Problem 1. Let $\mathcal{V}=(-1,1)$ and let $\mathbb{F}=\mathbb{R}$. Define the addition and the scalar multiplication in \mathcal{V} by: For all $u, v \in \mathcal{V}$ and all $\alpha \in \mathbb{R}$ set

$$
u \nLeftarrow v=\frac{u+v}{1+u v}, \quad \alpha \diamond v=\frac{(1+v)^{\alpha}-(1-v)^{\alpha}}{(1+v)^{\alpha}+(1-v)^{\alpha}}
$$

Prove that \mathcal{V} with the vector addition \mapsto and the scaling \diamond is a vector space over \mathbb{R}.
Problem 2. Consider the vector space $\mathbb{R}^{\mathbb{R}}$ of all real valued functions defined on \mathbb{R}. This vector space is considered over the field \mathbb{R}. The purpose of this exercise is to study some special subspaces of the vector space $\mathbb{R}^{\mathbb{R}}$. Let γ be an arbitrary (fixed) real number. Consider the set

$$
\mathcal{S}_{\gamma}:=\left\{f \in \mathbb{R}^{\mathbb{R}}: \exists a, b \in \mathbb{R} \text { such that } f(t)=a \sin (\gamma t+b) \quad \forall t \in \mathbb{R}\right\}
$$

(a) Do you see exceptional values for γ for which the set \mathcal{S}_{γ} is particularly simple?
(b) Prove that \mathcal{S}_{γ} is a subspace of $\mathbb{R}^{\mathbb{R}}$.
(c) For each $\gamma \in \mathbb{R}$ find a basis for \mathcal{S}_{γ}. Plot the function $\gamma \mapsto \operatorname{dim} \mathcal{S}_{\gamma}$.

Problem 3. Let D be a nonempty set and \mathbb{F} a scalar field. Let \mathbb{F}^{D} be a vector space of all functions defined on D with values in \mathbb{F}. Let $\varphi: D \rightarrow D$ be a bijection. Set

$$
\begin{aligned}
\mathcal{O} & =\left\{f \in \mathbb{F}^{D}: f(\varphi(t))=-f(t) \forall t \in D\right\} \\
\mathcal{E} & =\left\{f \in \mathbb{F}^{D}: f(\varphi(t))=f(t) \forall t \in D\right\}
\end{aligned}
$$

(a) Prove that \mathcal{O} and \mathcal{E} are subspaces of \mathbb{F}^{D}.
(b) Prove $\mathcal{O} \cap \mathcal{E}=\left\{0_{\mathbb{F}^{D}}\right\}$.
(c) Characterize the functions in the set $\mathcal{O}+\mathcal{E}$.
(d) Find a necessary and sufficient condition on $\varphi: D \rightarrow D$ for the equality $\mathbb{F}^{D}=\mathcal{O}+\mathcal{E}$ to hold.

Note: This problem is inspired by the concepts of odd and even functions encountered in a precalculus class. In this precalculus setting $D=\mathbb{R}, \mathbb{F}=\mathbb{R}$ and $\varphi(t)=-t, t \in \mathbb{R}$. It would be helpful to work out this problem for this particular case first.

Problem 4. Let \mathcal{V} be a vector space over \mathbb{F}. Let \mathcal{A} be a linearly independent subset of \mathcal{V}. Let $u \in \mathcal{V}$ be arbitrary. By $u+\mathcal{A}$ we denote the set of vectors $\{u+v: v \in \mathcal{A}\}$.
(a) Prove the following implication. If $w \notin \operatorname{span} \mathcal{A}$, then $w+\mathcal{A}$ is a linearly independent set.
(b) Is the converse of the implication in (a) true? Justify your claim.
(c) Let $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{F}$, let v_{1}, \ldots, v_{n} be distinct vectors in \mathcal{A} and let $w=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$. Find a necessary and sufficient condition (in terms of $\alpha_{1}, \ldots, \alpha_{n}$) for the linear independence of the vectors $v_{1}+w, \ldots, v_{n}+w$.
Problem 5. Let D be a finite set and let \mathbb{F} be a scalar field. Then the set of all functions defined on D with values in \mathbb{F} is a vector space over \mathbb{F} with the addition and scalar multiplication of functions defined pointwise. This space is denoted by \mathbb{F}^{D}.
(a) Prove that \mathbb{F}^{D} is finite dimensional if and only if D is finite.
(b) If D is finite, then $\operatorname{dim}\left(\mathbb{F}^{D}\right)=|D|$.

Problem 6. Consider the vector space \mathcal{P}_{2} (over the field of real numbers \mathbb{R}) of all polynomials with real coefficients of degree smaller or equal than 2 . Let $s, t \in \mathbb{R}$. Consider the following two subsets of \mathcal{P}_{2} :

$$
\mathcal{Z}_{s}:=\left\{p \in \mathcal{P}_{2}: p(s)=0\right\} \quad \text { and } \quad \mathcal{V}_{t}:=\left\{p \in \mathcal{P}_{2}: p^{\prime}(t)=0\right\}
$$

(a) Prove that \mathcal{Z}_{s} is a subspace of \mathcal{P}_{2}. Find a basis of this subspace. What is $\operatorname{dim} \mathcal{Z}_{s}$?
(b) Prove that \mathcal{V}_{t} is a subspace of \mathcal{P}_{2}. Find a basis of this subspace. What is $\operatorname{dim} \mathcal{V}_{t}$?
(c) Let $s, t \in \mathbb{R}, s \neq t$. Describe the polynomials in each of the subspaces $\mathcal{Z}_{s} \cap \mathcal{Z}_{t}, \mathcal{V}_{t} \cap \mathcal{Z}_{s}$ and $\mathcal{V}_{s} \cap \mathcal{V}_{t}$. Find a basis for each of these subspaces.
(d) Let $s, t \in \mathbb{R}$ be given. Solve the equation $\mathcal{Z}_{s} \cap \mathcal{Z}_{u}=\mathcal{V}_{v} \cap \mathcal{Z}_{t}$ for u and v.

