Inner Product Spaces

Branko Ćurgus

March 7, 2017 at 16:15

1 Inner Product Spaces

We will first introduce several "dot-product-like" objects. We start with the most general.

Definition 1.1. Let \mathscr{V} be a vector space over a scalar field \mathbb{F}. A function

$$
[\cdot, \cdot]: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}
$$

is a sesquilinear form on \mathscr{V} if the following two conditions are satisfied.
(a) (linearity in the first variable) $\forall \alpha, \beta \in \mathbb{F} \quad \forall u, v, w \in \mathscr{V}$

$$
[\alpha u+\beta v, w]=\alpha[u, w]+\beta[v, w] .
$$

(b) (anti-linearity in the second variable) $\forall \alpha, \beta \in \mathbb{F} \quad \forall u, v, w \in \mathscr{V} \quad[u, \alpha v+$ $\beta w]=\bar{\alpha}[u, v]+\bar{\beta}[u, w]$.
Example 1.2. Let $M \in \mathbb{C}^{n \times n}$ be arbitrary. Then

$$
[\mathbf{x}, \mathbf{y}]=(M \mathbf{x}) \cdot \mathbf{y}, \quad \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}
$$

is a sesquilinear form on the complex vector space \mathbb{C}^{n}. Here \cdot denotes the usual dot product in \mathbb{C}.

An abstract form of the Pythagorean Theorem holds for sesquilinear forms.

Theorem 1.3 (Pythagorean Theorem). Let $[\cdot, \cdot]$ be a sesquilinear form on a vector space \mathscr{V} over a scalar field \mathbb{F}. If $v_{1}, \cdots, v_{n} \in \mathscr{V}$ are such that $\left[v_{j}, v_{k}\right]=0$ whenever $j \neq k, j, k \in\{1, \ldots, n\}$, then

$$
\left[\sum_{j=1}^{n} v_{j}, \sum_{k=1}^{n} v_{k}\right]=\sum_{j=1}^{n}\left[v_{j}, v_{j}\right] .
$$

Proof. Assume that $\left[v_{j}, v_{k}\right]=0$ whenever $j \neq k, j, k \in\{1, \ldots, n\}$ and apply the additivity of the sesquilinear form in both variables to get:

$$
\begin{aligned}
{\left[\sum_{j=1}^{n} v_{j}, \sum_{k=1}^{n} v_{k}\right] } & =\sum_{j=1}^{n} \sum_{k=1}^{n}\left[v_{j}, v_{k}\right] \\
& =\sum_{j=1}^{n}\left[v_{j}, v_{j}\right] .
\end{aligned}
$$

Theorem 1.4 (Polarization identity). Let \mathscr{V} be a vector space over a scalar field \mathbb{F} and let $[\cdot, \cdot]: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ be a sesquilinear form on \mathscr{V}. If $\mathrm{i} \in \mathbb{F}$, then

$$
\begin{equation*}
[u, v]=\frac{1}{4} \sum_{k=0}^{3} \mathrm{i}^{k}\left[u+\mathrm{i}^{k} v, u+\mathrm{i}^{k} v\right] \tag{1}
\end{equation*}
$$

for all $u, v \in \mathscr{V}$.
Corollary 1.5. Let \mathscr{V} be a vector space over a scalar field \mathbb{F} and let $[\cdot, \cdot]$: $\mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ be a sesquilinear form on \mathscr{V}. If $\mathrm{i} \in \mathbb{F}$ and $[v, v]=0$ for all $v \in \mathscr{V}$, then $[u, v]=0$ for all $u, v \in \mathscr{V}$.

Definition 1.6. Let \mathscr{V} be a vector space over a scalar field \mathbb{F}. A sesquilinear form $[\cdot, \cdot]: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ is hermitian if
(c) (hermiticity) $\forall u, v \in \mathscr{V} \quad \overline{[u, v]}=[v, u]$.

A hermitian sesquilinear form is also called an inner product.
Corollary 1.7. Let \mathscr{V} be a vector space over a scalar field \mathbb{F} such that $\mathrm{i} \in \mathbb{F}$. Let $[\cdot, \cdot]: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ be a sesquilinear form on \mathscr{V}. Then $[\cdot, \cdot]$ is hermitian if and only if $[v, v] \in \mathbb{R}$ for all $v \in \mathscr{V}$.

Proof. The "only if" direction follows from the definition of a hermitian sesquilinear form. To prove "if" direction assume that $[v, v] \in \mathbb{R}$ for all $v \in \mathscr{V}$. Let $u, v \in \mathscr{V}$ be arbitrary. By assumption $\left[u+\mathrm{i}^{k} v, u+\mathrm{i}^{k} v\right] \in \mathbb{R}$ for all $k \in\{0,1,2,3\}$. Therefore

$$
\begin{aligned}
\overline{[u, v]} & =\frac{1}{4} \sum_{k=0}^{3}(-\mathrm{i})^{k}\left[u+\mathrm{i}^{k} v, u+\mathrm{i}^{k} v\right] \\
& =\frac{1}{4} \sum_{k=0}^{3}(-\mathrm{i})^{k} \mathrm{i}^{k}(-\mathrm{i})^{k}\left[(-\mathrm{i})^{k} u+v,(-\mathrm{i})^{k} u+v\right]
\end{aligned}
$$

$$
=\frac{1}{4} \sum_{k=0}^{3}(-\mathrm{i})^{k}\left[v+(-\mathrm{i})^{k} u, v+(-\mathrm{i})^{k} u\right]
$$

Notice that the values of $(-\mathrm{i})^{k}$ at $k=0,1,2,3$, in this particular order are: $1,-\mathrm{i},-1, \mathrm{i}$. These are exactly the values of i^{k} in the order $k=0,3,2,1$. Therefore rearranging the order of terms in the last four-term-sum we have

$$
\frac{1}{4} \sum_{k=0}^{3}(-\mathrm{i})^{k}\left[v+(-\mathrm{i})^{k} u, v+(-\mathrm{i})^{k} u\right]=\frac{1}{4} \sum_{k=0}^{3} \mathrm{i}^{k}\left[v+\mathrm{i}^{k} u, v+\mathrm{i}^{k} u\right] .
$$

Together with Theorem 1.4, the last two displayed equalities yield $\overline{[u, v]}=$ $[v, u]$.

Let $[\cdot, \cdot]$ be an inner product on \mathscr{V}. The hermiticity of $[\cdot, \cdot]$ implies that $\overline{[v, v]}=[v, v]$ for all $v \in \mathscr{V}$. Thus $[v, v] \in \mathbb{R}$ for all $v \in \mathscr{V}$. The natural trichotomy that arises is the motivation for the following definition.

Definition 1.8. An inner product $[\cdot, \cdot]$ on \mathscr{V} is called nonnegative if $[v, v] \geq$ 0 for all $v \in \mathscr{V}$, it is called nonpositive if $[v, v] \leq 0$ for all $v \in \mathscr{V}$, and it is called indefinite if there exist $u \in \mathscr{V}$ and $v \in \mathscr{V}$ such that $[u, u]<0$ and $[v, v]>0$.

2 Nonnegative inner products

The following implication that you might have learned in high school will be useful below.

Theorem 2.1 (High School Theorem). Let a, b, c be real numbers. Assume $a \geq 0$. Then the following implication holds:

$$
\begin{equation*}
\forall x \in \mathbb{Q} \quad a x^{2}+b x+c \geq 0 \quad \Rightarrow \quad b^{2}-4 a c \leq 0 \tag{2}
\end{equation*}
$$

Theorem 2.2 (Cauchy-Bunyakovsky-Schwartz Inequality). Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a nonnegative inner product on \mathscr{V}. Then

$$
\begin{equation*}
\forall u, v \in \mathscr{V} \quad|\langle u, v\rangle|^{2} \leq\langle u, u\rangle\langle v, v\rangle . \tag{3}
\end{equation*}
$$

The equality occurs in (3) if and only if there exists $\alpha, \beta \in \mathbb{F}$ not both 0 such that $\langle\alpha u+\beta v, \alpha u+\beta v\rangle=0$.

Proof. Let $u, v \in \mathscr{V}$ be arbitrary. Since $\langle\cdot, \cdot\rangle$ is nonnegative we have

$$
\begin{equation*}
\forall t \in \mathbb{Q} \quad\langle u+t\langle u, v\rangle v, u+t\langle u, v\rangle v\rangle \geq 0 . \tag{4}
\end{equation*}
$$

Since $\langle\cdot, \cdot\rangle$ is a sesquilinear hermitian form on $\mathscr{V},(4)$ is equivalent to

$$
\begin{equation*}
\forall t \in \mathbb{Q} \quad\langle u, u\rangle+2 t|\langle u, v\rangle|^{2}+t^{2}|\langle u, v\rangle|^{2}\langle v, v\rangle \geq 0 \tag{5}
\end{equation*}
$$

As $\langle v, v\rangle \geq 0$, the High School Theorem applies and (5) implies

$$
\begin{equation*}
4|\langle u, v\rangle|^{4}-4|\langle u, v\rangle|^{2}\langle u, u\rangle\langle v, v\rangle \leq 0 \tag{6}
\end{equation*}
$$

Again, since $\langle u, u\rangle \geq 0$ and $\langle v, v\rangle \geq 0$, (6) is equivalent to

$$
|\langle u, v\rangle|^{2} \leq\langle u, u\rangle\langle v, v\rangle .
$$

Since $u, v \in \mathscr{V}$ were arbitrary, (3) is proved.
Next we prove the claim related to the equality in (3). We first prove the "if" part. Assume that $u, v \in \mathscr{V}$ and $\alpha, \beta \in \mathbb{F}$ are such that $|\alpha|^{2}+|\beta|^{2}>0$ and

$$
\langle\alpha u+\beta v, \alpha u+\beta v\rangle=0
$$

We need to prove that $|\langle u, v\rangle|^{2}=\langle u, u\rangle\langle v, v\rangle$.
Since $|\alpha|^{2}+|\beta|^{2}>0$, we have two cases $\alpha \neq 0$ or $\beta \neq 0$. We consider the case $\alpha \neq 0$. The case $\beta \neq 0$ is similar. Set $w=\alpha u+\beta v$. Then $\langle w, w\rangle=0$ and $u=\gamma v+\delta w$ where $\gamma=-\beta / \alpha$ and $\delta=1 / \alpha$. Notice that the Cauchy-Bunyakovsky-Schwarz inequality and $\langle w, w\rangle=0$ imply that $\langle w, x\rangle=0$ for all $x \in \mathscr{V}$. Now we calculate

$$
|\langle u, v\rangle|=|\langle\gamma v+\delta w, v\rangle|=|\gamma\langle v, v\rangle+\delta\langle w, v\rangle|=|\gamma\langle v, v\rangle|=|\gamma|\langle v, v\rangle
$$

and

$$
\langle u, u\rangle=\langle\gamma v+\delta w, \gamma v+\delta w\rangle=\langle\gamma v, \gamma v\rangle=|\gamma|^{2}\langle v, v\rangle .
$$

Thus,

$$
|\langle u, v\rangle|^{2}=|\gamma|^{2}\langle v, v\rangle^{2}=\langle u, u\rangle\langle v, v\rangle .
$$

This completes the proof of the "if" part.
To prove the "only if" part, assume $|\langle u, v\rangle|^{2}=\langle u, u\rangle\langle v, v\rangle$. If $\langle v, v\rangle=0$, then with $\alpha=0$ and $\beta=1$ we have

$$
\langle\alpha u+\beta v, \alpha u+\beta v\rangle=\langle v, v\rangle=0
$$

If $\langle v, v\rangle \neq 0$, then with $\alpha=\langle v, v\rangle$ and $\beta=-\langle u, v\rangle$ we have $|\alpha|^{2}+|\beta|^{2}>0$ and
$\langle\alpha u+\beta v, \alpha u+\beta v\rangle=\langle v, v\rangle\left(\langle v, v\rangle\langle u, u\rangle-|\langle u, v\rangle|^{2}-|\langle u, v\rangle|^{2}+|\langle u, v\rangle|^{2}\right)=0$.
This completes the proof of the characterization of equality in the Cauchy-Bunyakovsky-Schwartz Inequality.

Corollary 2.3. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a nonnegative inner product on \mathscr{V}. Then the following two implications are equivalent.
(i) If $v \in \mathscr{V}$ and $\langle u, v\rangle=0$ for all $u \in \mathscr{V}$, then $v=0$.
(ii) If $v \in \mathscr{V}$ and $\langle v, v\rangle=0$, then $v=0$.

Proof. Assume that the implication (i) holds and let $v \in \mathscr{V}$ be such that $\langle v, v\rangle=0$. Let $u \in \mathscr{V}$ be arbitrary. By the the CBS inequality

$$
|\langle u, v\rangle|^{2} \leq\langle u, u\rangle\langle v, v\rangle=0 .
$$

Thus, $\langle u, v\rangle=0$ for all $u \in \mathscr{V}$. By (i) we conclude $v=0$. This proves (ii).
The converse is trivial. However, here is a proof. Assume that the implication (ii) holds. To prove (i), let $v \in \mathscr{V}$ and assume $\langle u, v\rangle=0$ for all $u \in \mathscr{V}$. Setting $u=v$ we get $\langle v, v\rangle=0$. Now (ii) yields $v=0$.

Definition 2.4. Let \mathscr{V} be a vector space over a scalar field \mathbb{F}. An inner product $[\cdot, \cdot]$ on \mathscr{V} is nondegenerate if the following implication holds
(d) (nondegenerecy) $u \in \mathscr{V}$ and $[u, v]=0$ for all $v \in \mathscr{V}$ implies $u=0$.

We conclude this section with a characterization of the best approximation property.

Theorem 2.5 (Best Approximation-Orthogonality Theorem). Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space with a nonnegative inner product. Let \mathscr{U} be a subspace of \mathscr{V}. Let $v \in \mathscr{V}$ and $u_{0} \in \mathscr{U}$. Then

$$
\begin{equation*}
\forall u \in \mathscr{U} \quad\left\langle v-u_{0}, v-u_{0}\right\rangle \leq\langle v-u, v-u\rangle . \tag{7}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\forall u \in \mathscr{U} \quad\left\langle v-u_{0}, u\right\rangle=0 . \tag{8}
\end{equation*}
$$

Proof. First we prove the "only if" part. Assume (7). Let $u \in \mathscr{U}$ be arbitrary. Set $\alpha=\left\langle v-u_{0}, u\right\rangle$. Clearly $\alpha \in \mathbb{F}$. Let $t \in \mathbb{Q} \subseteq \mathbb{F}$ be arbitrary. Since $u_{0}-t \alpha u \in \mathscr{U},(7)$ implies

$$
\begin{equation*}
\forall t \in \mathbb{Q} \quad\left\langle v-u_{0}, v-u_{0}\right\rangle \leq\left\langle v-u_{0}+t \alpha u, v-u_{0}+t \alpha u\right\rangle . \tag{9}
\end{equation*}
$$

Now recall that $\alpha=\left\langle v-u_{0}, u\right\rangle$ and expand the right-hand side of (9):

$$
\begin{aligned}
\left\langle v-u_{0}+t \alpha u, v-u_{0}+t \alpha u\right\rangle= & \left\langle v-u_{0}, v-u_{0}\right\rangle+\left\langle v-u_{0}, t \alpha u\right\rangle \\
& \quad+\left\langle t \alpha u, v-u_{0}\right\rangle+\langle t \alpha u, t \alpha u\rangle \\
= & \left\langle v-u_{0}, v-u_{0}\right\rangle+t \bar{\alpha}\left\langle v-u_{0}, u\right\rangle \\
& \quad+t \alpha\left\langle u, v-u_{0}\right\rangle+t^{2}|\alpha|^{2}\langle u, u\rangle \\
= & \left\langle v-u_{0}, v-u_{0}\right\rangle+2 t|\alpha|^{2}+t^{2}|\alpha|^{2}\langle u, u\rangle .
\end{aligned}
$$

Thus (9) is equivalent to

$$
\begin{equation*}
\forall t \in \mathbb{Q} \quad 0 \leq 2 t|\alpha|^{2}+t^{2}|\alpha|^{2}\langle u, u\rangle . \tag{10}
\end{equation*}
$$

By the High School Theorem, (10) implies

$$
4|\alpha|^{4}-4|\alpha|^{2}\langle u, u\rangle 0=4|\alpha|^{4} \leq 0
$$

Consequently $\alpha=\left\langle v-u_{0}, u\right\rangle=0$. Since $u \in \mathscr{U}$ was arbitrary, (8) is proved.
For the "if" part assume that (8) is true. Let $u \in \mathscr{U}$ be arbitrary. Notice that $u_{0}-u \in \mathscr{U}$ and calculate

$$
\begin{aligned}
\langle v-u, v-u\rangle & =\left\langle v-u_{0}+u_{0}-u, v-u_{0}+u_{0}-u\right\rangle \\
\text { by (8) and Pythag. thm. } & =\left\langle v-u_{0}, v-u_{0}\right\rangle+\left\langle u_{0}-u, u_{0}-u\right\rangle \\
\text { since }\left\langle u_{0}-u, u_{0}-u\right\rangle \geq 0 & \geq\left\langle v-u_{0}, v-u_{0}\right\rangle .
\end{aligned}
$$

This proves (7).

3 Positive definite inner products

It follows from Corollary 2.3 that a nonnegative inner product $\langle\cdot, \cdot\rangle$ on \mathscr{V} is nondegenerate if and only if $\langle v, v\rangle=0$ implies $v=0$. A nonnegative nondegenerate inner product is also called positive definite inner product. Since this is the most often encountered inner product we give its definition as it commonly given in textbooks.

Definition 3.1. Let \mathscr{V} be a vector space over a scalar field \mathbb{F}. A function $\langle\cdot, \cdot\rangle: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ is called a positive definite inner product on \mathscr{V} if the following conditions are satisfied;
(a) $\forall u, v, w \in \mathscr{V} \quad \forall \alpha, \beta \in \mathbb{F} \quad\langle\alpha u+\beta v, v\rangle=\alpha\langle u, w\rangle+\beta\langle v, w\rangle$,
(b) $\forall u, v \in \mathscr{V} \quad\langle u, v\rangle=\overline{\langle v, u\rangle}$,
(c) $\forall v \in \mathscr{V} \quad\langle v, v\rangle \geq 0$,
(d) If $v \in \mathscr{V}$ and $\langle v, v\rangle=0$, then $v=0$.

A positive definite inner product gives rise to a norm.
Theorem 3.2. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle\cdot, \cdot\rangle$. The function $\|\cdot\|: \mathscr{V} \rightarrow \mathbb{R}$ defined by

$$
\|v\|=\sqrt{\langle v, v\rangle}, \quad v \in \mathscr{V}
$$

is a norm on \mathscr{V}. That is for all $u, v \in \mathscr{V}$ and all $\alpha \in \mathbb{F}$ we have $\|v\| \geq 0$, $\|\alpha v\|=|\alpha|\|v\|,\|u+v\| \leq\|u\|+\|v\|$ and $\|v\|=0$ implies $v=0_{\mathscr{V}}$.

Definition 3.3. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle\cdot, \cdot\rangle$. A set of vectors $\mathscr{A} \subset \mathscr{V}$ is said to form an orthogonal system in \mathscr{V} if for all $u, v \in \mathscr{A}$ we have $\langle u, v\rangle=0$ whenever $u \neq v$ and for all $v \in \mathscr{A}$ we have $\langle v, v\rangle>0$. An orthogonal system \mathscr{A} is called an orthonormal system if for all $v \in \mathscr{A}$ we have $\langle v, v\rangle=1$.

Proposition 3.4. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle\cdot, \cdot\rangle$. Let u_{1}, \ldots, u_{n} be an orthogonal system in \mathscr{V}. If $v=\sum_{j=1}^{n} \alpha_{j} u_{j}$, then $\alpha_{j}=\left\langle v, u_{j}\right\rangle /\left\langle u_{j}, u_{j}\right\rangle$. In particular, an orthogonal system is linearly independent.

Theorem 3.5 (The Gram-Schmidt orthogonalization). Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle\cdot, \cdot\rangle$. Let $n \in$ \mathbb{N} and let v_{1}, \ldots, v_{n} be linearly independent vectors in \mathscr{V}. Let the vectors u_{1}, \ldots, u_{n} be defined recursively by

$$
\begin{aligned}
u_{1} & =v_{1} \\
u_{k+1} & =v_{k+1}-\sum_{j=1}^{k} \frac{\left\langle v_{k+1}, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}, \quad k \in\{1, \ldots, n-1\} .
\end{aligned}
$$

Then the vectors u_{1}, \ldots, u_{n} form an orthogonal system which has the same fan as the given vectors v_{1}, \ldots, v_{n}.

Proof. We will prove by Mathematical Induction the following statement: For all $k \in\{1, \ldots, n\}$ we have:
(a) $\left\langle u_{k}, u_{k}\right\rangle>0$ and $\left\langle u_{j}, u_{k}\right\rangle=0$ whenever $j \in\{1, \ldots, k-1\}$;
(b) vectors u_{1}, \ldots, u_{k} are linearly independent;
(c) $\operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$.

For $k=1$ statements (a), (b) and (c) are clearly true. Let $m \in$ $\{1, \ldots, n-1\}$ and assume that statements (a), (b) and (c) are true for all $k \in\{1, \ldots, m\}$.

Next we will prove that statements (a), (b) and (c) are true for $k=m+1$. Recall the definition of u_{m+1} :

$$
u_{m+1}=v_{m+1}-\sum_{j=1}^{m} \frac{\left\langle v_{m+1}, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j} .
$$

By the Inductive Hypothesis we have span $\left\{u_{1}, \ldots, u_{m}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$. Since $v_{1} \ldots, v_{m+1}$ are linearly independent, $v_{m+1} \notin \operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$. Therefore, $u_{m+1} \neq 0_{\mathscr{V}}$. That is $\left\langle u_{m+1}, u_{m+1}\right\rangle>0$. Let $k \in\{1, \ldots, m\}$ be arbitrary. Then by the Inductive Hypothesis we have that $\left\langle u_{j}, u_{k}\right\rangle=0$ whenever $j \in\{1, \ldots, m\}$ and $j \neq k$. Therefore,

$$
\begin{aligned}
\left\langle u_{m+1}, u_{k}\right\rangle & =\left\langle v_{m+1}, u_{k}\right\rangle-\sum_{j=1}^{m} \frac{\left\langle v_{m+1}, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle}\left\langle u_{j}, u_{k}\right\rangle \\
& =\left\langle v_{m+1}, u_{k}\right\rangle-\left\langle v_{m+1}, u_{k}\right\rangle \\
& =0 .
\end{aligned}
$$

This proves claim (a). To prove claim (b) notice that by the Inductive Hypothesis u_{1}, \ldots, u_{m} are linearly independent and $u_{m+1} \notin \operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$ since $v_{m+1} \notin \operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$. To prove claim (c) notice that the definition of u_{m+1} implies $u_{m+1} \in \operatorname{span}\left\{v_{1}, \ldots, v_{m+1}\right\}$. Since by the inductive hypothesis $\operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$, we have $\operatorname{span}\left\{u_{1}, \ldots, u_{m+1}\right\} \subseteq$ $\operatorname{span}\left\{v_{1}, \ldots, v_{m+1}\right\}$. The converse inclusion follows from the fact that $v_{m+1} \in$ $\operatorname{span}\left\{u_{1}, \ldots, u_{m+1}\right\}$.

It is clear that the claim of the theorem follows from the claim that has been proven.

The following two statements are immediate consequences of the GramSchmidt orthogonalization process.

Corollary 3.6. If \mathscr{V} is a finite dimensional vector space with positive definite inner product $\langle\cdot, \cdot\rangle$, then \mathscr{V} has an orthonormal basis.

Corollary 3.7. If \mathscr{V} is a complex vector space with positive definite inner product and $T \in \mathscr{L}(\mathscr{V})$ then there exists an orthonormal basis \mathscr{B} such that $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper-triangular.

Definition 3.8. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a positive definite inner product space and $\mathscr{A} \subset \mathscr{V}$. We define $\mathscr{A}^{\perp}=\{v \in \mathscr{V}:\langle v, a\rangle=0 \forall a \in \mathscr{A}\}$.

The following is a simple proposition.
Proposition 3.9. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a positive definite inner product space and $\mathscr{A} \subset \mathscr{V}$. Then A^{\perp} is a subspace of \mathscr{V}.

Theorem 3.10. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a positive definite inner product space and let \mathscr{U} be a finite dimensional subspace of \mathscr{V}. Then $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$.

Proof. We first prove that $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$. Note that since \mathscr{U} is a subspace of \mathscr{V}, \mathscr{U} inherits the positive definite inner product from \mathscr{V}. Thus \mathscr{U} is a finite dimensional positive definite inner product space. Thus there exists an orthonormal basis of $\mathscr{U}, \mathscr{B}=\left\{u_{1}, u_{2}, \ldots u_{k}\right\}$.

Let $v \in \mathscr{V}$ be arbitrary. Then

$$
v=\left(\sum_{j=1}^{k}\left\langle v, u_{j}\right\rangle u_{j}\right)+\left(v-\sum_{j=1}^{k}\left\langle v, u_{j}\right\rangle u_{j}\right),
$$

where the first summand is in \mathscr{U}. We will prove that the second summand is in \mathscr{U}^{\perp}. Set $w=\sum_{j=1}^{k}\left\langle v, u_{j}\right\rangle u_{j} \in \mathscr{U}$. We claim that $v-w \in \mathscr{U}^{\perp}$. To prove this claim let $u \in \mathscr{U}$ be arbitrary. Since \mathscr{B} is an orhonormal basis of \mathscr{U}, by Proposition 3.4 we have

$$
u=\sum_{j=1}^{k}\left\langle u, u_{j}\right\rangle u_{j} .
$$

Therefore

$$
\begin{aligned}
\langle v-w, u\rangle & =\langle v, u\rangle-\sum_{j=1}^{k}\left\langle v, u_{j}\right\rangle\left\langle u_{j}, u\right\rangle \\
& =\langle v, u\rangle-\left\langle v, \sum_{j=1}^{k}\left\langle u, u_{j}\right\rangle u_{j}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\langle v, u\rangle-\langle v, u\rangle \\
& =0
\end{aligned}
$$

Thus $\langle v-w, u\rangle=0$ for all $u \in \mathscr{U}$. That is $v-w \in \mathscr{U}^{\perp}$. This proves that $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$.

To prove that the sum is direct, let $v \in \mathscr{U}$ and $v \in \mathscr{U}^{\perp}$. Then $\langle v, v\rangle=$ 0 . Since $\langle\cdot, \cdot\rangle$ is positive definite, this implies $v=0_{\mathscr{V}}$. The theorem is proved.

Corollary 3.11. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a positive definite inner product space and let \mathscr{U} be a finite dimensional subspace of \mathscr{V}. Then $\left(\mathscr{U}^{\perp}\right)^{\perp}=\mathscr{U}$.

Exercise 3.12. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a positive definite inner product space and let \mathscr{U} be a subspace of \mathscr{V}. Prove that $\left(\left(\mathscr{U}^{\perp}\right)^{\perp}\right)^{\perp}=\mathscr{U}^{\perp}$.

Recall that an arbitrary direct sum $\mathscr{V}=\mathscr{U} \oplus \mathscr{W}$ gives rise to a projection operator $P_{\mathscr{U}} \| \mathscr{W}$, the projection of \mathscr{V} onto \mathscr{U} parallel to \mathscr{W}.

If $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$, then the resulting projection of \mathscr{V} onto \mathscr{U} parallel to \mathscr{U}^{\perp} is called the orthogonal projection of \mathscr{V} onto \mathscr{U}; it is denoted simply by $P_{\mathscr{U}}$. By definition for every $v \in \mathscr{V}$,

$$
u=P_{\mathscr{U}} v \quad \Leftrightarrow \quad u \in \mathscr{U} \quad \text { and } \quad v-u \in \mathscr{U}^{\perp} .
$$

As for any projection we have $P_{\mathscr{U}} \in \mathscr{L}(\mathscr{V}), \operatorname{ran} P_{\mathscr{U}}=\mathscr{U}$, nul $P_{\mathscr{U}}=\mathscr{U}^{\perp}$, and $\left(P_{\mathscr{U}}\right)^{2}=P_{\mathscr{U}}$.

Theorems 3.10 and 2.5 yield the following solution of the best approximation problem for finite dimensional subspaces of a vector space with a positive definite inner product.

Corollary 3.13. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a vector space with a positive definite inner product and let \mathscr{U} be a finite dimensional subspace of \mathscr{V}. For arbitrary $v \in \mathscr{V}$ the vector $P_{\mathscr{U}} v \in \mathscr{U}$ is the unique best approximation for v in \mathscr{U}. That is

$$
\left\|v-P_{\mathscr{U}} v\right\| \leq\|v-u\| \quad \text { for all } \quad u \in \mathscr{U} .
$$

4 The definition of an adjoint operator

Let \mathscr{V} be a vector space over \mathbb{F}. The space $\mathscr{L}(\mathscr{V}, \mathbb{F})$ is called the dual space of \mathscr{V}; it is denoted by \mathscr{V}^{*}.

Theorem 4.1. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Define the mapping

$$
\Phi: \mathscr{V} \rightarrow \mathscr{V}^{*}
$$

as follows: for $w \in \mathscr{V}$ we set

$$
(\Phi(w))(v)=\langle v, w\rangle \quad \text { for all } \quad v \in \mathscr{V}
$$

Then Φ is a anti-linear bijection.
Proof. Clearly, for each $w \in \mathscr{V}, \Phi(w) \in \mathscr{V}^{*}$. The mapping Φ is anti-linear, since for $\alpha, \beta \in \mathbb{F}$ and $u, w \in \mathscr{V}$, for all $v \in \mathscr{V}$ we have

$$
\begin{aligned}
(\Phi(\alpha u+\beta w))(v) & =\langle v, \alpha u+\beta w\rangle \\
& =\bar{\alpha}\langle v, u\rangle+\bar{\beta}\langle v, w\rangle \\
& =\bar{\alpha}(\Phi(u))(v)+\bar{\beta}(\Phi(w))(v) \\
& =(\bar{\alpha} \Phi(u)+\bar{\beta} \Phi(w))(v)
\end{aligned}
$$

Thus $\Phi(\alpha u+\beta w)=\bar{\alpha} \Phi(u)+\bar{\beta} \Phi(w)$. This proves anti-linearity.
To prove injectivity of Φ, let $u, w \in \mathscr{V}$ be such that $\Phi(u)=\Phi(w)$. Then $(\Phi(u))(v)=(\Phi(w))(v)$ for all $v \in \mathscr{V}$. By the definition of Φ this means $\langle v, u\rangle=\langle v, w\rangle$ for all $v \in \mathscr{V}$. Consequently, $\langle v, u-w\rangle=0$ for all $v \in \mathscr{V}$. In particular, with $v=u-w$ we have $\langle u-w, u-w\rangle=0$. Since $\langle\cdot, \cdot\rangle$ is a positive definite inner product, it follows that $u-w=0_{\mathscr{V}}$, that is $u=w$.

To prove that Φ is a surjection we use the assumption that \mathscr{V} is finite dimensional. Then there exists an orthonormal basis u_{1}, \ldots, u_{n} of \mathscr{V}. Let $\varphi \in \mathscr{V}^{*}$ be arbitrary. Set

$$
w=\sum_{j=1}^{n} \overline{\varphi\left(u_{j}\right)} u_{j}
$$

The proof that $\Phi(w)=\varphi$ follows. Let $v \in \mathscr{V}$ be arbitrary.

$$
\begin{aligned}
(\Phi(w))(v) & =\langle v, w\rangle \\
& =\left\langle v, \sum_{j=1}^{n} \overline{\varphi\left(u_{j}\right)} u_{j}\right\rangle \\
& =\sum_{j=1}^{n} \varphi\left(u_{j}\right)\left\langle v, u_{j}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle \varphi\left(u_{j}\right) \\
& =\varphi\left(\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle u_{j}\right) \\
& =\varphi(v)
\end{aligned}
$$

The theorem is proved.
The mapping Φ from the previous theorem is convenient to define the adjoint of a linear operator. In the next definition we will deal with two positive definite inner product spaces. To emphasize the different inner products and different mappings Φ we will use subscripts.

Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. Let $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$. We define the adjoint $T^{*}: \mathscr{W} \rightarrow \mathscr{V}$ of T by

$$
\begin{equation*}
T^{*} w=\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right), \quad w \in \mathscr{W} . \tag{11}
\end{equation*}
$$

Since $\Phi_{\mathscr{W}}$ and $\Phi_{\mathscr{V}}^{-1}$ are anti-linear, T^{*} is linear For arbitrary $\alpha_{1}, \alpha_{1} \in \mathbb{F}$ and $w_{1}, w_{2} \in \mathscr{V}$ we have

$$
\begin{aligned}
T^{*}\left(\alpha_{1} w_{1}+\alpha_{2} w_{2}\right) & =\Phi_{\mathscr{\mathscr { V }}}^{-1}\left(\Phi_{\mathscr{W}}\left(\alpha_{1} w_{1}+\alpha_{2} w_{2}\right) \circ T\right) \\
& =\Phi_{\mathscr{V}}^{-1}\left(\left(\bar{\alpha}_{1} \Phi_{\mathscr{W}}\left(w_{1}\right)+\bar{\alpha}_{2} \Phi_{\mathscr{W}}\left(w_{2}\right)\right) \circ T\right) \\
& =\Phi_{\mathscr{V}}^{-1}\left(\bar{\alpha}_{1} \Phi_{\mathscr{W}}\left(w_{1}\right) \circ T+\bar{\alpha}_{2} \Phi_{\mathscr{W}}\left(w_{2}\right) \circ T\right) \\
& =\alpha_{1} \Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}\left(w_{1}\right) \circ T\right)+\alpha_{2} \Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}\left(w_{2}\right) \circ T\right) \\
& =\alpha_{1} T^{*} w_{1}+\alpha_{2} T^{*} w_{2} .
\end{aligned}
$$

Thus, $T^{*} \in \mathscr{L}(\mathscr{W}, \mathscr{V})$.
Next we will deduce the most important property of T^{*}. By the definition of $T^{*}: \mathscr{W} \rightarrow \mathscr{V}$, for a fixed arbitrary $w \in \mathscr{W}$ we have

$$
T^{*} w=\Phi_{\mathscr{Y}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right) .
$$

This is equivalent to

$$
\Phi_{\mathscr{V}}\left(T^{*} w\right)=\Phi_{\mathscr{W}}(w) \circ T,
$$

which is, by the definition of $\Phi_{\mathscr{V}}$, equivalent to

$$
\left(\Phi_{\mathscr{W}}(w) \circ T\right)(v)=\left\langle v, T^{*} w\right\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V},
$$

which, in turn, is equivalent to

$$
\left(\Phi_{\mathscr{W}}(w)\right)(T v)=\left\langle v, T^{*} w\right\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V} .
$$

From the definition of $\Phi_{\mathscr{W}}$ the last statement is equivalent to

$$
\langle T v, w\rangle_{\mathscr{W}}=\left\langle v, T^{*} w\right\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V} .
$$

The reasoning above proves the following proposition.
Proposition 4.2. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. Let $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ and $S \in \mathscr{L}(\mathscr{W}, \mathscr{V})$. Then $S=T^{*}$ if and only if

$$
\begin{equation*}
\langle T v, w\rangle_{\mathscr{W}}=\langle v, S w\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V}, w \in \mathscr{W} . \tag{12}
\end{equation*}
$$

5 Properties of the adjoint operator

Theorem 5.1. Let $\left(\mathscr{U},\langle\cdot, \cdot\rangle_{\mathscr{U}}\right),\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be three finite dimensional vector space over the same scalar field \mathbb{F} and with positive definite inner products. Let $S \in \mathscr{L}(\mathscr{U}, \mathscr{V})$ and $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$. Then $(T S)^{*}=S^{*} T^{*}$.

Proof. By definition for every $u \in \mathscr{U}, v \in \mathscr{V}$ and $w \in \mathscr{W}$ we have

$$
\begin{aligned}
S^{*} v & =\Phi_{\mathscr{U}}^{-1}\left(\Phi_{\mathscr{V}}(v) \circ S\right) \\
T^{*} w & =\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right) \\
(T S)^{*} w & =\Phi_{\mathscr{\mathscr { V }}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ(T S)\right)
\end{aligned}
$$

With this, for arbitrary $w \in \mathscr{W}$ we calculate

$$
\begin{aligned}
S^{*} T^{*} w & =S^{*}\left(T^{*} w\right) \\
& =\Phi_{\mathscr{U}}^{-1}\left(\Phi_{\mathscr{V}}\left(\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right)\right) \circ S\right) \\
& =\Phi_{\mathscr{U}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T \circ S\right) \\
& =(T S)^{*} w .
\end{aligned}
$$

Thus $(T S)^{*}=S^{*} T^{*}$.
A function $f: X \rightarrow X$ is said to be an involution if it is its own inverse, that is if $f(f(x))=x$ for all $x \in X$.

Theorem 5.2. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. The adjoint mapping

$$
{ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow \mathscr{L}(\mathscr{W}, \mathscr{V})
$$

is an anti-linear bijection. Its inverse is the adjoint mapping from $\mathscr{L}(\mathscr{W}, \mathscr{V})$ to $\mathscr{L}(\mathscr{V}, \mathscr{W})$. In particular the adjoint mapping in $\mathscr{L}(\mathscr{V}, \mathscr{V})$ is an anti-linear involution.

Proof. To prove that ${ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow \mathscr{L}(\mathscr{W}, \mathscr{V})$ is anti-linear let $\alpha, \beta \in \mathbb{F}$ be arbitrary and let $S, T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ be arbitrary. By the definition of * for arbitrary $w \in \mathscr{W}$ we have

$$
\begin{aligned}
(\alpha S+\beta T)^{*} w & =\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ(\alpha S+\beta T)\right) \\
& =\Phi_{\mathscr{V}}^{-1}\left(\alpha \Phi_{\mathscr{W}}(w) \circ S+\beta \Phi_{\mathscr{W}}(w) \circ T\right) \\
& =\bar{\alpha} \Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ S\right)+\bar{\beta} \Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right) \\
& =\bar{\alpha} S^{*} w+\bar{\beta} T^{*} w \\
& =\left(\bar{\alpha} S^{*}+\bar{\beta} T^{*}\right) w .
\end{aligned}
$$

Hence $(\alpha S+\beta T)^{*}=\bar{\alpha} S^{*}+\bar{\beta} T^{*}$.
To prove that the adjoint mapping ${ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow \mathscr{L}(\mathscr{W}, \mathscr{V})$ is a bijection we will use the adjoint mapping ${ }^{*}: \mathscr{L}(\mathscr{W}, \mathscr{V}) \rightarrow \mathscr{L}(\mathscr{V}, \mathscr{W})$. In fact we will prove that * is the inverse of ${ }^{*}$. To this end we will prove that for all $S \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ we have that $\left(S^{*}\right)^{\star}=S$ and that for all $T \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ we have that $\left(T^{\star}\right)^{*}=T$.

Here are the proofs. By the definition of the mapping ${ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow$ $\mathscr{L}(\mathscr{W}, \mathscr{V})$ for an arbitrary $S \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ we have

$$
\forall v \in \mathscr{V} \quad \forall w \in \mathscr{W} \quad\left\langle S^{*} w, v\right\rangle_{\mathscr{V}}=\langle w, S v\rangle_{\mathscr{W}} .
$$

By Proposition 4.2 this identity yields $\left(S^{*}\right)^{\star}=S$. By the definition of the mapping ${ }^{*}: \mathscr{L}(\mathscr{W}, \mathscr{V}) \rightarrow \mathscr{L}(\mathscr{V}, \mathscr{W})$ for an arbitrary $T \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ we have

$$
\forall w \in \mathscr{W} \quad \forall v \in \mathscr{V} \quad\left\langle T^{*} v, w\right\rangle_{\mathscr{W}}=\langle v, T w\rangle_{\mathscr{V}} .
$$

By Proposition 4.2 this identity yields $\left(T^{\star}\right)^{*}=T$.

Theorem 5.3. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. The following statements hold.
(i) $\operatorname{nul}\left(T^{*}\right)=(\operatorname{ran} T)^{\perp}$.
(ii) $\operatorname{ran}\left(T^{*}\right)=(\operatorname{nul} T)^{\perp}$.
(iii) $\operatorname{nul}(T)=\left(\operatorname{ran} T^{*}\right)^{\perp}$.
(iv) $\operatorname{ran}(T)=\left(\operatorname{nul} T^{*}\right)^{\perp}$.

Theorem 5.4. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. Let \mathscr{B} and \mathscr{C} be orthonormal bases of $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$, respectively, and let $T \in\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$. Then $\mathrm{M}_{\mathscr{B}}^{\mathscr{G}}\left(T^{*}\right)$ is the conjugate transpose of the matrix $\mathrm{M}_{\mathscr{C}}^{\mathscr{B}}(T)$.

Proof. Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{m}\right\}$ and $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ be orthonormal bases from the theorem. Let $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$. Then the term in the j-th column and the i-th row of the $n \times m$ matrix $\mathrm{M}_{\mathscr{C}}^{\mathscr{B}}(T)$ is $\left\langle T v_{j}, w_{i}\right\rangle$, while the term in the i-th column and the j-th row of the $m \times n$ matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{G}}\left(T^{*}\right)$ is

$$
\left\langle T^{*} w_{i}, v_{j}\right\rangle=\left\langle w_{i}, T v_{j}\right\rangle=\overline{\left\langle T v_{j}, w_{i}\right\rangle} .
$$

This proves claim.
Lemma 5.5. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Let \mathscr{U} be a subspace of \mathscr{V} and let $T \in \mathscr{L}(\mathscr{V})$. The subspace \mathscr{U} is invariant under T if and only if the subspace \mathscr{U}^{\perp} is invariant under T^{*}.

Proof. By the definition of adjoint we have

$$
\begin{equation*}
\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle \tag{13}
\end{equation*}
$$

for all $u, v \in \mathscr{V}$. Assume $T \mathscr{U} \subseteq \mathscr{U}$. From (13) we get

$$
0=\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle \quad \forall u \in \mathscr{U} \quad \text { and } \quad \forall v \in \mathscr{U}^{\perp} .
$$

Therefore, $T^{*} v \in \mathscr{U}^{\perp}$ for all $v \in \mathscr{U}^{\perp}$. This proves "only if" part.
The proof of the "if" part is similar.

6 Self-adjoint and normal operators

Definition 6.1. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. An operator $T \in \mathscr{L}(\mathscr{V})$ is said to be self-adjoint if $T=T^{*}$. An operator $T \in \mathscr{L}(\mathscr{V})$ is said to be normal if $T T^{*}=T^{*} T$.

Proposition 6.2. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. All eigenvalues of a self-adjoint $T \in \mathscr{L}(\mathscr{V})$ are real.

In the rest of this section we will consider only scalar fields \mathbb{F} which contain the imaginary unit i.

Proposition 6.3. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Let $T \in \mathscr{L}(\mathscr{V})$. Then $T=0$ if and only if $\langle T v, v\rangle=0$ for all $v \in \mathscr{V}$.
Proposition 6.4. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. An operator $T \in \mathscr{L}(\mathscr{V})$ is self-adjoint if and only if $\langle T v, v\rangle \in \mathbb{R}$ for all $v \in \mathscr{V}$.
Theorem 6.5. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. An operator $T \in \mathscr{L}(\mathscr{V})$ is normal if and only if $\|T v\|=\left\|T^{*} v\right\|$ for all $v \in \mathscr{V}$.
Corollary 6.6. Let \mathscr{V} be a vector space over \mathbb{F}, let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V} and let $T \in \mathscr{L}(\mathscr{V})$ be normal. Then $\lambda \in \mathbb{C}$ is an eigenvalue of T if and only if $\bar{\lambda}$ is an eigenvalue of T^{*} and

$$
\operatorname{nul}\left(T^{*}-\bar{\lambda} I\right)=\operatorname{nul}(T-\lambda I)
$$

7 The Spectral Theorem

In the rest of the notes we will consider only the scalar field \mathbb{C}.

Theorem 7.1 (Theorem 7.9). Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} and $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Let $T \in \mathscr{L}(\mathscr{V})$. Then \mathscr{V} has an orthonormal basis which consists of eigenvectors of T if and only if T is normal. In other words, T is normal if and only if there exists an orthonormal basis \mathscr{B} of \mathscr{V} such that $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is a diagonal matrix.
Proof. Let $n=\operatorname{dim}(\mathscr{V})$. Assume that T is normal. By Corollary 3.7 there exists an orthonormal basis $\mathscr{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ of \mathscr{V} such that $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper-triangular. That is,

$$
\mathbf{M}_{\mathscr{B}}^{\mathscr{B}}(T)=\left[\begin{array}{cccc}
\left\langle T u_{1}, u_{1}\right\rangle & \left\langle T u_{2}, u_{1}\right\rangle & \cdots & \left\langle T u_{n}, u_{1}\right\rangle \tag{14}\\
0 & \left\langle T u_{2}, u_{2}\right\rangle & \cdots & \left\langle T u_{n}, u_{2}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \left\langle T u_{n}, u_{n}\right\rangle
\end{array}\right]
$$

or, equivalently,

$$
\begin{equation*}
T u_{k}=\sum_{j=1}^{k}\left\langle T u_{k}, u_{j}\right\rangle u_{j} \quad \text { for all } \quad k \in\{1, \ldots, n\} . \tag{15}
\end{equation*}
$$

By Theorem 5.4(??) we have

$$
\mathbf{M}_{\mathscr{B}}^{\mathscr{B}}\left(T^{*}\right)=\left[\begin{array}{cccc}
\overline{\frac{\left\langle T u_{1}, u_{1}\right\rangle}{\left\langle T u_{2}, u_{1}\right\rangle}} & \frac{0}{\left\langle T u_{2}, u_{2}\right\rangle} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\left.\vdots T u_{n}, u_{1}\right\rangle}{} & \frac{\left.\vdots T u_{n}, u_{2}\right\rangle}{\cdots} & \frac{\left\langle T u_{n}, u_{n}\right\rangle}{\langle i n}
\end{array}\right] .
$$

Consequently,

$$
\begin{equation*}
T^{*} u_{k}=\sum_{j=k}^{n} \overline{\left\langle T u_{j}, u_{k}\right\rangle} u_{j} \quad \text { for all } \quad k \in\{1, \ldots, n\} . \tag{16}
\end{equation*}
$$

Since T is normal, Theorem 6.5 implies

$$
\left\|T u_{k}\right\|^{2}=\left\|T^{*} u_{k}\right\|^{2} \quad \text { for all } \quad k \in\{1, \ldots, n\} .
$$

Together with (15) and (16) the last identities become

$$
\sum_{j=1}^{k}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}=\sum_{j=k}^{n}\left|\overline{\left\langle T u_{j}, u_{k}\right\rangle}\right|^{2} \quad \text { for all } \quad k \in\{1, \ldots, n\},
$$

or, equivalently,

$$
\begin{equation*}
\sum_{j=1}^{k}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}=\sum_{j=k}^{n}\left|\left\langle T u_{j}, u_{k}\right\rangle\right|^{2} \quad \text { for all } \quad k \in\{1, \ldots, n\} . \tag{17}
\end{equation*}
$$

The equality in (17) corresponding to $k=1$ reads

$$
\left|\left\langle T u_{1}, u_{1}\right\rangle\right|^{2}=\left|\left\langle T u_{1}, u_{1}\right\rangle\right|^{2}+\sum_{j=2}^{n}\left|\left\langle T u_{j}, u_{1}\right\rangle\right|^{2},
$$

which implies

$$
\begin{equation*}
\left\langle T u_{j}, u_{1}\right\rangle=0 \quad \text { for all } \quad j \in\{2, \ldots, n\} \tag{18}
\end{equation*}
$$

In other words we have proved that the off-diagonal entries in the first row of the upper triangular matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ in (14) are all zero.

Substituting the value $\left\langle T u_{2}, u_{1}\right\rangle=0$ (from (18)) in the equality in (17) corresponding to $k=2$ reads we get

$$
\left|\left\langle T u_{2}, u_{2}\right\rangle\right|^{2}=\left|\left\langle T u_{2}, u_{2}\right\rangle\right|^{2}+\sum_{j=3}^{n}\left|\left\langle T u_{j}, u_{2}\right\rangle\right|^{2},
$$

which implies

$$
\begin{equation*}
\left\langle T u_{j}, u_{2}\right\rangle=0 \quad \text { for all } \quad j \in\{3, \ldots, n\} \tag{19}
\end{equation*}
$$

In other words we have proved that the off-diagonal entries in the second row of the upper triangular matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ in (14) are all zero.

Repeating this reasoning $n-2$ more times would prove that all the offdiagonal entries of the upper triangular matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ in (14) are zero. That is, $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is a diagonal matrix.

To prove the converse, assume that there exists an orthonormal basis $\mathscr{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ of \mathscr{V} which consists of eigenvectors of T. That is, for some $\lambda_{j} \in \mathbb{C}$,

$$
T u_{j}=\lambda_{j} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\},
$$

Then, for arbitrary $v \in \mathscr{V}$ we have

$$
\begin{equation*}
T v=T\left(\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle u_{j}\right)=\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle T u_{j}=\sum_{j=1}^{n} \lambda_{j}\left\langle v, u_{j}\right\rangle u_{j} . \tag{20}
\end{equation*}
$$

Therefore, for arbitrary $k \in\{1, \ldots, n\}$ we have

$$
\begin{equation*}
\left\langle T v, u_{k}\right\rangle=\lambda_{k}\left\langle v, u_{k}\right\rangle . \tag{21}
\end{equation*}
$$

Now we calculate

$$
\begin{aligned}
T^{*} T v & =\sum_{j=1}^{n}\left\langle T^{*} T v, u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n}\left\langle T v, T u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n}\left\langle T v, T u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n} \bar{\lambda}_{j}\left\langle T v, u_{j}\right\rangle u_{j}
\end{aligned}
$$

$$
=\sum_{j=1}^{n} \lambda_{j} \bar{\lambda}_{j}\left\langle v, u_{j}\right\rangle u_{j}
$$

Similarly,

$$
\begin{aligned}
T T^{*} v & =T\left(\sum_{j=1}^{n}\left\langle T^{*} v, u_{j}\right\rangle u_{j}\right) \\
& =\sum_{j=1}^{n}\left\langle v, T u_{j}\right\rangle T u_{j} \\
& =\sum_{j=1}^{n}\left\langle v, \lambda_{j} u_{j}\right\rangle \lambda_{j} u_{j} \\
& =\sum_{j=1}^{n} \lambda_{j} \bar{\lambda}_{j}\left\langle v, u_{j}\right\rangle u_{j} .
\end{aligned}
$$

Thus, we proved $T^{*} T v=T T^{*} v$, that is, T is normal.
A different proof of the "only if" part of the spectral theorem for normal operators follows. In this proof we use $\delta_{i j}$ to represent the Kronecker delta function; that is, $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ otherwise.

Proof. Set $n=\operatorname{dim} \mathscr{V}$. We first prove "only if" part. Assume that T is normal. Set

$$
\mathbb{K}=\left\{k \in\{1, \ldots, n\}: \begin{array}{l}
\exists w_{1}, \ldots, w_{k} \in \mathscr{V} \text { and } \exists \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C} \\
\text { such that }\left\langle w_{i}, w_{j}\right\rangle=\delta_{i j} \text { and } T w_{j}=\lambda_{j} w_{j} \\
\text { for all } i, j \in\{1, \ldots, k\}
\end{array}\right\}
$$

Clearly $1 \in \mathbb{K}$. Since \mathbb{K} is finite, $m=\max \mathbb{K}$ exists. Clearly, $m \leq n$.
Next we will prove that $k \in \mathbb{K}$ and $k<n$ implies that $k+1 \in \mathbb{K}$. Assume $k \in \mathbb{K}$ and $k<n$. Let $w_{1}, \ldots, w_{k} \in \mathscr{V}$ and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$ be such that $\left\langle w_{i}, w_{j}\right\rangle=\delta_{i j}$ and $T w_{j}=\lambda_{j} w_{j}$ for all $i, j \in\{1, \ldots, k\}$. Set

$$
\mathscr{W}=\operatorname{span}\left\{w_{1}, \ldots, w_{k}\right\} .
$$

Since w_{1}, \ldots, w_{k} are eigenvectors of T we have $T \mathscr{W} \subseteq \mathscr{W}$. By Lemma 5.5, $T^{*}\left(\mathscr{W}^{\perp}\right) \subseteq \mathscr{W}^{\perp}$. Thus, $\left.T^{*}\right|_{\mathscr{W} \perp} \in \mathscr{L}\left(\mathscr{W}^{\perp}\right)$. Since $\operatorname{dim} \mathscr{W}=k<n$ we have $\operatorname{dim}\left(\mathscr{W}^{\perp}\right)=n-k \geq 1$. Since \mathscr{W}^{\perp} is a complex vector space the operator $\left.T^{*}\right|_{\mathscr{W} \perp}$ has an eigenvalue μ with the corresponding unit eigenvector u. Clearly, $u \in \mathscr{W}^{\perp}$ and $T^{*} u=\mu u$. Since T^{*} is normal, Corollary 6.6 yields
that $T u=\bar{\mu} u$. Since $u \in \mathscr{W}^{\perp}$ and $T u=\bar{\mu} u$, setting $w_{k+1}=u$ and $\lambda_{k+1}=\bar{\mu}$ we have

$$
\left\langle w_{i}, w_{j}\right\rangle=\delta_{i j} \quad \text { and } \quad T w_{j}=\lambda_{j} w_{j} \quad \text { for all } \quad i, j \in\{1, \ldots, k, k+1\} .
$$

Thus $k+1 \in \mathbb{K}$. Consequently, $k<m$. Thus, for $k \in \mathbb{K}$, we have proved the implication

$$
k<n \quad \Rightarrow \quad k<m .
$$

The contrapositive of this implication is: For $k \in \mathbb{K}$, we have

$$
k \geq m \quad \Rightarrow \quad k \geq n
$$

In particular, for $m \in \mathbb{K}$ we have $m=m$ implies $m \geq n$. Since $m \leq n$ is also true, this proves that $m=n$. That is, $n \in \mathbb{K}$. This implies that there exist $u_{1}, \ldots, u_{n} \in \mathscr{V}$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that $\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}$ and $T u_{j}=\lambda_{j} u_{j}$ for all $i, j \in\{1, \ldots, n\}$.

Since u_{1}, \ldots, u_{n} are orthonormal, they are linearly independent. Since $n=\operatorname{dim} \mathscr{V}$, it turns out that u_{1}, \ldots, u_{n} form a basis of \mathscr{V}. This completes the proof.

8 Invariance under a normal operator

Theorem 8.1 (Theorem 7.18). Let \mathscr{V} be a finite dimensional vector space over \mathbb{C}. Let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Let $T \in \mathscr{L}(\mathscr{V})$ be normal and let \mathscr{U} be a subspace of \mathscr{V}. Then

$$
T \mathscr{U} \subseteq \mathscr{U} \quad \Leftrightarrow \quad T \mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp}
$$

(Recall that we have previously proved that for any $T \in \mathscr{L}(\mathscr{V}), T \mathscr{U} \subseteq$ $\mathscr{U} \Leftrightarrow T^{*} \mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp}$. Hence if T is normal, showing that any one of \mathscr{U} or \mathscr{U}^{\perp} is invariant under either T or T^{*} implies that the rest are, also.)

Proof. Assume $T \mathscr{U} \subseteq \mathscr{U}$. We know $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$. Let u_{1}, \ldots, u_{m} be an orthonormal basis of \mathscr{U} and u_{m+1}, \ldots, u_{n} be an orthonormal basis of \mathscr{U}^{\perp}. Then u_{1}, \ldots, u_{n} is an orthonormal basis of \mathscr{V}. If $j \in\{1, \ldots, m\}$ then $u_{j} \in \mathscr{U}$, so $T u_{j} \in \mathscr{U}$. Hence

$$
T u_{j}=\sum_{k=1}^{m}\left\langle T u_{j}, u_{k}\right\rangle u_{k} .
$$

Also, clearly,

$$
T^{*} u_{j}=\sum_{k=1}^{n}\left\langle T^{*} u_{j}, u_{k}\right\rangle u_{k} .
$$

By normality of T we have $\left\|T u_{j}\right\|^{2}=\left\|T^{*} u_{j}\right\|^{2}$ for all $j \in\{1, \ldots, m\}$. Starting with this, we calculate

$$
\begin{aligned}
\sum_{j=1}^{m}\left\|T u_{j}\right\|^{2} & =\sum_{j=1}^{m}\left\|T^{*} u_{j}\right\|^{2} \\
\text { Pythag. thm. } & =\sum_{j=1}^{m} \sum_{k=1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
\text { group terms } & =\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
\text { def. of } T^{*} & =\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle u_{j}, T u_{k}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
|\alpha|=|\bar{\alpha}| & =\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
\text { order of sum. } & =\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
\text { Pythag. thm. } & =\sum_{k=1}^{m}\left\|T u_{k}\right\|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} .
\end{aligned}
$$

From the above equality we deduce that $\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}=0$. As each term is nonnegative, we conclude that $\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}=\left|\left\langle u_{j}, T u_{k}\right\rangle\right|^{2}=0$, that is,

$$
\begin{equation*}
\left\langle u_{j}, T u_{k}\right\rangle=0 \quad \text { for all } j \in\{1, \ldots, m\}, k \in\{m+1, \ldots, n\} . \tag{22}
\end{equation*}
$$

Let now $w \in \mathscr{U}^{\perp}$ be arbitrary. Then

$$
\begin{aligned}
T w & =\sum_{j=1}^{n}\left\langle T w, u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n}\left\langle\sum_{k=m+1}^{n}\left\langle w, u_{k}\right\rangle T u_{k}, u_{j}\right\rangle u_{j}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n} \sum_{k=m+1}^{n}\left\langle w, u_{k}\right\rangle\left\langle T u_{k}, u_{j}\right\rangle u_{j} \\
\text { by (22) } & =\sum_{j=m+1}^{n} \sum_{k=m+1}^{n}\left\langle w, u_{k}\right\rangle\left\langle T u_{k}, u_{j}\right\rangle u_{j}
\end{aligned}
$$

Hence $T w \in \mathscr{U}^{\perp}$, that is $T \mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp}$.
A different proof follows. The proof below uses the property of polynomials that for arbitrary distinct $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{C}$ and arbitrary $\beta_{1}, \ldots, \beta_{m} \in$ \mathbb{C} there exists a polynomial $p(z) \in \mathbb{C}[z]_{<m}$ such that $p\left(\alpha_{j}\right)=\beta_{j}, j \in$ $\{1, \ldots, m\}$.

Proof. Assume T is normal. Then there exists an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subseteq \mathbb{C}$ such that

$$
T u_{j}=\lambda_{j} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} .
$$

Consequently,

$$
T^{*} u_{j}=\bar{\lambda}_{j} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} .
$$

Let v be arbitrary in \mathscr{V}. Applying T and T^{*} to the expansion of v in the basis vectors $\left\{u_{1}, \ldots, u_{n}\right\}$ we obtain

$$
T v=\sum_{j=1}^{n} \lambda_{j}\left\langle v, u_{j}\right\rangle u_{j}
$$

and

$$
T^{*} v=\sum_{j=1}^{n} \overline{\lambda_{j}}\left\langle v, u_{j}\right\rangle u_{j} .
$$

Let $p(z)=a_{0}+a_{1} z+\cdots+a_{m} z^{m} \in \mathbb{C}[z]$ be such that

$$
p\left(\lambda_{j}\right)=\bar{\lambda}_{j}, \quad \text { for all } \quad j \in\{1, \ldots, n\} .
$$

Clearly, for all $j \in\{1, \ldots, n\}$ we have

$$
p(T) u_{j}=p\left(\lambda_{j}\right) u_{j}=\bar{\lambda}_{j} u_{j}=T^{*} u_{j} .
$$

Therefore $p(T)=T^{*}$.
Now assume $T \mathscr{U} \subseteq \mathscr{U}$. Then $T^{k} \mathscr{U} \subseteq \mathscr{U}$ for all $k \in \mathbb{N}$ and also $\alpha T \mathscr{U} \subseteq$ \mathscr{U} for all $\alpha \in \mathbb{C}$. Hence $p(T) \mathscr{U}=T^{*} \mathscr{U} \subseteq \mathscr{U}$. The theorem follows from Lemma 5.5.

Lastly we review the proof in the book. This proof is in essence very similar to the first proof. It brings up a matrix representation of T for easier visualization of what we are doing.

Proof. Assume $T \mathscr{U} \subseteq \mathscr{U}$. By Lemma 5.5 $T^{*}\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.
Now $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$. Let $n=\operatorname{dim}(\mathscr{V})$. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be an orthonormal basis of \mathscr{U} and $\left\{u_{m+1}, \ldots, u_{n}\right\}$ be an orthonormal basis of \mathscr{U}^{\perp}. Then $\mathscr{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis of \mathscr{V}. Since $T u_{j} \in \mathscr{U}$ for all $j \in\{1, \ldots, m\}$ we have

$$
\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)=\begin{gathered}
\\
u_{1} \\
\vdots \\
u_{m} \\
u_{m+1} \\
\vdots \\
u_{n}
\end{gathered}\left[\begin{array}{ccc|ccc}
T u_{1} & \cdots & T u_{m} & T u_{m+1} & \cdots & T u_{n} \\
\left\langle T u_{1}, u_{m}\right\rangle & \cdots & \left\langle T u_{m}, u_{1}\right\rangle & & & \\
\vdots & \ddots & \vdots & & B & \\
\left\langle T u_{1}, u_{1}\right\rangle & \cdots & \left\langle T u_{m}, u_{m}\right\rangle & & & \\
\hline & & & & & \\
& 0 & & & C
\end{array}\right]
$$

Here we added the basis vectors and their images around the matrix to emphasize that a vector $T u_{k}$ in the zeroth row is expended as a linear combination of the vectors in the zeroth column with the coefficients given in the k-th column of the matrix.

For $j \in\{1, \ldots, m\}$ we have $T u_{j}=\sum_{k=1}^{m}\left\langle T u_{j}, u_{k}\right\rangle u_{k}$. By Pythagorean Theorem $\left\|T u_{j}\right\|^{2}=\sum_{k=1}^{m}\left|\left\langle T u_{j}, u_{k}\right\rangle\right|^{2}$ and $\left\|T^{*} u_{j}\right\|^{2}=\sum_{k=1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}$. Since T is normal, $\sum_{j=1}^{m}\left\|T u_{j}\right\|^{2}=\sum_{j=1}^{m}\left\|T^{*} u_{j}\right\|^{2}$. Now we have

$$
\begin{aligned}
\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle T u_{j}, u_{k}\right\rangle\right|^{2} & =\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
& =\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}
\end{aligned}
$$

Canceling the identical terms we get that the last double sum which consists of the nonnegative terms is equal to 0 . Hence $\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}=\left|\left\langle u_{j}, T u_{k}\right\rangle\right|^{2}$ $=\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}$, and thus, $\left\langle T u_{k}, u_{j}\right\rangle=0$ for all $j \in\{1, \ldots, m\}$ and for all $k \in$ $\{m+1, \ldots, n\}$. This proves that $B=0$ in the above matrix representation. Therefore, $T u_{k}$ is orthogonal to \mathscr{U} for all $k \in\{m+1, \ldots, n\}$, which implies $T\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.

Theorem 8.1 and Lemma 5.5 yield the following corollary.

Corollary 8.2. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C}. Let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Let $T \in \mathscr{L}(\mathscr{V})$ be normal and let \mathscr{U} be a subspace of \mathscr{V}. The following statements are equivalent:
(a) $T \mathscr{U} \subseteq \mathscr{U}$.
(b) $T\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.
(c) $T^{*} \mathscr{U} \subseteq \mathscr{U}$.
(d) $T^{*}\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.

If any of the for above statements are true, then the following statements are true
(e) $\left(\left.T\right|_{\mathscr{U}}\right)^{*}=\left.T^{*}\right|_{\mathscr{U}}$.
(f) $\left(\left.T\right|_{U^{\perp}}\right)^{*}=\left.T^{*}\right|_{U^{\perp}}$.
(g) $\left.T\right|_{\mathscr{U}}$ is a normal operator on \mathscr{U}.
(h) $\left.T\right|_{\mathscr{U} \perp}$ is a normal operator on \mathscr{U}^{\perp}.

9 Polar Decomposition

There are two distinct subsets of \mathbb{C}. Those are the set of nonnegative real numbers, denoted by $\mathbb{R}_{\geq 0}$, and the set of complex numbers of modulus 1 , denoted by \mathbb{T}. An important tool in complex analysis is the polar representation of a complex number: for every $\alpha \in \mathbb{C}$ there exists $r \in \mathbb{R}_{\geq 0}$ and $u \in \mathbb{T}$ such that $\alpha-r u$.

In this section we will prove that an analogous statement holds for operators in $\mathscr{L}(\mathscr{V})$, where \mathscr{V} is a finite dimensional vector space over \mathbb{C} with a positive definite inner product. The first step towards proving this analogous result is identifying operators in $\mathscr{L}(\mathscr{V})$ which will play the role of nonnegative real numbers and the role of complex numbers with modulus 1. That is done in the following two definitions.

Definition 9.1. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$. An operator $Q \in \mathscr{L}(\mathscr{V})$ is said to be nonnegative if $\langle Q v, v\rangle \geq 0$ for all $v \in \mathscr{V}$.

Note that Axler uses the term "positive" instead of nonnegative. We think that nonnegative is more appropriate, since $0_{\mathscr{L}(\mathcal{V})}$ is a nonnegative operator. There is nothing positive about any zero, we think.

Proposition 9.2. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$ and let $T \in \mathscr{L}(\mathscr{V})$. Then T is nonnegative if and only if T is normal and all its eigenvalues are nonnegative.

Theorem 9.3. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$. Let $Q \in \mathscr{L}(\mathscr{V})$ be a nonnegative operator and let u_{1}, \ldots, u_{n} be an orthonormal basis of \mathscr{V} and let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}_{\geq 0}$ be such that

$$
\begin{equation*}
Q u_{j}=\lambda_{j} u_{j} \quad \text { for all } j \in\{1, \ldots, n\} . \tag{23}
\end{equation*}
$$

The following statements are equivalent.
(a) $S \in \mathscr{L}(\mathscr{V})$ be a nonnegative operator and $S^{2}=Q$.
(b) For every $\lambda \in \mathbb{R}_{\geq 0}$ we have

$$
\operatorname{nul}(Q-\lambda I)=\operatorname{nul}(S-\sqrt{\lambda} I)
$$

(c) For every $v \in \mathscr{V}$ we have

$$
S v=\sum_{j=1}^{n} \sqrt{\lambda_{j}}\left\langle v, u_{j}\right\rangle u_{j} .
$$

Proof. (a) $\Rightarrow(\mathrm{b})$. We first prove that $\operatorname{nul} Q=\operatorname{nul} S$. Since $Q=S^{2}$ we have $\operatorname{nul} S \subseteq \operatorname{nul} Q$. Let $v \in \operatorname{nul} Q$, that is, let $Q v=S^{2} v=0$. Then $\left\langle S^{2} v, v\right\rangle=0$. Since S is nonnegative it is self-adjoint. Therefore, $\left\langle S^{2} v, v\right\rangle=\langle S v, S v\rangle=$ $\|S v\|^{2}$. Hence, $\|S v\|=0$, and thus $S v=0$. This proves that nul $Q \subseteq \operatorname{nul} S$ and (b) is proved for $\lambda=0$.

Let $\lambda>0$. Then the operator $S+\sqrt{\lambda} I$ is invertible. To prove this, let $v \in \mathscr{V} \backslash\left\{0_{\mathscr{V}}\right\}$ be arbitrary. Then $\|v\|>0$ and therefore

$$
\langle(S+\sqrt{\lambda} I) v, v\rangle=\langle S v, v\rangle+\sqrt{\lambda}\langle v, v\rangle \geq \sqrt{\lambda}\|v\|^{2}>0
$$

Thus, $v \neq 0$ implies $(S+\sqrt{\lambda} I) v \neq 0$. This proves the injectivity of $S+\sqrt{\lambda} I$.
To prove $\operatorname{nul}(Q-\lambda I)=\operatorname{nul}(S-\sqrt{\lambda} I)$, let $v \in \mathscr{V}$ be arbitrary and notice that $(Q-\lambda I) v=0$ if and only if $\left(S^{2}-\sqrt{\lambda}^{2} I\right) v=0$, which, in turn, is equivalent to

$$
(S+\sqrt{\lambda} I)(S-\sqrt{\lambda} I) v=0
$$

Since $S+\sqrt{\lambda} I$ is injective, the last equality is equivalent to $(S-\sqrt{\lambda} I) v=0$. This completes the proof of (b).
(b) \Rightarrow (c). Let u_{1}, \ldots, u_{n} be an orthonormal basis of \mathscr{V} and let $\lambda_{1}, \ldots, \lambda_{n} \in$ $\mathbb{R}_{\geq 0}$ be such that (23) holds. For arbitrary $j \in\{1, \ldots, n\}$ (23) yields $u_{j} \in \operatorname{nul}\left(Q-\lambda_{j} I\right)$. By (b), $u_{j} \in \operatorname{nul}\left(S-\sqrt{\lambda_{j}} I\right)$. Thus

$$
\begin{equation*}
S u_{j}=\sqrt{\lambda_{j}} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} . \tag{24}
\end{equation*}
$$

Let $v=\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle u_{j}$ be arbitrary vector in \mathscr{V}. Then, the linearity of S and (24) imply the claim in (c).

The implication $(\mathrm{c}) \Rightarrow(\mathrm{a})$ is straightforward.
The implication (a) \Rightarrow (c) of Theorem 9.3 yields that for a given nonnegative Q a nonnegative S such that $Q=S^{2}$ is uniquely determined. The common notation for this unique S is \sqrt{Q}.

Definition 9.4. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$. An operator $U \in \mathscr{L}(\mathscr{V})$ is said to be unitary if $U^{*} U=I$.

Proposition 9.5. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$ and let $T \in \mathscr{L}(\mathscr{V})$. The following statements are equivalent.
(a) T is unitary.
(b) For all $u, v \in \mathscr{V}$ we have $\langle T u, T v\rangle=\langle u, v\rangle$.
(c) For all $v \in \mathscr{V}$ we have $\|T v\|=\|v\|$.
(d) T is normal and all its eigenvalues have modulus 1.

Theorem 9.6 (Polar Decomposition in $\mathscr{L}(\mathscr{V})$, Theorem 7.41). Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$. For every $T \in \mathscr{L}(\mathscr{V})$ there exist a unitary operator U in $\mathscr{L}(\mathscr{V})$ and a unique nonnegative $Q \in \mathscr{L}(\mathscr{V})$ such that $T=U Q ; U$ is unique if and only if T is invertible.

Proof. First, notice that the operator $T^{*} T$ is nonnegative: for every $v \in \mathscr{V}$ we have

$$
\left\langle T^{*} T v, v\right\rangle=\langle T v, T v\rangle=\|T v\|^{2} \geq 0 .
$$

To prove the uniqueness of Q assume that $T=U Q$ with U unitary and Q nonnegative. Then $Q^{*}=Q, U^{*}=U^{-1}$ and therefore, $T^{*} T=Q^{*} U^{*} U Q=$ $Q U^{-1} U Q=Q^{2}$. Since Q is nonnegative we have $Q=\sqrt{T^{*} T}$.

Set $Q=\sqrt{T^{*} T}$. By Theorem 9.3(b) we have nul $Q=\operatorname{nul}\left(T^{*} T\right)$. Moreover, we have $\operatorname{nul}\left(T^{*} T\right)=\operatorname{nul} T$. The inclusion $\operatorname{nul} T \subseteq \operatorname{nul}\left(T^{*} T\right)$ is trivial.

For the converse inclusion notice that $v \in \operatorname{nul}\left(T^{*} T\right)$ implies $T^{*} T v=0$, which yields $\left\langle T^{*} T v, v\right\rangle=0$ and thus $\langle T v, T v\rangle=0$. Consequently, $\|T v\|=0$, that is $T v=0$, yielding $v \in \operatorname{nul} T$. So,

$$
\begin{equation*}
\operatorname{nul} Q=\operatorname{nul}\left(T^{*} T\right)=\operatorname{nul} T \tag{25}
\end{equation*}
$$

is proved.
First assume that T is invertible. By (25) and ??, Q is invertible as well. Therefore $T=U Q$ is equivalent to $U=T Q^{-1}$ in this case. Since Q is unique, this proves the uniqueness of U. Set $U=T Q^{-1}$. Since Q is self-adjoint, Q^{-1} is also self-adjoint. Therefore $U^{*}=Q^{-1} T^{*}$, yielding $U^{*} U=Q^{-1} T^{*} T Q^{-1}=Q^{-1} Q^{2} Q^{-1}=I$. That is, U is unitary.

Now assume that T is not invertible. By the Nullity-Rank Theorem, $\operatorname{dim}(\operatorname{ran} Q)=\operatorname{dim}(\operatorname{ran} T)$. Since T is not invertible, $\operatorname{dim}(\operatorname{ran} Q)=\operatorname{dim}(\operatorname{ran} T)<$ $\operatorname{dim} \mathscr{V}$, implying that

$$
\begin{equation*}
\operatorname{dim}\left((\operatorname{ran} Q)^{\perp}\right)=\operatorname{dim}\left((\operatorname{ran} T)^{\perp}\right)>0 \tag{26}
\end{equation*}
$$

We will define $U: \mathscr{V} \rightarrow \mathscr{V}$ in two steps. First we define the action of U on $\operatorname{ran} Q$, that is we define the operator $U_{r}: \operatorname{ran} Q \rightarrow \operatorname{ran} T$, then we define an operator $U_{p}:(\operatorname{ran} Q)^{\perp} \rightarrow(\operatorname{ran} T)^{\perp}$.

We define $U_{r}: \operatorname{ran} Q \rightarrow \operatorname{ran} T$ in the following way: Let $u \in \operatorname{ran} Q$ be arbitrary and let $x \in \mathscr{V}$ be such that $u=Q x$. Then we set

$$
U_{r} u=T x
$$

First we need to show that U_{r} is well defined. Let $x_{1}, x_{2} \in \mathscr{V}$ be such that $u=Q x_{1}=Q x_{2}$. Then, $x_{1}-x_{2} \in \operatorname{nul} Q$. Since nul $Q=\operatorname{nul} T$, we thus have $x_{1}-x_{2} \in \operatorname{nul} T$. Consequently, $T x_{1}=T x_{2}$.

To prove that U_{r} is angle-preserving, let $u_{1}, u_{2} \in \operatorname{ran} Q$ be arbitrary and let $x_{1}, x_{1} \in \mathscr{V}$ be such that $u_{1}=Q x_{1}$ and $u_{2}=Q x_{2}$ and calculate

$$
\begin{aligned}
\left\langle U_{r} u_{1}, U_{r} u_{2}\right\rangle & =\left\langle U_{r}\left(Q x_{1}\right), U_{r}\left(Q x_{2}\right)\right\rangle \\
\text { by definition of } U_{r} & =\left\langle T x_{1}, T x_{2}\right\rangle \\
\text { by definition of adjoint } & =\left\langle T^{*} T x_{1}, x_{2}\right\rangle \\
\text { by definition of } Q & =\left\langle Q^{2} x_{1}, x_{2}\right\rangle \\
\text { since } Q \text { is self-adjoint } & =\left\langle Q x_{1}, Q x_{2}\right\rangle \\
\text { by definition of } x_{1}, x_{2} & =\left\langle u_{1}, u_{2}\right\rangle
\end{aligned}
$$

Thus $U_{r}: \operatorname{ran}(Q) \rightarrow \operatorname{ran}(T)$ is angle-preserving.

Next we define an angle-preserving operator

$$
U_{p}:(\operatorname{ran} Q)^{\perp} \rightarrow(\operatorname{ran} T)^{\perp}
$$

By (26), we can set

$$
m=\operatorname{dim}\left((\operatorname{ran} Q)^{\perp}\right)=\operatorname{dim}\left((\operatorname{ran} T)^{\perp}\right)>0 .
$$

Let e_{1}, \ldots, e_{m} be an orthonormal basis on $(\operatorname{ran} Q)^{\perp}$ and let f_{1}, \ldots, f_{m} be an orthonormal basis on $(\operatorname{ran} T)^{\perp}$. For arbitrary $w \in(\operatorname{ran} P)^{\perp}$ define

$$
U_{p} w=U_{p}\left(\sum_{j=1}^{m}\left\langle w, e_{j}\right\rangle e_{j}\right)=\sum_{j=1}^{m}\left\langle w, e_{j}\right\rangle f_{j} .
$$

Then, for $w_{1}, w_{2} \in(\operatorname{ran} Q)^{\perp}$ we have

$$
\left\langle U_{p} w_{1}, U_{p} w_{2}\right\rangle=\left\langle\sum_{i=1}^{m}\left\langle w_{1}, e_{i}\right\rangle f_{i}, \sum_{j=1}^{m}\left\langle w_{2}, e_{j}\right\rangle f_{j}\right\rangle=\sum_{j=1}^{m}\left\langle w_{1}, e_{j}\right\rangle \overline{\left\langle w_{2}, e_{j}\right\rangle}=\left\langle w_{1}, w_{2}\right\rangle .
$$

Hence U_{p} is angle-preserving on $(\operatorname{ran} Q)^{\perp}$.
Since the orthomormal bases in the definition of U_{p} were arbitrary and since $m>0$, the operator U_{p} is not unique.

Finally we define $U: \mathscr{V} \rightarrow \mathscr{V}$ as a direct sum of U_{r} a dna U_{p}. Recall that

$$
\mathscr{V}=(\operatorname{ran} Q) \oplus(\operatorname{ran} Q)^{\perp} .
$$

Let $v \in \mathscr{V}$ be arbitrary. Then there exist unique $u \in(\operatorname{ran} Q)$ and $w \in$ $(\operatorname{ran} Q)^{\perp}$ such that $v=u+w$. Set

$$
U v=U_{r} u+U_{p} w
$$

We claim that U is angle-preserving. Let $v_{1}, v_{2} \in \mathscr{V}$ be arbitrary and let $v_{i}=u_{i}+w_{i}$ with $u_{i} \in(\operatorname{ran} Q)$ and $w_{i} \in(\operatorname{ran} Q)^{\perp}, i \in\{1,2\}$. Notice that

$$
\begin{equation*}
\left\langle v_{1}, v_{2}\right\rangle=\left\langle u_{1}+w_{1}, u_{2}+w_{2}\right\rangle=\left\langle u_{1}, u_{2}\right\rangle+\left\langle w_{1}, w_{2}\right\rangle \tag{27}
\end{equation*}
$$

since u_{1}, u_{2} are orthogonal to w_{1}, w_{2}. Similarly

$$
\begin{equation*}
\left\langle U_{r} u_{1}+U_{p} w_{1}, U_{r} u_{2}+U_{p} w_{2}\right\rangle=\left\langle U_{r} u_{1}, U_{r} u_{2}\right\rangle+\left\langle U_{p} w_{1}, U_{p} w_{2}\right\rangle, \tag{28}
\end{equation*}
$$

since $U_{r} u_{1}, U_{r} u_{2} \in(\operatorname{ran} T)$ and $U_{p} w_{1}, U_{p} w_{2} \in(\operatorname{ran} T)^{\perp}$. Now we calculate, starting with the definition of U,

$$
\left\langle U v_{1}, U v_{2}\right\rangle=\left\langle U_{r} u_{1}+U_{p} w_{1}, U_{r} u_{2}+U_{p} w_{2}\right\rangle
$$

$$
\begin{aligned}
\text { by (28) } & =\left\langle U_{r} u_{1}, U_{r} u_{2}\right\rangle+\left\langle U_{p} w_{1}, U_{p} w_{2}\right\rangle \\
U_{r} \text { and } U_{p} \text { are angle-preserving } & =\left\langle u_{1}, u_{2}\right\rangle+\left\langle w_{1}, w_{2}\right\rangle \\
\text { by }(27) & =\left\langle v_{1}, v_{2}\right\rangle .
\end{aligned}
$$

Hence U is angle-preserving and by Proposition 9.5 we have that U is unitary.

Finally we show that $T=U Q$. Let $v \in \mathscr{V}$ be arbitrary. Then $Q v \in$ $\operatorname{ran} Q$. By definitions of U and U_{r} we have

$$
U Q v=U_{r} Q v=T v
$$

Thus $T=U Q$, where U is unitary and Q is nonnegative.
Theorem 9.7 (Singular-Value Decomposition, Theorem 7.46). Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$ and let $T \in \mathscr{L}(\mathscr{V})$. Then there exist orthonormal bases $\mathscr{B}=$ $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ and nonnegative scalars $\sigma_{1}, \ldots, \sigma_{n}$ such that for every $v \in \mathscr{V}$ we have

$$
\begin{equation*}
T v=\sum_{j=1}^{n} \sigma_{j}\left\langle v, u_{j}\right\rangle w_{j} . \tag{29}
\end{equation*}
$$

In other words, there exist orthonormal bases \mathscr{B} and \mathscr{C} such that the matrix $\mathrm{M}_{\mathscr{C}}^{\mathscr{B}}(T)$ is diagonal with nonnegative entries on the diagonal.

Proof. Let $T=U Q$ be a polar decomposition of T, that is let U be unitary and $Q=\sqrt{T^{*} T}$. Since Q is nonnegative, it is normal with nonnegative eigenvalues. By the spectral theorem, there exists an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ of \mathscr{V} and nonnegative scalars $\sigma_{1}, \ldots, \sigma_{n}$ such that

$$
\begin{equation*}
Q u_{j}=\sigma_{j} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} . \tag{30}
\end{equation*}
$$

Since $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis, for arbitrary $v \in \mathscr{V}$ we have

$$
\begin{equation*}
v=\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle u_{j} . \tag{31}
\end{equation*}
$$

Applying Q to (31), using its linearity and (30) we get

$$
\begin{equation*}
Q v=\sum_{j=1}^{n} \sigma_{j}\left\langle v, u_{j}\right\rangle u_{j} \tag{32}
\end{equation*}
$$

Applying U to (32) and using its linearity we get

$$
\begin{equation*}
U Q v=\sum_{j=1}^{n} \sigma_{j}\left\langle v, u_{j}\right\rangle U u_{j} . \tag{33}
\end{equation*}
$$

Set $w_{j}=U u_{j}, j \in\{1, \ldots, n\}$. This definition and the fact that U is anglepreserving yield

$$
\left\langle w_{i}, w_{j}\right\rangle=\left\langle U u_{i}, U u_{j}\right\rangle=\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j} .
$$

Thus $\left\{w_{1}, \ldots, w_{n}\right\}$ is an orthonormal basis. Substituting $w_{j}=U u_{j}$ in (33) and using $T=U Q$ we get (29).

The values $\sigma_{1}, \ldots, \sigma_{n}$ from Theorem 9.7 , which are in fact the eigenvalues of $\sqrt{T^{*} T}$, are called singular values of T.

