LINEAR OPERATORS

BRANKO ĆURGUS

Throughout this note \mathscr{V} is a vector space over a scalar field \mathbb{F} . \mathbb{N} denotes the set of positive integers and $i, j, k, l, m, n, p \in \mathbb{N}$.

1. Functions

First we review formal definitions related to functions. In this section A and B are nonempty sets.

The formal definition of function identifies a function and its graph. A justification for this is the fact that if you know the graph of a function, then you know the function, and conversely, if you know a function you know its graph. Simply stated the definition below says that a function from a set A to a set B is a subset f of the Cartesian product $A \times B$ such that for each $x \in A$ there exists unique $y \in B$ such that $(x, y) \in F$.

A function from A into B is a subset f of the Cartesian product $A \times B$ such that

(a) $\forall x \in A \ \exists y \in B \ (x,y) \in f$,

(b) $\forall x \in A \ \forall y \in B \ \forall z \in B \ (x, y) \in f \land (x, z) \in f \Rightarrow y = z.$

The relationship $(x, y) \in f$ is commonly written as y = f(x). The symbol $f: A \to B$ denotes a function from A to B.

The set A is the domain of $f : A \to B$. The set B is the codomain of $f : A \to B$. The set

$$\{y \in B : \exists x \in A \ y = f(x)\}$$

is called the *range* of $f : A \to B$. It is denoted by ran f.

A function $f : A \to B$ is a *surjection* if for every $y \in B$ there exists $x \in A$ such that y = f(x).

A function $f : A \to B$ is an *injection* if for every $x_1, x_2 \in A$ the following implication holds: $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$.

A function $f : A \to B$ is a *bijection* if it is both: a surjection and an injection.

Next we give a formal definition of a composition of two functions. However, before giving a definition we need to prove a proposition.

Proposition 1.1. Let $f : A \to B$ and $g : C \to D$ be functions. If ran $f \subseteq C$, then

$$\left\{ (x,z) \in A \times D : \exists y \in B \ (x,y) \in f \land (y,z) \in g \right\}$$
(1.1)

is a function from A to D.

Date: February 3, 2017 at09:57.

Proof. A proof is a nice exercise.

The function defined by (1.1) is called the *composition* of functions f and q. It is denoted by $f \circ q$.

The function

$$\{(x,x) \in A \times A : x \in A\}$$

is called the *identity function* on A. It is denoted by id_A . In the standard notation id_A is the function $id_A : A \to A$ such that $id_A(x) = x$ for all $x \in A$.

A function $f: A \to B$ is *invertible* if there exist functions $g: B \to A$ and $h: B \to A$ such that $f \circ g = id_B$ and $h \circ f = id_A$.

Theorem 1.2. Let $f : A \to B$ be a function. The following statements are equivalent.

- (a) The function f is invertible.
- (b) The function f is a bijection.
- (c) There exists a unique function $g: B \to A$ such that $f \circ g = id_B$ and $g \circ f = id_A$.

If f is invertible, then the unique g whose existence is proved in Theorem 1.2 (c) is called the *inverse* of f; it is denoted by f^{-1} .

Let $f : A \to B$ be a function. It is common to extend the notation f(x) for $x \in A$ to subsets of A. For $X \subseteq A$ we introduce the notation

$$f(X) = \left\{ y \in B : \exists x \in X \ y = f(x) \right\}.$$

With this notation, the range of f is simply the set f(A).

Below are few exercises about functions from my Math 312 notes.

Exercise 1.3. Let A, B and C be nonempty sets. Let $f : A \to B$ and $q: B \to C$ be injections. Prove that $q \circ f : A \to C$ is an injection.

Exercise 1.4. Let A, B and C be nonempty sets. Let $f : A \to B$ and $g : B \to C$ be surjections. Prove that $g \circ f : A \to C$ is a surjection.

Exercise 1.5. Let A, B and C be nonempty sets. Let $f : A \to B$ and $g: B \to C$ be bijections. Prove that $g \circ f : A \to C$ is a bijection. Prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Exercise 1.6. Let A, B and C be nonempty sets. Let $f : A \to B, g : B \to C$. Prove that if $g \circ f$ is an injection, then f is an injection.

Exercise 1.7. Let A, B and C be nonempty sets and let $f : A \to B$, $g: B \to C$. Prove that if $g \circ f$ is a surjection, then g is a surjection.

Exercise 1.8. Let A, B and C be nonempty sets and let $f : A \to B$, $g : B \to C$ and $h : C \to A$ be three functions. Prove that if any two of the functions $h \circ g \circ f$, $g \circ f \circ h$, $f \circ h \circ g$ are injections and the third is a surjection, or if any two of them are surjections and the third is an injection, then f, g, and h are bijections.

LINEAR OPERATORS

2. Linear operators

In this section \mathscr{U} , \mathscr{V} and \mathscr{W} are vector spaces over a scalar field \mathbb{F} .

2.1. The definition and the vector space of all linear operators. A function $T: \mathscr{V} \to \mathscr{W}$ is said to be a *linear operator* if it satisfies the following conditions:

$$\forall u \in \mathscr{V} \quad \forall v \in \mathscr{V} \qquad T(u+v) = T(u) + f(v), \tag{2.1}$$

$$\forall \alpha \in \mathbb{F} \ \forall v \in \mathscr{V} \qquad T(\alpha v) = \alpha T(v). \tag{2.2}$$

The property (2.1) is called *additivity*, while the property (2.2) is called *homogeneity*. Together additivity and homogeneity are called *linearity*.

Denote by $\mathscr{L}(\mathscr{V}, \mathscr{W})$ the set of all linear operators from \mathscr{V} to \mathscr{W} . Define the addition and scaling in $\mathscr{L}(\mathscr{V}, \mathscr{W})$. For $S, T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ and $\alpha \in \mathbb{F}$ we define

$$(S+T)(v) = S(v) + T(v), \qquad \forall v \in \mathscr{V}, \tag{2.3}$$

$$(\alpha T)(v) = \alpha T(v), \qquad \forall v \in \mathscr{V}.$$
(2.4)

(2.5)

Notice that two plus signs which appear in (2.3) have different meanings. The plus sign on the left-hand side stands for the addition of linear operators that is just being defined, while the plus sign on the right-hand side stands for the addition in \mathcal{W} . Notice the analogous difference in empty spaces between α and T in (2.4). Define the zero mapping in $\mathcal{L}(\mathcal{V}, \mathcal{W})$ to be

$$0_{\mathscr{L}(\mathscr{V},\mathscr{W})}(v) = 0_{\mathscr{W}}, \qquad \forall v \in \mathscr{V}.$$

For $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ we define its opposite operator by

$$(-T)(v) = -T(v), \quad \forall v \in \mathscr{V}.$$

Proposition 2.1. The set $\mathscr{L}(\mathscr{V}, \mathscr{W})$ with the operations defined in (2.3), and (2.4) is a vector space over \mathbb{F} .

For $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ and $v \in \mathscr{V}$ it is customary to write Tv instead of T(v).

Example 2.2. Assume that a vector space \mathscr{V} is a direct sum of its subspaces \mathscr{U} and \mathscr{W} , that is $\mathscr{V} = \mathscr{U} \oplus \mathscr{W}$. Define the function $P : \mathscr{V} \to \mathscr{V}$ by

 $Pv = w \quad \Leftrightarrow \quad v = u + w, \quad u \in \mathscr{U}, \quad w \in \mathscr{W}.$

Then P is a linear operator. It is called the *projection* of \mathscr{V} onto \mathscr{W} parallel to \mathscr{U} ; it is denoted by $P_{\mathscr{W}\parallel \mathscr{U}}$.

2.2. Composition, inverse, isomorphism. In the next two propositions we prove that the linearity is preserved under composition of linear operators and under taking the inverse of a linear operator.

Proposition 2.3. Let $S : \mathcal{U} \to \mathcal{V}$ and $T : \mathcal{V} \to \mathcal{W}$ be linear operators. The composition $T \circ S : \mathcal{U} \to \mathcal{W}$ is a linear operator. *Proof.* Prove this as an exercise.

When composing linear operators it is customary to write simply TS instead of $T \circ S$.

The identity function on \mathscr{V} is denoted by $I_{\mathscr{V}}$. It is defined by $I_{\mathscr{V}}(v) = v$ for all $v \in \mathscr{V}$. It is clearly a linear operator.

Proposition 2.4. Let $T : \mathcal{V} \to \mathcal{W}$ be a linear operator which is invertible. Then the inverse $T^{-1} : \mathcal{W} \to \mathcal{V}$ of T is a linear operator.

Proof. Since T is invertible, by Theorem 1.2 there exists a function $S : \mathcal{W} \to \mathcal{V}$ such that $ST = I_{\mathcal{V}}$ and $TS = I_{\mathcal{W}}$. Since T is linear and $TS = I_{\mathcal{W}}$ we have

$$T(\alpha Sx + \beta Sy) = \alpha T(Sx) + \beta T(Sy) = \alpha (TS)x + \beta (TS)y = \alpha x + \beta y$$

for all $\alpha, \beta \in \mathbb{F}$ and all $x, y \in \mathcal{W}$. Applying S to both sides of

$$T(\alpha Sx + \beta Sy) = \alpha x + \beta y$$

we get

$$(ST)(\alpha Sx + \beta Sy) = S(\alpha x + \beta y) \qquad \forall \alpha, \beta \in \mathbb{F} \quad \forall x, x \in \mathscr{W}.$$

Since $ST = I_{\mathscr{V}}$, we get

$$\alpha Sx + \beta Sy = S(\alpha x + \beta y) \qquad \forall \, \alpha, \beta \in \mathbb{F} \quad \forall x, x \in \mathscr{W},$$

thus proving the linearity of S. Since by definition $S = T^{-1}$ the proposition is proved.

A linear operator $T: \mathscr{V} \to \mathscr{W}$ which is a bijection is called an *isomorphism* between vector spaces \mathscr{V} and \mathscr{W} .

By Theorem 1.2 and Proposition 2.4 each isomorphism is invertible and its inverse is also an isomorphism.

In the next proposition we introduce the most important isomorphism $C_{\mathscr{B}}$.

Proposition 2.5. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} and $n = \dim \mathscr{V}$. Let $\mathscr{B} = \{v_1, \ldots, v_n\}$ be a basis for \mathscr{V} . There exists a function $C_{\mathscr{B}} : \mathscr{V} \to \mathbb{F}^n$ such that

$$C_{\mathscr{B}}(v) = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \qquad \Leftrightarrow \qquad v = \sum_{j=1}^n \alpha_j v_j.$$

The function $C_{\mathscr{B}}$ is an isomorphism between \mathscr{V} and \mathbb{F}^n .

Proof. Since \mathscr{B} spans \mathscr{V} , for every $v \in \mathscr{V}$ there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ such that $v = \sum_{j=1}^n \alpha_j v_j$. Thus $C_{\mathscr{B}}$ is defined for every $v \in \mathscr{V}$. To prove that $C_{\mathscr{B}}$ is a function assume

$$C_{\mathscr{B}}(v) = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$
 and $C_{\mathscr{B}}(v) = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}$.

Then

$$v = \sum_{j=1}^{n} \alpha_j v_j$$
 and $v = \sum_{j=1}^{n} \beta_j v_j$.

Therefore $0_{\mathscr{V}} = \sum_{j=1}^{n} (\alpha_j - \beta_j) v_j$. Since \mathscr{B} is linearly independent, $\alpha_j = \beta_j$ for all $j \in \{1, \ldots, n\}$. Thus

$$C_{\mathscr{B}}(v) = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \quad \text{and} \quad C_{\mathscr{B}}(v) = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}.$$

This proves that $C_{\mathscr{B}}$ is a function.

The linearity of $C_{\mathscr{B}}$ is easy to verify.

The injectivity of $C_{\mathscr{B}}$ follows from the linear independence of \mathscr{B} .

The surjectivity of $C_{\mathscr{B}}$ follows from the fact that for arbitrary $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ we have $v = \sum_{j=1}^n \alpha_j v_j \in \mathscr{V}$ and therefore

$$C_{\mathscr{B}}(v) = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

In the last part of the proof of Proposition 2.5 we showed that the formula for the inverse $(C_{\mathscr{B}})^{-1} : \mathbb{F}^n \to \mathscr{V}$ of $C_{\mathscr{B}}$ is given by

$$(C_{\mathscr{B}})^{-1} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \sum_{j=1}^n \alpha_j v_j, \qquad \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{F}^n.$$
(2.6)

Notice that (2.6) defines a function from \mathbb{F}^n to \mathscr{V} even if \mathscr{B} is not a basis of \mathscr{V} .

Example 2.6. Inspired by the definition of $C_{\mathscr{B}}$ and (2.6) we define a general operator of this kind. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F} . Let \mathscr{V} be finite dimensional, $n = \dim \mathscr{V}$ and let \mathscr{B} be a basis for \mathscr{V} . Let $\mathscr{C} = (w_1, \ldots, w_n)$ be any *n*-tuple of vectors in \mathscr{W} . The entries of an *n*-tuple can be repeated, they can all be equal, for example to $0_{\mathscr{V}}$. We define the linear operator $L_{\mathscr{C}}^{\mathscr{B}} : \mathscr{V} \to \mathscr{W}$ by

$$L_{\mathscr{C}}^{\mathscr{B}}(v) = \sum_{j=1}^{n} \alpha_{j} w_{j} \quad \text{where} \quad \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix} = C_{\mathscr{B}}(v). \quad (2.7)$$

In fact, $L_{\mathscr{C}}^{\mathscr{B}}: \mathscr{V} \to \mathscr{W}$ is a composition of $C_{\mathscr{B}}: \mathscr{V} \to \mathbb{F}^n$ and the operator $\mathbb{F}^n \to \mathscr{W}$ defined by

$$\begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} \mapsto \sum_{j=1}^n \xi_j w_j \quad \text{for arbitrary} \quad \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} \in \mathbb{F}^n. \quad (2.8)$$

BRANKO ĆURGUS

It is easy to verify that (2.8) defines a linear operator.

Denote by \mathscr{E} the standard basis of \mathbb{F}^n , that is the basis which consists of the columns of the identity matrix. Then $C_{\mathscr{B}} = L_{\mathscr{E}}^{\mathscr{B}}$ and $(C_{\mathscr{B}})^{-1} = L_{\mathscr{B}}^{\mathscr{E}}$.

Exercise 2.7. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F} . Let \mathscr{V} be finite dimensional, $n = \dim \mathscr{V}$ and let \mathscr{B} be a basis for \mathscr{V} . Let $\mathscr{C} = (w_1, \ldots, w_n)$ be a list of vectors in \mathcal{W} with n entries.

- (a) Characterize the injectivity of $L_{\mathscr{C}}^{\mathscr{B}}: \mathscr{V} \to \mathscr{W}$.

- (b) Characterize the surjectivity of $L_{\mathscr{C}}^{\mathscr{B}}: \mathscr{V} \to \mathscr{W}$. (c) Characterize the bijectivity of $L_{\mathscr{C}}^{\mathscr{B}}: \mathscr{V} \to \mathscr{W}$. (d) If $L_{\mathscr{C}}^{\mathscr{B}}: \mathscr{V} \to \mathscr{W}$ is an isomorphism, find a simple formula for $(L_{\mathscr{C}}^{\mathscr{B}})^{-1}$.

2.3. The nullity-rank theorem. Let $T: \mathscr{V} \to \mathscr{W}$ is be a linear operator. The linearity of T implies that the set

$$\operatorname{nul} T = \left\{ v \in \mathscr{V} : Tv = 0_{\mathscr{W}} \right\}$$

is a subspace of \mathscr{V} . This subspace is called the *null space* of T. Similarly, the linearity of T implies that the range of T is a subspace of \mathcal{W} . Recall that

$$\operatorname{ran} T = \{ w \in \mathscr{W} : \exists v \in \mathscr{V} \ w = Tv \}.$$

Proposition 2.8. A linear operator $T: \mathcal{V} \to \mathcal{W}$ is an injection if and only *if* nul $T = \{0_{\mathscr{V}}\}.$

Proof. We first prove the "if" part of the proposition. Assume that nul T = $\{0_{\mathscr{V}}\}$. Let $u, v \in \mathscr{V}$ be arbitrary and assume that Tu = Tv. Since T is linear, Tu = Tv implies $T(u-v) = 0_{\mathscr{W}}$. Consequently $u-v \in \operatorname{nul} T = \{0_{\mathscr{V}}\}$. Hence, $u-v=0_{\mathcal{V}}$, that is u=v. This proves that T is an injection.

To prove the "only if" part assume that $T : \mathscr{V} \to \mathscr{W}$ is an injection. Let $v \in \operatorname{nul} T$ be arbitrary. Then $Tv = 0_{\mathscr{W}} = T0_{\mathscr{V}}$. Since T is injective, $Tv = T0_{\mathscr{V}}$ implies $v = 0_{\mathscr{V}}$. Thus we have proved that $\operatorname{nul} T \subseteq \{0_{\mathscr{V}}\}$. Since the converse inclusion is trivial, we have nul $T = \{0_{\mathscr{V}}\}$.

Theorem 2.9 (Nullity-Rank Theorem). Let \mathscr{V} and \mathscr{W} be vector spaces over a scalar field \mathbb{F} and let $T: \mathcal{V} \to \mathcal{W}$ be a linear operator. If \mathcal{V} is finite dimensional, then $\operatorname{nul} T$ and $\operatorname{ran} T$ are finite dimensional and

$$\dim(\operatorname{nul} T) + \dim(\operatorname{ran} T) = \dim \mathscr{V}.$$
(2.9)

Proof. Assume that \mathscr{V} is finite dimensional. We proved earlier that for an arbitrary subspace \mathscr{U} of \mathscr{V} there exists a subspace \mathscr{X} of \mathscr{V} such that

$$\mathscr{U} \oplus \mathscr{X} = \mathscr{V}$$
 and $\dim \mathscr{U} + \dim \mathscr{X} = \dim \mathscr{V}$.

Thus, there exists a subspace \mathscr{X} of \mathscr{V} such that

 $(\operatorname{nul} T) \oplus \mathscr{X} = \mathscr{V}$ and $\dim(\operatorname{nul} T) + \dim \mathscr{X} = \dim \mathscr{V}.$ (2.10)

Since $\dim(\operatorname{nul} T) + \dim \mathscr{X} = \dim \mathscr{V}$, to prove the theorem we only need to prove that dim $\mathscr{X} = \dim(\operatorname{ran} T)$. To this end, let $m = \dim \mathscr{X}$ and let

 $\mathbf{6}$

 x_1, \ldots, x_m be a basis for \mathscr{X} . We will prove that vectors Tx_1, \ldots, Tx_m form a basis for ran T. We first prove

$$\operatorname{span}\{Tx_1,\ldots,Tx_m\} = \operatorname{ran} T. \tag{2.11}$$

Clearly $\{Tx_1, \ldots, Tx_m\} \subseteq \operatorname{ran} T$. Consequently, since $\operatorname{ran} T$ is a subspace of \mathscr{W} , we have $\operatorname{span}\{Tx_1, \ldots, Tx_m\} \subseteq \operatorname{ran} T$. To prove the converse inclusion, let $w \in \operatorname{ran} T$ be arbitrary. Then, there exists $v \in \mathscr{V}$ such that Tv = w. Since $\mathscr{V} = (\operatorname{nul} T) + \mathscr{X}$, there exist $u \in \operatorname{nul} T$ and $x \in \mathscr{X}$ such that v = u + x. Then Tv = T(u+x) = Tu + Tx = Tx. As $x \in \mathscr{X}$, there exist $\xi_1, \ldots, \xi_m \in \mathbb{F}$ such that $x = \sum_{j=1}^m \xi_j x_j$. Now we use linearity of T to deduce

$$w = Tv = Tx = \sum_{j=1}^{m} \xi_j Tx_j.$$

This proves that $w \in \text{span}\{Tx_1, \ldots, Tx_m\}$. Since w was arbitrary in ran T this completes a proof of (2.11).

Next we prove that the vectors Tx_1, \ldots, Tx_m are linearly independent. Let $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$ be arbitrary and assume that

$$\alpha_1 T x_1 + \dots + \alpha_m T x_m = 0_{\mathscr{W}}.$$
(2.12)

Since T is linear (2.12) implies that

$$\alpha_1 x_1 + \dots + \alpha_m x_m \in \operatorname{nul} T. \tag{2.13}$$

Recall that $x_1, \ldots, x_m \in cX$ and \mathscr{X} is a subspace of \mathscr{V} , so

$$\alpha_1 x_1 + \dots + \alpha_m x_m \in \mathscr{X}. \tag{2.14}$$

Now (2.13), (2.14) and the fact that $(\operatorname{nul} T) \cap \mathscr{X} = \{0_{\mathscr{V}}\}$ imply

$$\alpha_1 x_1 + \dots + \alpha_m x_m = 0_{\mathscr{V}}.$$
(2.15)

Since x_1, \ldots, x_m are linearly independent (2.15) yields $\alpha_1 = \cdots = \alpha_m = 0$. This completes a proof of the linear independence of Tx_1, \ldots, Tx_m .

Thus $\{Tx_1, \ldots, Tx_m\}$ is a basis for ran T. Consequently dim $(\operatorname{ran} T) = m$. Since $m = \dim \mathscr{X}$, (2.10) implies (2.9). This completes the proof.

A direct proof of NRT Theorem is as follows:

Proof. Since nul T is a subspace of \mathscr{V} it is finite dimensional. Set $k = \dim(\operatorname{nul} T)$ and let $\mathscr{C} = \{u_1, \ldots, u_k\}$ be a basis for nul T.

Since \mathscr{V} is finite dimensional there exists a finite set $\mathscr{F} \subset \mathscr{V}$ such that $\operatorname{span}(\mathscr{F}) = \mathscr{V}$. Then the set $T\mathscr{F}$ is a finite subset of \mathscr{W} and $\operatorname{ran} T = \operatorname{span}(T\mathscr{F})$. Thus $\operatorname{ran} T$ is finite dimensional. Let $\operatorname{dim}(\operatorname{ran} T) = m$ and let $\mathscr{E} = \{w_1, \ldots, w_m\}$ be a basis of $\operatorname{ran} T$.

Since clearly for every $j \in \{1, \ldots, m\}$, $w_j \in \operatorname{ran} T$, we have that for every $j \in \{1, \ldots, m\}$ there exists $v_j \in \mathscr{V}$ such that $Tv_j = w_j$. Set $\mathscr{D} = \{v_1, \ldots, v_m\}$.

Further set $\mathscr{B} = \mathscr{C} \cup \mathscr{D}$.

We will prove the following three facts:

(I) $\mathscr{C} \cap \mathscr{D} = \emptyset$,

(II) span $\mathscr{B} = \mathscr{V}$,

(III) \mathscr{B} is a linearly independent set.

To prove (I), notice that the vectors in \mathscr{E} are nonzero, since \mathscr{E} is linearly independent. Therefore, for every $v \in \mathscr{D}$ we have that $Tv \neq 0_{\mathscr{W}}$. Since for every $u \in \mathscr{C}$ we have $Tu = 0_{\mathscr{W}}$ we conclude that $u \in \mathscr{C}$ implies $u \notin \mathscr{D}$. This proves (I).

To prove (II), first notice that by the definition of $\mathscr{B} \subset \mathscr{V}$. Since \mathscr{V} is a vector space, we have span $\mathscr{B} \subseteq \mathscr{V}$.

To prove the converse inclusion, let $v \in \mathcal{V}$ be arbitrary. Then $Tv \in \operatorname{ran} T$. Since \mathscr{E} spans $\operatorname{ran} T$, there exist $\beta_1, \ldots, \beta_m \in \mathbb{F}$ such that

$$Tv = \sum_{j=1}^{m} \beta_j w_j.$$

Set

$$v' = \sum_{j=1}^m \beta_j v_j.$$

Then, by linearity of T we have

$$Tv' = \sum_{j=1}^{m} \beta_j Tv_j = \sum_{j=1}^{m} \beta_j w_j = Tv.$$

The last equality yields and the linearity of T yield $T(v - v') = 0_{\mathscr{W}}$. Consequently, $v - v' \in \operatorname{nul} T$. Since \mathscr{C} spans $\operatorname{nul} T$, there exist $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$ such that

$$v - v' = \sum_{j=1}^{k} \alpha_i u_i.$$

Consequently,

$$v = v' + \sum_{j=1}^{k} \alpha_i u_i = \sum_{j=1}^{k} \alpha_i u_i + \sum_{j=1}^{m} \beta_j v_j.$$

This proves that for arbitrary $v \in \mathscr{V}$ we have $v \in \operatorname{span} \mathscr{B}$. Thus $\mathscr{V} \subseteq \operatorname{span} \mathscr{B}$ and (II) is proved.

To prove (III) let $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$ and $\beta_1, \ldots, \beta_m \in \mathbb{F}$ be arbitrary and assume that

$$\sum_{j=1}^{k} \alpha_{i} u_{i} + \sum_{j=1}^{m} \beta_{j} v_{j} = 0_{\mathscr{V}}.$$
(2.16)

Applying T to both sides of the last equality, and using the fact that $u_i \in$ nul T and the definition of v_i we get

$$\sum_{j=1}^m \beta_j w_j = 0_{\mathscr{W}}.$$

Since \mathscr{E} is a linearly independent set the last equality implies that $\beta_j = 0$ for all $j \in \{1, \ldots, m\}$. Now substitute these equalities in (2.16) to get

$$\sum_{j=1}^{k} \alpha_i u_i = 0_{\mathscr{V}}$$

Since \mathscr{C} is a linearly independent set the last equality implies that $\alpha_i = 0$ for all $i \in \{1, \ldots, k\}$. This proves the linear independence of \mathscr{B} .

It follows from (II) and (III) that \mathscr{B} is a basis for \mathscr{V} . By (I) we have that $|\mathscr{B}| = |\mathscr{C}| + |\mathscr{D}| = k + m$. This completes the proof of the theorem. \Box

The nonnegative integer $\dim(\operatorname{nul} T)$ is called the *nullity* of T; the nonnegative integer $\dim(\operatorname{ran} T)$ is called the *rank* of T.

The nullity-rank theorem in English reads: If a linear operator is defined on a finite dimensional vector space, then its nullity and its rank are finite and they add up to the dimension of the domain.

Proposition 2.10. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F} . Assume that \mathscr{V} is finite dimensional. The following statements are equivalent

- (a) There exists a surjection $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$.
- (b) \mathscr{W} is finite dimensional and dim $\mathscr{V} \geq \dim \mathscr{W}$.

Proposition 2.11. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F} . Assume that \mathscr{V} is finite dimensional. The following statements are equivalent

- (a) There exists an injection $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$.
- (b) Either \mathscr{W} is infinite dimensional or dim $\mathscr{V} \leq \dim \mathscr{W}$.

Proposition 2.12. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F} . Assume that \mathscr{V} is finite dimensional. The following statements are equivalent

- (a) There exists an isomorphism $T: \mathscr{V} \to \mathscr{W}$.
- (b) \mathscr{W} is finite dimensional and dim $\mathscr{W} = \dim \mathscr{V}$.

2.4. Isomorphism between $\mathscr{L}(\mathscr{V}, \mathscr{W})$ and $\mathbb{F}^{n \times m}$. Let \mathscr{V} and \mathscr{W} be finite dimensional vector spaces over \mathbb{F} , $m = \dim \mathscr{V}$, $n = \dim \mathscr{W}$, let $\mathscr{B} = \{v_1, \ldots, v_n\}$ be a basis for \mathscr{V} and let $\mathscr{C} = \{w_1, \ldots, w_n\}$ be a basis for \mathscr{W} . The mapping $C_{\mathscr{B}}$ provides an isomorphism between \mathscr{V} and \mathbb{F}^m and $C_{\mathscr{C}}$ provides an isomorphism between \mathscr{W} and \mathbb{F}^n .

Recall that the simplest way to define a linear operator from \mathbb{F}^m to \mathbb{F}^n is to use an $n \times m$ matrix B. It is convenient to consider an $n \times m$ matrix to be an *m*-tuple of its columns, which are vectors in \mathbb{F}^n . For example, let $\mathbf{b}_1, \ldots, \mathbf{b}_m \in \mathbb{F}^n$ be columns of an $n \times m$ matrix B. Then we write

$$B = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_m \end{bmatrix}.$$

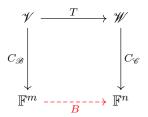
This notation is convenient since it allows us to write a multiplication of a vector $\mathbf{x} \in \mathbb{F}^m$ by a matrix B as

$$B\mathbf{x} = \sum_{j=1}^{m} \xi_j \mathbf{b}_j \quad \text{where} \quad \mathbf{x} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}. \quad (2.17)$$

BRANKO ĆURGUS

Notice the similarity of the definition in (2.17) to the definition (2.7) of the operator $L_{\mathscr{C}}^{\mathscr{B}}$ in Example 2.6. Taking \mathscr{B} to be the standard basis of \mathbb{F}^m and taking \mathscr{C} to me the *m*-tuple given by *B*, we have $L_{\mathscr{C}}^{\mathscr{B}}(\mathbf{x}) = B\mathbf{x}$.

Let $T: \mathscr{V} \to \mathscr{W}$ be a linear operator. Our next goal is to connect T in a natural way to a certain $n \times m$ matrix B. That "natural way" is suggested by following diagram:



We seek an $n \times m$ matrix B such that the action of T between \mathscr{V} and \mathscr{W} is in some sense replicated by the action of B between \mathbb{F}^m and \mathbb{F}^n . Precisely, we seek B such that

$$C_{\mathscr{C}}(Tv) = B(C_{\mathscr{B}}(v)) \qquad \forall v \in \mathscr{V}.$$

$$(2.18)$$

In English: multiplying the vector of coordinates of v by B we get exactly the coordinates of Tv.

Using the basis vectors $v_1, \ldots, v_n \in \mathscr{B}$ in (2.18) we see that the matrix

$$B = \begin{bmatrix} C_{\mathscr{C}}(Tv_1) & \cdots & C_{\mathscr{C}}(Tv_m) \end{bmatrix}$$
(2.19)

has the desired property (2.18).

For an arbitrary $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ the formula (2.19) associates the matrix $B \in \mathbb{F}^{n \times m}$ with T. In other words (2.19) defines a function from $\mathscr{L}(\mathscr{V}, \mathscr{W})$ to $\mathbb{F}^{n \times m}$.

Theorem 2.13. Let \mathscr{V} and \mathscr{W} be finite dimensional vector spaces over \mathbb{F} , $m = \dim \mathscr{V}$, $n = \dim \mathscr{W}$, let $\mathscr{B} = \{v_1, \ldots, v_m\}$ be a basis for \mathscr{V} and let $\mathscr{C} = \{w_1, \ldots, w_n\}$ be a basis for \mathscr{W} . The function

$$M_{\mathscr{C}}^{\mathscr{B}}:\mathscr{L}(\mathscr{V},\mathscr{W})\to\mathbb{F}^{n\times m}$$

defined by

$$M_{\mathscr{C}}^{\mathscr{B}}(T) = \begin{bmatrix} C_{\mathscr{C}}(Tv_1) & \cdots & C_{\mathscr{C}}(Tv_m) \end{bmatrix}, \qquad T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$$
(2.20)

is an isomorphism.

Proof. It is easy to verify that $M_{\mathscr{C}}^{\mathscr{B}}$ is a linear operator.

Since the definition of $M_{\mathscr{C}}^{\mathscr{B}}(T)$ coincides with (2.19), equality (2.18) yields

$$C_{\mathscr{C}}(Tv) = \left(M_{\mathscr{C}}^{\mathscr{B}}(T)\right)C_{\mathscr{B}}(v).$$
(2.21)

The most direct way to prove that $M_{\mathscr{C}}^{\mathscr{B}}$ is an isomorphism is to construct its inverse. The inverse is suggested by the diagram (2.22).

Define

$$N^{\mathscr{B}}_{\mathscr{C}}:\mathbb{F}^{n\times m}\to\mathscr{L}(\mathscr{V},\mathscr{W})$$

by

$$\left(N_{\mathscr{C}}^{\mathscr{B}}(B)\right)(v) = (C_{\mathscr{C}})^{-1} \left(B(C_{\mathscr{B}}(v))\right), \qquad B \in \mathbb{F}^{n \times m}.$$
 (2.23)

Next we prove that

$$N_{\mathscr{C}}^{\mathscr{B}} \circ M_{\mathscr{C}}^{\mathscr{B}} = I_{\mathscr{L}(\mathscr{V},\mathscr{W})} \quad \text{and} \quad M_{\mathscr{C}}^{\mathscr{B}} \circ N_{\mathscr{C}}^{\mathscr{B}} = I_{\mathbb{F}^{n \times m}}.$$

First for arbitrary $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ and arbitrary $v \in \mathscr{V}$ we calculate

$$\begin{pmatrix} \left(N_{\mathscr{C}}^{\mathscr{B}} \circ M_{\mathscr{C}}^{\mathscr{B}}\right)(T) \end{pmatrix}(v) = (C_{\mathscr{C}})^{-1} \begin{pmatrix} \left(M_{\mathscr{C}}^{\mathscr{B}}(T)\right)(C_{\mathscr{B}}(v)) \end{pmatrix} & \text{by (2.23)} \\ = (C_{\mathscr{C}})^{-1} \begin{pmatrix} C_{\mathscr{C}}(Tv) \end{pmatrix} & \text{by (2.21)} \\ = Tv. \end{cases}$$

Thus $(N_{\mathscr{C}}^{\mathscr{B}} \circ M_{\mathscr{C}}^{\mathscr{B}})(T) = T$ and thus, since $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ was arbitrary,
$$\begin{split} N^{\mathscr{B}}_{\mathscr{C}} \circ \overset{\circ}{M^{\mathscr{B}}_{\mathscr{C}}} = I_{\mathscr{L}(\mathscr{V},\mathscr{W})}. \\ \text{Let now } B \in \mathbb{F}^{n \times m} \text{ be arbitrary and calculate} \end{split}$$

$$\begin{pmatrix} M_{\mathscr{C}}^{\mathscr{B}} \circ N_{\mathscr{C}}^{\mathscr{B}} \end{pmatrix} (B) = M_{\mathscr{C}}^{\mathscr{B}} \left(N_{\mathscr{C}}^{\mathscr{B}} (B) \right) = \left[C_{\mathscr{C}} \left(\left(N_{\mathscr{C}}^{\mathscr{B}} (B) \right) (v_1) \right) \cdots C_{\mathscr{C}} \left(\left(N_{\mathscr{C}}^{\mathscr{B}} (B) \right) (v_m) \right) \right]$$
 by (2.20)
 = $\left[B(C_{\mathscr{B}} (v_1)) \cdots B(C_{\mathscr{B}} (v_m)) \right]$ by (2.23)
 = $B \left[C_{\mathscr{B}} (v_1) \cdots C_{\mathscr{B}} (v_m) \right]$ matrix mult.

 $\begin{array}{l} -D \\ \text{Thus } \left(M_{\mathscr{C}}^{\mathscr{B}} \circ N_{\mathscr{C}}^{\mathscr{B}} \right) (B) = B \text{ for all } B \in \mathbb{F}^{n \times m}, \text{ proving that } M_{\mathscr{C}}^{\mathscr{B}} \circ N_{\mathscr{C}}^{\mathscr{B}} = I_{\mathbb{F}^{n \times m}}. \\ \text{This completes the proof that } M_{\mathscr{C}}^{\mathscr{B}} \text{ is a bijection. Since it is linear, } M_{\mathscr{C}}^{\mathscr{B}} \\ \vdots \\ \vdots \\ \end{array}$ is an isomorphism.

Theorem 2.14. Let \mathscr{U}, \mathscr{V} and \mathscr{W} be finite dimensional vector spaces over $\mathbb{F}, \ k = \dim \mathscr{U}, \ m = \dim \mathscr{V}, \ n = \dim \mathscr{W}, \ let \ \mathscr{A} \ be \ a \ basis \ for \ \mathscr{U}, \ let \ \mathscr{B}$ be a basis for \mathscr{V} , and let \mathscr{C} be a basis for \mathscr{W} . Let $S \in \mathscr{L}(\mathscr{U}, \mathscr{V})$ and $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$. Let $M_{\mathscr{B}}^{\mathscr{A}}(S) \in \mathbb{F}^{m \times k}$, $M_{\mathscr{C}}^{\mathscr{B}}(T) \in \mathbb{F}^{n \times m}$ and $M_{\mathscr{C}}^{\mathscr{A}}(TS) \in \mathbb{F}^{n \times k}$ be as defined in Theorem 2.13. Then

$$M^{\mathscr{A}}_{\mathscr{C}}(TS) = M^{\mathscr{B}}_{\mathscr{C}}(T)M^{\mathscr{A}}_{\mathscr{B}}(S).$$

Proof. Let $\mathscr{A} = \{u, \ldots, u_k\}$ and calculate

The following diagram illustrates the content of Theorem 2.14.

