
VECTOR SPACES

BRANKO ĆURGUS

In these notes we denote C denotes the set of all complex numbers, R
denotes the set of all real numbers, Z denotes the set of all integers and N

denotes the set of all positive integers.

1. Axioms

Definition 1.1. A subset F of C is called a scalar field if the following five
statements hold.

SF1 0, 1 ∈ F.
SF2 If α, β ∈ F, then α+ β ∈ F and αβ ∈ F.
SF3 If α ∈ F, then −α ∈ F.

SF4 If α ∈ F and α 6= 0, then
1

α
∈ F.

SF5 If α ∈ F, then α ∈ F.

Proposition 1.2. If F is a scalar field, then Q ⊆ F.

Proof. Hint: First use Mathematical induction to prove N ⊂ F. Second, use
the fact that α ∈ Z if and only if α = 0 or α ∈ N or −α ∈ N to prove that
Z ⊂ F. Finally, prove that for arbitrary α ∈ Z and arbitrary β ∈ N we have
α/β ∈ F. �

Definition 1.3. Let V be a set and let F be a scalar field. The set V is
called a vector space over F if the following ten conditions are satisfied.

AE There exists a function + : V × V → V.

(The mapping in AE is called addition and its value on a pair (u, v) ∈ V×V
is denoted by u+ v.)

AA For all u, v, w ∈ V we have u+ (v +w) = (u+ v) + w.
AC For all u, v ∈ V we have u+ v = v + u.
AZ There exists an element 0V ∈ V such that v + 0V = v for all v ∈ V.
AO For each v ∈ V there exists w ∈ V such that v + w = 0V .

SE There exists a function · : F× V → V.

(The mapping in SE is called scaling and its value on a pair (α, v) ∈ F× V
is denoted by α · v, or simply αv.)

SA For all α, β ∈ F and all v ∈ V we have α(βv) = (αβ)v.
SD For all α ∈ F and all u, v ∈ V we have α(u+ v) = αu+ αv.
SD For all α, β ∈ F and all v ∈ V we have (α+ β)v = αv + βv.
SO For all v ∈ V we have 1v = v.
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2. Basic propositions

Few immediate consequences of Definitions 1.3 and 1.1 are collected in
the following propositions.

Proposition 2.1. Let V be a vector space over a scalar field F. Then for

every v ∈ V we have 0 v = 0V .

Proof. Let v ∈ V be arbitrary. Then by SE we have that 0v ∈ V. By AO

there exists w ∈ V such that 0v + w = 0V . Then

0V = 0v + w by the choice of w

= (0 + 0)v + w since 0 + 0 = 0 in C and ...

= (0v + 0v) + w by SD

= 0v + (0v + w) by AA

= 0v + 0V by the choice of w

= 0v by AZ.

The presented sequence of equalities proves the proposition. �

The proof of the next proposition is similar.

Proposition 2.2. Let V be a vector space over a scalar field F. Then for

every α ∈ F we have α0V = 0V .

Proposition 2.3. Let V be a vector space over a scalar field F. For every

v ∈ V the equation v + x = 0V has a unique solution.

Proof. Let v ∈ V be arbitrary. Assume that u,w ∈ V are such that v + u =
v + w = 0V . Then

u = u+ 0V by AZ

= u+ (v +w) by the assumption and ...

= (u+ v) + w by AA

= (v + u) + w by AC and ...

= 0V + w by the assumption and ...

= w + 0V by AC

= w by AZ.

The presented sequence of equalities proves the proposition. �

Definition 2.4. Let V be a vector space over a scalar field F and let v ∈ V.
The unique solution of equation v+x = 0V is denoted by −v and it is called
the opposite of v.

Proposition 2.5. Let V be a vector space over a scalar field F. For every

v ∈ V we have −v = (−1)v.
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Proof. Let v ∈ V be arbitrary. Then

−v = −v + 0V by AZ

= −v + 0v by Proposition 2.1 and ...

= −v + (1 + (−1))v by the definition of −1

= −v + (1v + (−1)v) by SD

= −v + (v + (−1)v) by SO

= (−v + v) + (−1)v by AA

= 0V + (−1)v by AO

= (−1)v by AZ and AC.

The presented sequence of equalities proves the proposition. �

3. Examples

Example 3.1. Let F be a scalar field. Then V = F is a vector space over
F. The addition in V = F is the addition of complex numbers in F and the
scaling in V = F is just the multiplication of complex numbers. The axioms
of the vector space then follow from the axioms of the scalar field and the
properties of the complex numbers.

The next example is a generalization of the previous one.

Example 3.2. Let F and K be scalar fields such that F ⊆ K. Then V = K

is a vector space over F. The addition in V = K is the addition of complex
numbers in K and the scaling in V = K is just the multiplication of complex
numbers. The axioms of the vector space then follow from the axioms of
the scalar field and the properties of the complex numbers.

Example 3.3. This is the quintessential example of a vector space. Many
other vector spaces are special cases of this example. Let D be an arbitrary
nonempty set and let F be a scalar field. Let V be the set of all functions
from D to F. This set is denoted by FD. The addition in FD is defined as
follows: let f, g ∈ FD, the function f + g is defined by

(f + g)(t) := f(t) + g(t) for all t ∈ D.

The scaling in FD is defined as follows: let α ∈ F and f ∈ FD, the function
αf is defined by

(α f)(t) := αf(t) for all t ∈ D.

The above definitions of addition and scaling of functions are called pointwise

definitions. As an exercise you should go through the proofs of all the axioms
of the vector space for this specific case.

Example 3.4. This is a special case of Example 3.3. Let n ∈ N and

D = {t ∈ N : t ≤ n}.
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Sometimes this set is written simply as D = {1, . . . , n}. Then the vector
space FD can be identified with the space Fn of all n-tuples of elements of
F.

Example 3.5. This is another special case of Example 3.3. Let m,n ∈ N

and
D =

{

(s, t) : s, t ∈ N, s ≤ m, t ≤ n
}

;

that is D = {1, . . . ,m}×{1, . . . , n}. Then FD can be identified with the
space Fm×n of all m×n matrices with entries in F.

Example 3.6. Let F be a scalar field. By F[z] we denote the set of all
polynomials in variable z with coefficients from the scalar field F. Then F[z]
is a vector space with addition and scalar multiplication defined pointwise.

The next example is a generalization of Example 3.3,

Example 3.7. Let D be an arbitrary nonempty set and let V be a vector
space over a scalar field F. Let W be the set of all functions from D to
V; that is W = VD. With the addition and scaling of functions defined
pointwise, W is a vector space over F. The functions in VD are said to be
vector valued functions.

4. Set operations in a vector space

In a set theory class we learned about set operations. For two sets A and
B we defined A∩B, A∪B, A\B and A∆B. In a vector space V over a field
F fun with subsets is enriched by two more set operations: the addition of
sets and scaling of sets.

Definition 4.1. Let V be a vector space over a scalar field F and let A and
B be nonempty subsets of V. We define the sum of A+ B by

A+ B =
{

u+ v : u ∈ A, v ∈ B
}

.

For α ∈ F we define αA by

αA =
{

αu : u ∈ A
}

.

Let n ∈ N and let A1, . . . ,An be subsets of V. By recursion we define

A1 + · · · +Ak :=
(

A1 + · · ·+Ak−1

)

+Ak, k = 2, . . . , n.

By AA, the set A1 + · · · +An consists of all the sums v1 + · · · + vn where
vj ∈ Aj where j ∈ {1, . . . , n}.

5. Special subsets of a vector space

The following definition distinguishes important subsets of a vector space
V over a field F.

Definition 5.1. Let V be a vector space over a scalar field F. A subset U of
V is said to be a subspace of V if the following three conditions are satisfied:

SuZ 0V ∈ U .
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SuA U + U ⊆ U .
SuS For every α ∈ F we have αU ⊆ U

Proposition 5.2. An intersection of subspaces of a vector space is also a

subspace.

Proposition 5.3. A sum of subspaces of a vector space is also a subspace.

A union of subspaces of a vector space is not necessarily a vector space.
Problems 7.5 and 7.7 deal with this question.

Definition 5.4. Let V be a vector space over R. A nonempty subset C of
V is said to be a cone in V if αC ⊆ C for all α > 0.

Definition 5.5. Let V be a vector space over R. A nonempty subset S of
V is said to be a convex set in V if αu+ (1− α)v ∈ S for all α ∈ [0, 1].

Exercise 5.6. Let V be a vector space over R and let C be a cone in V.
Prove that C is a convex set if and only if C + C ⊆ C.

6. Direct sums of subspaces

Let V be a vector space over a scalar field F. Let U and W be subspaces
of V. Recall that v ∈ U +V if and only if there exist u ∈ U and w ∈ W such
that v = u+ w. A stronger version of the last statement is in the following
definition.

Definition 6.1. Let V be a vector space over a scalar field F and let U and
W be subspaces of V. The sum U + V is called a direct sum if for every
v ∈ U + V there exist unique u ∈ U and w ∈ W such that v = u+ w. The
direct sum is denoted by U ⊕ V.

For example, let F = R, V = R4,

U =
{

(s1, s2, s3, 0) : s1, s2, s3 ∈ R
}

and W =
{

(0, t1, t2, t3) : t1, t2, t3 ∈ R
}

.

Then R4 = U + W. However, this sum is not a direct sum. For v =
(x1, x2, x3, x4) ∈ R4 we can take u = (x1, s2, s3, 0) ∈ U and w = (0, x2 −
s2, x3 − s3, x4) ∈ W with s2, s3 ∈ R arbitrary.

Setting

U =
{

(s1, s2, s2, 0) : s1, s2 ∈ R
}

and W =
{

(0,−t1, t1, t2) : t1, t2 ∈ R
}

,

we have R4 = U ⊕W. Prove this as an exercise.

Proposition 6.2. Let V be a vector space over a scalar field F and let U
and W be subspaces of V. The following statements are equivalent:

(a) The sum U +W is direct.

(b) If u ∈ U and w ∈ W and u+ w = 0V , then u = w = 0V .
(c) U ∩W = {0V}.

Proof. �
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Definition 6.3. Let V be a vector space over a scalar field F, let n ∈ N and
let U1, . . . ,Un be subspaces of V. The sum U1 + · · · + Un is called a direct

sum if for every v ∈ U1 + · · ·+Un there exist unique uj ∈ Uj, j ∈ {1, . . . , n},
such that v = u1 + · · ·+ un. The direct sum is denoted by U1 ⊕ · · · ⊕ Un.

Proposition 6.4. Let V be a vector space over a scalar field F, let n ∈ N and

let U1, . . . ,Un be subspaces of V. The following statements are equivalent:

(a) The sum U1 + · · · + Un is direct.

(b) If uj ∈ Uj for all j ∈ {1, . . . , n} and u1+ · · ·+un = 0V , then uj = 0V
for all j ∈ {1, . . . , n}.

Proof. �

In the next theorem we prove that the Cartesian product of two vector
spaces with appropriately defined vector addition and scalar multiplication
is a vector space.

Theorem 6.5. Let V and X be a vector spaces over a scalar field F. Define

the vector addition and scalar multiplication on the Cartesian product V×X
as follows. For all v,w ∈ V, all x, y ∈ X and all α ∈ F set

(6.1) (v, x) + (w, y) = (v + w, x+ y), α(v, x) = (αv, αx).

The set V × X with these two operations is a vector space.

Remark 6.6. Notice that the first plus sign in (6.1) is the addition in V×X
which is being defined, the second plus sign is the addition in V and the third
plus sign is the addition in X .

Definition 6.7. The set V×X with the operations defined in (6.1) is called
the direct product of the vector spaces V and X .

7. Problems

Problem 7.1. Let V = R+ and let F = R. Define the addition and the
scalar multiplication in V by: For all u, v ∈ V and all α ∈ F set

u| v = uv, α⟐ v = vα.

Prove that V with the vector addition | and the scaling ⟐ is a vector space
over R.

Problem 7.2. Let V = (−1, 1) and let F = R. Define the addition and the
scalar multiplication in V by: For all u, v ∈ V and all α ∈ F set

u| v =
u+ v

1 + uv
, α⟐ v =

(1 + v)α − (1− v)α

(1 + v)α + (1− v)α
.

Prove that V with the vector addition | and the scaling ⟐ is a vector space
over R.
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Problem 7.3. Consider the vector space RR of all real valued functions
defined on R. This vector space is considered over the field R. The purpose
of this exercise is to study some special subspaces of the vector space RR.
Let γ be an arbitrary real number. Consider the set

Sγ :=
{

f ∈ RR : ∃ a, b ∈ R such that f(t) = a sin(γt+ b), t ∈ R

}

.

(a) Do you see exceptional values for γ for which the set Sγ is particularly
simple? State them and explain why they are special.

(b) Prove that for every γ ∈ R the set Sγ is a subspace of RR.
(c) For each γ ∈ R find a basis for Sγ . Plot the function γ 7→ dimSγ .

Problem 7.4. Let D be a nonempty set and F a scalar field. Let FD be a
vector space introduced in Example 3.3. Let ϕ : D → D be a bijection. Set

O =
{

f ∈ FD : f
(

ϕ(t)
)

= −f(t) ∀t ∈ D
}

,

E =
{

f ∈ FD : f
(

ϕ(t)
)

= f(t) ∀t ∈ D
}

.

(a) Prove that O and E are subspaces of FD.
(b) Prove O ∩ E =

{

0FD

}

.
(c) Characterize the functions in the set O + E .
(d) Find a necessary and sufficient condition on ϕ : D → D for the

equality FD = O + E to hold.

Note: This problem is inspired by the concepts of odd and even functions
encountered in a precalculus class. In this precalculus setting D = R, F = R

and ϕ(t) = −t, t ∈ R. It would be helpful to work out this problem for this
particular case first.

Problem 7.5. Let V be a vector space over a scalar field F. Let U and W
be subspaces of V. Prove that U ∪W is a subspace of V if and only if U ⊆ W
or W ⊆ U .

Problem 7.6. Let V be a vector space over a scalar field F and let n ∈ N,
n > 2. Let U1, . . . ,Un be subspaces of V. If the union U1 ∪ · · · ∪ Un is a
subspace, then

(7.1) U1 ⊆ U2 ∪ · · · ∪ Un or Un ⊆ U1 ∪ · · · ∪ Un−1.

Proof. We will prove the contrapositive. Assume that (7.1) is not true. Then
there exist u1 ∈ U1 such that u1 6∈ Uj for all j ∈ {2, . . . , n} and there exist
un ∈ Un such that un 6∈ Uj for all j ∈ {1, . . . , n − 1}.

Let α ∈ F \ {0}. Then αun ∈ Un since Un is a subspace and, since α 6= 0,
αun 6∈ Uj for all j ∈ {1, . . . , n− 1}.

Since u1 ∈ U1 and αun 6∈ U1 we have u1 + αun 6∈ U1 for all α ∈ F \ {0}.
Since u1 6∈ Un and αun ∈ Un we have u1 + αun 6∈ Un for all α ∈ F.
Let m ∈ N be such that 1 < m < n. (Since n > 2 such m exists.) By

the choice of u1 and un we have u1 6∈ Um and αun 6∈ Um for all α ∈ F \ {0}.
Therefore, for at most one α ∈ F \ {0} we can have u1 + αun ∈ Um. (If
u1 + αun ∈ Um and u1 + βun ∈ Um with α − β 6= 0, then (u1 + αun) −
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(u1 + βun) = (α − β)un ∈ Um with α − β 6= 0 and un 6∈ Um which is a
contradiction.)

Thus, for at most n− 2 numbers α ∈ F \ {0} we have

u1 + αun ∈ U1 ∪ · · · ∪ Un.

Since the set F \ {0} is infinite, there exists α ∈ F \ {0} such that

u1 + αun 6∈ U1 ∪ · · · ∪ Un.

Recall that
u1, un ∈ U1 ∪ · · · ∪ Un.

The last two displayed relations show that U1 ∪ · · · ∪ Un is not a subspace of
V. �

Problem 7.7. Let V be a vector space over a scalar field F and let n ∈ N.
Let U1, . . . ,Un be subspaces of V. Prove that the union U1 ∪ · · · ∪ Un is a
subspace if and only if there exists m ∈ {1, . . . , n} such that Uk ⊆ Um for
all k ∈ {1, . . . , n}.

Problem 7.8 (Samantha Smith). Let V be a vector space over a scalar
field F. Let P(V) be the power set of V, that is the set of all subsets of V.
Set W = P(V) \ {∅}. Let the addition and scaling in W be defined as in
Section 4. Is W with these two operations a vector space over F?


