalent to
ΦV

(

T ∗w
)

= ΦW (w) ◦ T,
which is, by the definition of ΦV , equivalent to

(

ΦW (w) ◦ T
)

(v) = 〈v, T ∗w〉V for all v ∈ V ,

12



which, in turn, is equivalent to

(

ΦW (w)
)

(Tv) = 〈v, T ∗w〉V for all v ∈ V .

From the definition of ΦW the last statement is equivalent to

〈Tv,w〉W = 〈v, T ∗w〉V for all v ∈ V .

The reasoning above proves the following proposition.

Proposition 4.2. Let
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be two finite dimen-

sional vector spaces over the same scalar field F and with positive definite

inner products. Let T ∈ L (V ,W ) and S ∈ L (W ,V ). Then S = T ∗ if and

only if

〈Tv,w〉W = 〈v, Sw〉V for all v ∈ V , w ∈ W . (12)

5 Properties of the adjoint operator

Theorem 5.1. Let
(

U , 〈 · , · 〉U
)

,
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be three

finite dimensional vector space over the same scalar field F and with posi-

tive definite inner products. Let S ∈ L (U ,V ) and T ∈ L (V ,W ). Then

(TS)∗ = S∗T ∗.

Proof. By definition for every u ∈ U , v ∈ V and w ∈ W we have

S∗v = Φ−1
U

(

ΦV (v) ◦ S
)

T ∗w = Φ−1
V

(

ΦW (w) ◦ T
)

(TS)∗w = Φ−1
U

(

ΦW (w) ◦ (TS)
)

With this, for arbitrary w ∈ W we calculate

S∗T ∗w = S∗(T ∗w)

= Φ−1
U

(

ΦV

(

Φ−1
V

(

ΦW (w) ◦ T
))

◦ S
)

= Φ−1
U

(

ΦW (w) ◦ T ◦ S
)

= (TS)∗w.

Thus (TS)∗ = S∗T ∗.

A function f : X → X is said to be an involution if it is its own inverse,
that is if f(f(x)) = x for all x ∈ X.
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Theorem 5.2. Let
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be two finite dimensional

vector spaces over the same scalar field F and with positive definite inner

products. The adjoint mapping

∗ : L (V ,W ) → L (W ,V )

is an anti-linear bijection. Its inverse is the adjoint mapping from L (W ,V )
to L (V ,W ). In particular the adjoint mapping in L (V ,V ) is an anti-linear

involution.

Proof. To prove that ∗ : L (V ,W ) → L (W ,V ) is anti-linear let α, β ∈ F

be arbitrary and let S, T ∈ L (V ,W ) be arbitrary. By the definition of ∗

for arbitrary w ∈ W we have

(αS + βT )∗w = Φ−1
V

(

ΦW (w) ◦ (αS + βT )
)

= Φ−1
V

(

αΦW (w) ◦ S + βΦW (w) ◦ T
)

= αΦ−1
V

(

ΦW (w) ◦ S
)

+ βΦ−1
V

(

ΦW (w) ◦ T
)

= αS∗w + βT ∗w

=
(

αS∗ + βT ∗
)

w.

Hence (αS + βT )∗ = αS∗ + βT ∗.
To prove that the adjoint mapping ∗ : L (V ,W ) → L (W ,V ) is a

bijection we will use the adjoint mapping ⋆ : L (W ,V ) → L (V ,W ). In
fact we will prove that ⋆ is the inverse of ∗. To this end we will prove that
for all S ∈ L (V ,W ) we have that (S∗)⋆ = S and that for all T ∈ L (W ,V )
we have that (T ⋆)∗ = T .

Here are the proofs. By the definition of the mapping ∗ : L (V ,W ) →
L (W ,V ) for an arbitrary S ∈ L (V ,W ) we have

∀ v ∈ V ∀w ∈ W 〈S∗w, v〉V = 〈w,Sv〉W .

By Proposition 4.2 this identity yields (S∗)⋆ = S. By the definition of the
mapping ⋆ : L (W ,V ) → L (V ,W ) for an arbitrary T ∈ L (W ,V ) we
have

∀w ∈ W ∀ v ∈ V 〈T ∗v,w〉W = 〈v, Tw〉V .

By Proposition 4.2 this identity yields (T ⋆)∗ = T .

Theorem 5.3. Let
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be two finite dimensional

vector spaces over the same scalar field F and with positive definite inner

products. The following statements hold.
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(i) nul(T ∗) = (ran T )⊥.

(ii) ran(T ∗) = (nulT )⊥.

(iii) nul(T ) = (ranT ∗)⊥.

(iv) ran(T ) = (nulT ∗)⊥.

Theorem 5.4. Let
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be two finite dimensional

vector spaces over the same scalar field F and with positive definite inner

products. Let B and C be orthonormal bases of
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

,

respectively, and let T ∈
(

V , 〈 · , · 〉V
)

. Then M
C
B
(T ∗) is the conjugate trans-

pose of the matrix M
B
C
(T ).

Proof. Let B = {v1, . . . , vm} and C = {w1, . . . , wn} be orthonormal bases
from the theorem. Let i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Then the term in
the j-th column and the i-th row of the n×m matrix M

B
C
(T ) is 〈Tvj , wi〉,

while the term in the i-th column and the j-th row of the m×n matrix
M

C
B
(T ∗) is

〈T ∗wi, vj〉 = 〈wi, T vj〉 = 〈Tvj , wi〉.
This proves claim.

Lemma 5.5. Let V be a vector space over F and let 〈 · , · 〉 be a positive

definite inner product on V . Let U be a subspace of V and let T ∈ L (V ).
The subspace U is invariant under T if and only if the subspace U ⊥ is

invariant under T ∗.

Proof. By the definition of adjoint we have

〈Tu, v〉 = 〈u, T ∗v〉 (13)

for all u, v ∈ V . Assume TU ⊆ U . From (13) we get

0 = 〈Tu, v〉 = 〈u, T ∗v〉 ∀u ∈ U and ∀v ∈ U
⊥.

Therefore, T ∗v ∈ U ⊥ for all v ∈ U ⊥. This proves “only if” part.
The proof of the “if” part is similar.

6 Self-adjoint and normal operators

Definition 6.1. Let V be a vector space over F and let 〈 · , · 〉 be a positive
definite inner product on V . An operator T ∈ L (V ) is said to be self-adjoint
if T = T ∗. An operator T ∈ L (V ) is said to be normal if TT ∗ = T ∗T .
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Proposition 6.2. Let V be a vector space over F and let 〈 · , · 〉 be a positive

definite inner product on V . All eigenvalues of a self-adjoint T ∈ L (V ) are
real.

In the rest of this section we will consider only scalar
fields F which contain the imaginary unit i.

Proposition 6.3. Let V be a vector space over F and let 〈 · , · 〉 be a positive

definite inner product on V . Let T ∈ L (V ). Then T = 0 if and only if

〈Tv, v〉 = 0 for all v ∈ V .

Proposition 6.4. Let V be a vector space over F and let 〈 · , · 〉 be a positive

definite inner product on V . An operator T ∈ L (V ) is self-adjoint if and

only if 〈Tv, v〉 ∈ R for all v ∈ V .

Theorem 6.5. Let V be a vector space over F and let 〈 · , · 〉 be a positive

definite inner product on V . An operator T ∈ L (V ) is normal if and only

if ‖Tv‖ = ‖T ∗v‖ for all v ∈ V .

Corollary 6.6. Let V be a vector space over F, let 〈 · , · 〉 be a positive

definite inner product on V and let T ∈ L (V ) be normal. Then λ ∈ C is

an eigenvalue of T if and only if λ is an eigenvalue of T ∗ and

nul
(

T ∗ − λI
)

= nul(T − λI).

7 The Spectral Theorem

In the rest of the notes we will consider only the
scalar field C.

Theorem 7.1 (Theorem 7.9). Let V be a finite dimensional vector space

over C and 〈 · , · 〉 be a positive definite inner product on V . Let T ∈ L (V ).
Then V has an orthonormal basis which consists of eigenvectors of T if and

only if T is normal. In other words, T is normal if and only if there exists

an orthonormal basis B of V such that MB
B
(T ) is a diagonal matrix.

Proof. Let n = dim(V ). Assume that T is normal. By Corollary 3.7 there
exists an orthonormal basis B = {u1, . . . , un} of V such that M

B
B
(T ) is

upper-triangular. That is,

M
B
B(T ) =











〈Tu1, u1〉 〈Tu2, u1〉 · · · 〈Tun, u1〉
0 〈Tu2, u2〉 · · · 〈Tun, u2〉
...

...
. . .

...
0 0 · · · 〈Tun, un〉











, (14)
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or, equivalently,

Tuk =
k
∑

j=1

〈Tuk, uj〉uj for all k ∈ {1, . . . , n}. (15)

By Theorem 5.4(??) we have

M
B
B(T ∗) =











〈Tu1, u1〉 0 · · · 0

〈Tu2, u1〉 〈Tu2, u2〉 · · · 0
...

...
. . .

...

〈Tun, u1〉 〈Tun, u2〉 · · · 〈Tun, un〉











.

Consequently,

T ∗uk =
n
∑

j=k

〈Tuj , uk〉uj for all k ∈ {1, . . . , n}. (16)

Since T is normal, Theorem 6.5 implies

‖Tuk‖2 = ‖T ∗uk‖2 for all k ∈ {1, . . . , n}.

Together with (15) and (16) the last identities become

k
∑

j=1

∣

∣〈Tuk, uj〉
∣

∣

2
=

n
∑

j=k

∣

∣〈Tuj, uk〉
∣

∣

2
for all k ∈ {1, . . . , n},

or, equivalently,

k
∑

j=1

∣

∣〈Tuk, uj〉
∣

∣

2
=

n
∑

j=k

∣

∣〈Tuj, uk〉
∣

∣

2
for all k ∈ {1, . . . , n}. (17)

The equality in (17) corresponding to k = 1 reads

∣

∣〈Tu1, u1〉
∣

∣

2
=
∣

∣〈Tu1, u1〉
∣

∣

2
+

n
∑

j=2

∣

∣〈Tuj, u1〉
∣

∣

2
,

which implies
〈Tuj , u1〉 = 0 for all j ∈ {2, . . . , n} (18)

In other words we have proved that the off-diagonal entries in the first row
of the upper triangular matrix M

B
B
(T ) in (14) are all zero.
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Substituting the value 〈Tu2, u1〉 = 0 (from (18)) in the equality in (17)
corresponding to k = 2 reads we get

∣

∣〈Tu2, u2〉
∣

∣

2
=
∣

∣〈Tu2, u2〉
∣

∣

2
+

n
∑

j=3

∣

∣〈Tuj, u2〉
∣

∣

2
,

which implies
〈Tuj , u2〉 = 0 for all j ∈ {3, . . . , n} (19)

In other words we have proved that the off-diagonal entries in the second
row of the upper triangular matrix M

B
B
(T ) in (14) are all zero.

Repeating this reasoning n− 2 more times would prove that all the off-
diagonal entries of the upper triangular matrix M

B
B
(T ) in (14) are zero. That

is, MB
B
(T ) is a diagonal matrix.

To prove the converse, assume that there exists an orthonormal basis
B = {u1, . . . , un} of V which consists of eigenvectors of T . That is, for
some λj ∈ C,

Tuj = λjuj for all j ∈ {1, . . . , n},
Then, for arbitrary v ∈ V we have

Tv = T

(

n
∑

j=1

〈v, uj〉uj
)

=

n
∑

j=1

〈v, uj〉Tuj =
n
∑

j=1

λj〈v, uj〉uj . (20)

Therefore, for arbitrary k ∈ {1, . . . , n} we have

〈Tv, uk〉 = λk〈v, uk〉. (21)

Now we calculate

T ∗Tv =

n
∑

j=1

〈T ∗Tv, uj〉uj

=
n
∑

j=1

〈Tv, Tuj〉uj

=

n
∑

j=1

〈Tv, Tuj〉uj

=

n
∑

j=1

λj〈Tv, uj〉uj
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=

n
∑

j=1

λjλj〈v, uj〉uj .

Similarly,

TT ∗v = T

(

n
∑

j=1

〈T ∗v, uj〉uj
)

=

n
∑

j=1

〈v, Tuj〉Tuj

=
n
∑

j=1

〈v, λjuj〉λjuj

=

n
∑

j=1

λjλj〈v, uj〉uj .

Thus, we proved T ∗Tv = TT ∗v, that is, T is normal.

A different proof of the “only if” part of the spectral theorem for normal
operators follows. In this proof we use δij to represent the Kronecker delta
function; that is, δij = 1 if i = j and δij = 0 otherwise.

Proof. Set n = dimV . We first prove “only if” part. Assume that T is
normal. Set

K =

{

k ∈ {1, . . . , n} :
∃w1, . . . , wk ∈ V and ∃λ1, . . . , λk ∈ C

such that 〈wi, wj〉 = δij and Twj = λjwj

for all i, j ∈ {1, . . . , k}

}

Clearly 1 ∈ K. Since K is finite, m = maxK exists. Clearly, m ≤ n.
Next we will prove that k ∈ K and k < n implies that k + 1 ∈ K.

Assume k ∈ K and k < n. Let w1, . . . , wk ∈ V and λ1, . . . , λk ∈ C be such
that 〈wi, wj〉 = δij and Twj = λjwj for all i, j ∈ {1, . . . , k}. Set

W = span{w1, . . . , wk}.

Since w1, . . . , wk are eigenvectors of T we have TW ⊆ W . By Lemma 5.5,
T ∗
(

W ⊥
)

⊆ W ⊥. Thus, T ∗|W ⊥ ∈ L
(

W ⊥
)

. Since dimW = k < n we
have dim

(

W ⊥
)

= n − k ≥ 1. Since W ⊥ is a complex vector space the
operator T ∗|W ⊥ has an eigenvalue µ with the corresponding unit eigenvector
u. Clearly, u ∈ W ⊥ and T ∗u = µu. Since T ∗ is normal, Corollary 6.6 yields
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that Tu = µu. Since u ∈ W ⊥ and Tu = µu, setting wk+1 = u and λk+1 = µ
we have

〈wi, wj〉 = δij and Twj = λjwj for all i, j ∈ {1, . . . , k, k + 1}.

Thus k + 1 ∈ K. Consequently, k < m. Thus, for k ∈ K, we have proved
the implication

k < n ⇒ k < m.

The contrapositive of this implication is: For k ∈ K, we have

k ≥ m ⇒ k ≥ n.

In particular, for m ∈ K we have m = m implies m ≥ n. Since m ≤ n is also
true, this proves that m = n. That is, n ∈ K. This implies that there exist
u1, . . . , un ∈ V and λ1, . . . , λn ∈ C such that 〈ui, uj〉 = δij and Tuj = λjuj
for all i, j ∈ {1, . . . , n}.

Since u1, . . . , un are orthonormal, they are linearly independent. Since
n = dimV , it turns out that u1, . . . , un form a basis of V . This completes
the proof.

8 Invariance under a normal operator

Theorem 8.1 (Theorem 7.18). Let V be a finite dimensional vector space

over C. Let 〈·, ·〉 be a positive definite inner product on V . Let T ∈ L (V )
be normal and let U be a subspace of V . Then

TU ⊆ U ⇔ TU
⊥ ⊆ U

⊥

(Recall that we have previously proved that for any T ∈ L (V ), TU ⊆
U ⇔ T ∗U ⊥ ⊆ U ⊥. Hence if T is normal, showing that any one of U or
U ⊥ is invariant under either T or T ∗ implies that the rest are, also.)

Proof. Assume TU ⊆ U . We know V = U ⊕ U ⊥. Let u1, . . . , um be
an orthonormal basis of U and um+1, . . . , un be an orthonormal basis of
U ⊥. Then u1, . . . , un is an orthonormal basis of V . If j ∈ {1, . . . ,m} then
uj ∈ U , so Tuj ∈ U . Hence

Tuj =
m
∑

k=1

〈Tuj , uk〉uk.
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Also, clearly,

T ∗uj =
n
∑

k=1

〈T ∗uj, uk〉uk.

By normality of T we have ‖Tuj‖2 = ‖T ∗uj‖2 for all j ∈ {1, . . . ,m}. Start-
ing with this, we calculate

m
∑

j=1

‖Tuj‖2 =
m
∑

j=1

‖T ∗uj‖2

Pythag. thm. =

m
∑

j=1

n
∑

k=1

|〈T ∗uj, uk〉|2

group terms =
m
∑

j=1

m
∑

k=1

|〈T ∗uj, uk〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj, uk〉|2

def. of T ∗ =

m
∑

j=1

m
∑

k=1

|〈uj , Tuk〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj , uk〉|2

|α| = |α| =

m
∑

j=1

m
∑

k=1

|〈Tuk, uj〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj , uk〉|2

order of sum. =

m
∑

k=1

m
∑

j=1

|〈Tuk, uj〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj , uk〉|2

Pythag. thm. =

m
∑

k=1

‖Tuk‖2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj, uk〉|2.

From the above equality we deduce that
∑m

j=1

∑n
k=m+1 |〈T ∗uj , uk〉|2 = 0. As

each term is nonnegative, we conclude that |〈T ∗uj , uk〉|2 = |〈uj , Tuk〉|2 = 0,
that is,

〈uj, Tuk〉 = 0 for all j ∈ {1, . . . ,m}, k ∈ {m+ 1, . . . , n}. (22)

Let now w ∈ U ⊥ be arbitrary. Then

Tw =

n
∑

j=1

〈

Tw, uj
〉

uj

=
n
∑

j=1

〈

n
∑

k=m+1

〈w, uk〉Tuk, uj
〉

uj
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=

n
∑

j=1

n
∑

k=m+1

〈w, uk〉
〈

Tuk, uj
〉

uj

by (22) =
n
∑

j=m+1

n
∑

k=m+1

〈w, uk〉
〈

Tuk, uj
〉

uj

Hence Tw ∈ U ⊥, that is TU ⊥ ⊆ U ⊥.

A different proof follows. The proof below uses the property of polyno-
mials that for arbitrary distinct α1, . . . , αm ∈ C and arbitrary β1, . . . , βm ∈
C there exists a polynomial p(z) ∈ C[z]<m such that p(αj) = βj , j ∈
{1, . . . ,m}.

Proof. Assume T is normal. Then there exists an orthonormal basis {u1, . . . , un}
and {λ1, . . . , λn} ⊆ C such that

Tuj = λjuj for all j ∈ {1, . . . , n}.

Consequently,
T ∗uj = λjuj for all j ∈ {1, . . . , n}.

Let v be arbitrary in V . Applying T and T ∗ to the expansion of v in the
basis vectors {u1, . . . , un} we obtain

Tv =

n
∑

j=1

λj〈v, uj〉uj

and

T ∗v =

n
∑

j=1

λj〈v, uj〉uj .

Let p(z) = a0 + a1z + · · ·+ amzm ∈ C[z] be such that

p(λj) = λj, for all j ∈ {1, . . . , n}.

Clearly, for all j ∈ {1, . . . , n} we have

p(T )uj = p(λj)uj = λjuj = T ∗uj.

Therefore p(T ) = T ∗.
Now assume TU ⊆ U . Then T kU ⊆ U for all k ∈ N and also αTU ⊆

U for all α ∈ C. Hence p(T )U = T ∗U ⊆ U . The theorem follows from
Lemma 5.5.
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Lastly we review the proof in the book. This proof is in essence very
similar to the first proof. It brings up a matrix representation of T for easier
visualization of what we are doing.

Proof. Assume TU ⊆ U . By Lemma 5.5 T ∗(U ⊥) ⊆ U ⊥.
Now V = U ⊕U ⊥. Let n = dim(V ). Let {u1, . . . , um} be an orthonor-

mal basis of U and {um+1, . . . , un} be an orthonormal basis of U ⊥. Then
B = {u1, . . . , un} is an orthonormal basis of V . Since Tuj ∈ U for all
j ∈ {1, . . . ,m} we have

M
B
B(T ) =





















Tu1 ··· Tum Tum+1 ··· Tun

u1 〈Tu1, um〉 · · · 〈Tum, u1〉
...

...
. . .

... B
um 〈Tu1, u1〉 · · · 〈Tum, um〉

um+1

... 0 C
un





















Here we added the basis vectors and their images around the matrix to
emphasize that a vector Tuk in the zeroth row is expended as a linear
combination of the vectors in the zeroth column with the coefficients given
in the k-th column of the matrix.

For j ∈ {1, . . . ,m} we have Tuj =
∑m

k=1〈Tuj, uk〉uk. By Pythagorean
Theorem ‖Tuj‖2 =

∑m
k=1 |〈Tuj , uk〉|2 and ‖T ∗uj‖2 =

∑n
k=1 |〈T ∗uj , uk〉|2.

Since T is normal,
∑m

j=1 ‖Tuj‖2 =
∑m

j=1 ‖T ∗uj‖2. Now we have

m
∑

j=1

m
∑

k=1

|〈Tuj , uk〉|2 =
m
∑

j=1

m
∑

k=1

|〈T ∗uj , uk〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj, uk〉|2

=

m
∑

j=1

m
∑

k=1

|〈Tuk, uj〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj, uk〉|2.

Canceling the identical terms we get that the last double sum which consists
of the nonnegative terms is equal to 0. Hence |〈T ∗uj , uk〉|2 = |〈uj , Tuk〉|2
= |〈Tuk, uj〉|2, and thus, 〈Tuk, uj〉 = 0 for all j ∈ {1, . . . ,m} and for all k ∈
{m+1, . . . , n}. This proves that B = 0 in the above matrix representation.
Therefore, Tuk is orthogonal to U for all k ∈ {m+1, . . . , n}, which implies
T
(

U ⊥
)

⊆ U ⊥.

Theorem 8.1 and Lemma 5.5 yield the following corollary.
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Corollary 8.2. Let V be a finite dimensional vector space over C. Let 〈·, ·〉
be a positive definite inner product on V . Let T ∈ L (V ) be normal and let

U be a subspace of V . The following statements are equivalent:

(a) TU ⊆ U .

(b) T
(

U ⊥
)

⊆ U ⊥.

(c) T ∗U ⊆ U .

(d) T ∗
(

U ⊥
)

⊆ U ⊥.

If any of the for above statements are true, then the following statements

are true

(e)
(

T
∣

∣

U

)∗
= T ∗

∣

∣

U
.

(f)
(

T
∣

∣

U⊥

)∗
= T ∗

∣

∣

U⊥.

(g) T
∣

∣

U
is a normal operator on U .

(h) T
∣

∣

U⊥ is a normal operator on U⊥.

9 Polar Decomposition

There are two distinct subsets of C. Those are the set of nonnegative real
numbers, denoted by R≥0, and the set of complex numbers of modulus 1,
denoted by T. An important tool in complex analysis is the polar represen-
tation of a complex number: for every α ∈ C there exists r ∈ R≥0 and u ∈ T

such that α− r u.
In this section we will prove that an analogous statement holds for op-

erators in L (V ), where V is a finite dimensional vector space over C with
a positive definite inner product. The first step towards proving this anal-
ogous result is identifying operators in L (V ) which will play the role of
nonnegative real numbers and the role of complex numbers with modulus 1.
That is done in the following two definitions.

Definition 9.1. Let V be a finite dimensional vector space over C with a
positive definite inner product 〈 · , · 〉. An operator Q ∈ L (V ) is said to be
nonnegative if 〈Qv, v〉 ≥ 0 for all v ∈ V .

Note that Axler uses the term “positive” instead of nonnegative. We
think that nonnegative is more appropriate, since 0L (V ) is a nonnegative
operator. There is nothing positive about any zero, we think.
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Proposition 9.2. Let V be a finite dimensional vector space over C with a

positive definite inner product 〈 · , · 〉 and let T ∈ L (V ). Then T is nonneg-

ative if and only if T is normal and all its eigenvalues are nonnegative.

Theorem 9.3. Let V be a finite dimensional vector space over C with a

positive definite inner product 〈 · , · 〉. Let Q ∈ L (V ) be a nonnegative opera-

tor and let u1, . . . , un be an orthonormal basis of V and let λ1, . . . , λn ∈ R≥0

be such that

Quj = λjuj for all j ∈ {1, . . . , n}. (23)

The following statements are equivalent.

(a) S ∈ L (V ) be a nonnegative operator and S2 = Q.

(b) For every λ ∈ R≥0 we have

nul(Q− λI) = nul(S −
√
λI).

(c) For every v ∈ V we have

Sv =
n
∑

j=1

√

λj〈v, uj〉uj .

Proof. (a) ⇒ (b). We first prove that nulQ = nulS. Since Q = S2 we have
nulS ⊆ nulQ. Let v ∈ nulQ, that is, let Qv = S2v = 0. Then 〈S2v, v〉 = 0.
Since S is nonnegative it is self-adjoint. Therefore, 〈S2v, v〉 = 〈Sv, Sv〉 =
‖Sv‖2. Hence, ‖Sv‖ = 0, and thus Sv = 0. This proves that nulQ ⊆ nulS
and (b) is proved for λ = 0.

Let λ > 0. Then the operator S +
√
λI is invertible. To prove this, let

v ∈ V \ {0V } be arbitrary. Then ‖v‖ > 0 and therefore

〈

(S +
√
λI)v, v

〉

= 〈Sv, v〉 +
√
λ〈v, v〉 ≥

√
λ‖v‖2 > 0.

Thus, v 6= 0 implies (S+
√
λI)v 6= 0. This proves the injectivity of S+

√
λI.

To prove nul(Q−λI) = nul(S−
√
λI), let v ∈ V be arbitrary and notice

that (Q − λI)v = 0 if and only if
(

S2 −
√
λ
2
I
)

v = 0, which, in turn, is
equivalent to

(

S +
√
λI
)(

S −
√
λI
)

v = 0.

Since S+
√
λI is injective, the last equality is equivalent to

(

S−
√
λI
)

v = 0.
This completes the proof of (b).
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(b)⇒ (c). Let u1, . . . , un be an orthonormal basis of V and let λ1, . . . , λn ∈
R≥0 be such that (23) holds. For arbitrary j ∈ {1, . . . , n} (23) yields
uj ∈ nul(Q− λjI). By (b), uj ∈ nul(S −

√

λjI). Thus

Suj =
√

λjuj for all j ∈ {1, . . . , n}. (24)

Let v =
∑n

j=1〈v, uj〉uj be arbitrary vector in V . Then, the linearity of S
and (24) imply the claim in (c).

The implication (c) ⇒ (a) is straightforward.

The implication (a) ⇒ (c) of Theorem 9.3 yields that for a given non-
negative Q a nonnegative S such that Q = S2 is uniquely determined. The
common notation for this unique S is

√
Q.

Definition 9.4. Let V be a finite dimensional vector space over C with a
positive definite inner product 〈 · , · 〉. An operator U ∈ L (V ) is said to be
unitary if U∗U = I.

Proposition 9.5. Let V be a finite dimensional vector space over C with

a positive definite inner product 〈 · , · 〉 and let T ∈ L (V ). The following

statements are equivalent.

(a) T is unitary.

(b) For all u, v ∈ V we have 〈Tu, Tv〉 = 〈u, v〉.
(c) For all v ∈ V we have ‖Tv‖ = ‖v‖.
(d) T is normal and all its eigenvalues have modulus 1.

Theorem 9.6 (Polar Decomposition in L (V ), Theorem 7.41). Let V be a

finite dimensional vector space over C with a positive definite inner product

〈 · , · 〉. For every T ∈ L (V ) there exist a unitary operator U in L (V ) and
a unique nonnegative Q ∈ L (V ) such that T = UQ; U is unique if and only

if T is invertible.

Proof. First, notice that the operator T ∗T is nonnegative: for every v ∈ V

we have
〈T ∗Tv, v〉 = 〈Tv, Tv〉 = ||Tv||2 ≥ 0.

To prove the uniqueness of Q assume that T = UQ with U unitary and
Q nonnegative. Then Q∗ = Q, U∗ = U−1 and therefore, T ∗T = Q∗U∗UQ =
QU−1UQ = Q2. Since Q is nonnegative we have Q =

√
T ∗T .

Set Q =
√
T ∗T . By Theorem 9.3(b) we have nulQ = nul(T ∗T ). More-

over, we have nul(T ∗T ) = nulT . The inclusion nulT ⊆ nul(T ∗T ) is trivial.
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For the converse inclusion notice that v ∈ nul(T ∗T ) implies T ∗Tv = 0, which
yields 〈T ∗Tv, v〉 = 0 and thus 〈Tv, Tv〉 = 0. Consequently, ‖Tv‖ = 0, that
is Tv = 0, yielding v ∈ nulT . So,

nulQ = nul(T ∗T ) = nulT (25)

is proved.
First assume that T is invertible. By (25) and ??, Q is invertible as

well. Therefore T = UQ is equivalent to U = TQ−1 in this case. Since
Q is unique, this proves the uniqueness of U . Set U = TQ−1. Since Q
is self-adjoint, Q−1 is also self-adjoint. Therefore U∗ = Q−1T ∗, yielding
U∗U = Q−1T ∗TQ−1 = Q−1Q2Q−1 = I. That is, U is unitary.

Now assume that T is not invertible. By the Nullity-Rank Theorem,
dim(ranQ) = dim(ranT ). Since T is not invertible, dim(ranQ) = dim(ranT ) <
dimV , implying that

dim
(

(ranQ)⊥
)

= dim
(

(ranT )⊥
)

> 0. (26)

We will define U : V → V in two steps. First we define the action of U
on ranQ, that is we define the operator Ur : ranQ → ranT , then we define
an operator Up : (ranQ)⊥ → (ran T )⊥.

We define Ur : ranQ → ranT in the following way: Let u ∈ ranQ be
arbitrary and let x ∈ V be such that u = Qx. Then we set

Uru = Tx.

First we need to show that Ur is well defined. Let x1, x2 ∈ V be such that
u = Qx1 = Qx2. Then, x1 − x2 ∈ nulQ. Since nulQ = nulT , we thus have
x1 − x2 ∈ nulT . Consequently, Tx1 = Tx2.

To prove that Ur is angle-preserving, let u1, u2 ∈ ranQ be arbitrary and
let x1, x1 ∈ V be such that u1 = Qx1 and u2 = Qx2 and calculate

〈Uru1, Uru2〉 =
〈

Ur(Qx1), Ur(Qx2)
〉

by definition of Ur = 〈Tx1, Tx2〉
by definition of adjoint = 〈T ∗Tx1, x2〉

by definition of Q = 〈Q2x1, x2〉
since Q is self-adjoint = 〈Qx1, Qx2〉

by definition of x1, x2 = 〈u1, u2〉

Thus Ur : ran(Q) → ran(T ) is angle-preserving.
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Next we define an angle-preserving operator

Up : (ranQ)⊥ → (ranT )⊥.

By (26), we can set

m = dim
(

(ranQ)⊥
)

= dim
(

(ranT )⊥
)

> 0.

Let e1, . . . , em be an orthonormal basis on (ranQ)⊥ and let f1, . . . , fm be an
orthonormal basis on (ranT )⊥. For arbitrary w ∈ (ranP )⊥ define

Upw = Up

( m
∑

j=1

〈w, ej〉ej
)

=

m
∑

j=1

〈w, ej〉fj.

Then, for w1, w2 ∈ (ranQ)⊥ we have

〈Upw1, Upw2〉 =
〈 m
∑

i=1

〈w1, ei〉fi,
m
∑

j=1

〈w2, ej〉fj
〉

=

m
∑

j=1

〈w1, ej〉〈w2, ej〉 = 〈w1, w2〉.

Hence Up is angle-preserving on (ranQ)⊥.
Since the orthomormal bases in the definition of Up were arbitrary and

since m > 0, the operator Up is not unique.
Finally we define U : V → V as a direct sum of Ura dna Up. Recall that

V = (ranQ)⊕ (ranQ)⊥.

Let v ∈ V be arbitrary. Then there exist unique u ∈ (ranQ) and w ∈
(ranQ)⊥ such that v = u+ w. Set

Uv = Uru+ Upw.

We claim that U is angle-preserving. Let v1, v2 ∈ V be arbitrary and let
vi = ui + wi with ui ∈ (ranQ) and wi ∈ (ranQ)⊥, i ∈ {1, 2}. Notice that

〈v1, v2〉 = 〈u1 + w1, u2 + w2〉 = 〈u1, u2〉+ 〈w1, w2〉, (27)

since u1, u2 are orthogonal to w1, w2. Similarly

〈Uru1 + Upw1, Uru2 + Upw2〉 = 〈Uru1, Uru2〉+ 〈Upw1, Upw2〉, (28)

since Uru1, Uru2 ∈ (ranT ) and Upw1, Upw2 ∈ (ranT )⊥. Now we calculate,
starting with the definition of U ,

〈Uv1, Uv2〉 = 〈Uru1 + Upw1, Uru2 + Upw2〉
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by (28) = 〈Uru1, Uru2〉+ 〈Upw1, Upw2〉

Ur and Up are angle-preserving = 〈u1, u2〉+ 〈w1, w2〉

by (27) = 〈v1, v2〉.

Hence U is angle-preserving and by Proposition 9.5 we have that U is uni-
tary.

Finally we show that T = UQ. Let v ∈ V be arbitrary. Then Qv ∈
ranQ. By definitions of U and Ur we have

UQv = UrQv = Tv.

Thus T = UQ, where U is unitary and Q is nonnegative.

Theorem 9.7 (Singular-Value Decomposition, Theorem 7.46). Let V be a

finite dimensional vector space over C with a positive definite inner prod-

uct 〈 · , · 〉 and let T ∈ L (V ). Then there exist orthonormal bases B =
{u1, . . . , un} and C = {w1, . . . , wn} and nonnegative scalars σ1, . . . , σn such

that for every v ∈ V we have

Tv =
n
∑

j=1

σj〈v, uj〉wj . (29)

In other words, there exist orthonormal bases B and C such that the matrix

M
B
C
(T ) is diagonal with nonnegative entries on the diagonal.

Proof. Let T = UQ be a polar decomposition of T , that is let U be unitary
and Q =

√
T ∗T . Since Q is nonnegative, it is normal with nonnegative

eigenvalues. By the spectral theorem, there exists an orthonormal basis
{u1, . . . , un} of V and nonnegative scalars σ1, . . . , σn such that

Quj = σjuj for all j ∈ {1, . . . , n}. (30)

Since {u1, . . . , un} is an orthonormal basis, for arbitrary v ∈ V we have

v =
n
∑

j=1

〈v, uj〉uj . (31)

Applying Q to (31), using its linearity and (30) we get

Qv =

n
∑

j=1

σj〈v, uj〉uj . (32)
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Applying U to (32) and using its linearity we get

UQv =

n
∑

j=1

σj〈v, uj〉Uuj . (33)

Set wj = Uuj, j ∈ {1, . . . , n}. This definition and the fact that U is angle-
preserving yield

〈wi, wj〉 = 〈Uui, Uuj〉 = 〈ui, uj〉 = δij .

Thus {w1, . . . , wn} is an orthonormal basis. Substituting wj = Uuj in (33)
and using T = UQ we get (29).

The values σ1, . . . , σn from Theorem 9.7, which are in fact the eigenvalues
of

√
T ∗T , are called singular values of T .
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