MATH 504 Assignment 1 January 17, 2020

Name

Problem 1. Let $\mathcal{V} = (-1, 1)$ and let $\mathbb{F} = \mathbb{R}$. Define the addition and the scalar multiplication in \mathcal{V} by: For all $u, v \in \mathcal{V}$ and all $\alpha \in \mathbb{R}$ set

$$u \oplus v = \frac{u+v}{1+uv}, \qquad \alpha \otimes v = \frac{(1+v)^{\alpha} - (1-v)^{\alpha}}{(1+v)^{\alpha} + (1-v)^{\alpha}}$$

Prove that \mathcal{V} with the vector addition \oplus and the scaling \otimes is a vector space over \mathbb{R} .

Problem 2. Consider the vector space $\mathbb{R}^{\mathbb{R}}$ of all real valued functions defined on \mathbb{R} . This vector space is considered over the field \mathbb{R} . The purpose of this exercise is to study some special subspaces of the vector space $\mathbb{R}^{\mathbb{R}}$. Let γ be an arbitrary (fixed) real number. Consider the set

$$\mathcal{S}_{\gamma} := \Big\{ f \in \mathbb{R}^{\mathbb{R}} : \exists a, b \in \mathbb{R} \text{ such that } f(t) = a \sin(\gamma t + b) \ \forall t \in \mathbb{R} \Big\}.$$

- (a) Do you see exceptional values for γ for which the set S_{γ} is particularly simple?
- (b) Prove that \mathcal{S}_{γ} is a subspace of $\mathbb{R}^{\mathbb{R}}$.
- (c) For each $\gamma \in \mathbb{R}$ find a basis for S_{γ} . Plot the function $\gamma \mapsto \dim S_{\gamma}$.

Problem 3. Let D be a nonempty set and \mathbb{F} a scalar field. Let \mathbb{F}^D be a vector space of all functions defined on D with values in \mathbb{F} . Let $\varphi: D \to D$ be a bijection. Set

$$\mathcal{O} = \left\{ f \in \mathbb{F}^D : f(\varphi(t)) = -f(t) \; \forall t \in D \right\},\$$
$$\mathcal{E} = \left\{ f \in \mathbb{F}^D : f(\varphi(t)) = f(t) \; \forall t \in D \right\}.$$

- (a) Prove that \mathcal{O} and \mathcal{E} are subspaces of \mathbb{F}^D .
- (b) Prove $\mathcal{O} \cap \mathcal{E} = \{0_{\mathbb{F}^D}\}.$
- (c) Characterize the functions in the set $\mathcal{O} + \mathcal{E}$.
- (d) Find a necessary and sufficient condition on $\varphi: D \to D$ for the equality $\mathbb{F}^D = \mathcal{O} + \mathcal{E}$ to hold.

Note: This problem is inspired by the concepts of odd and even functions encountered in a precalculus class. In this precalculus setting $D = \mathbb{R}$, $\mathbb{F} = \mathbb{R}$ and $\varphi(t) = -t, t \in \mathbb{R}$. It would be helpful to work out this problem for this particular case first.

Problem 4. Let \mathcal{V} be a vector space over \mathbb{F} . Let \mathcal{A} be a linearly independent subset of \mathcal{V} . Let $u \in \mathcal{V}$ be arbitrary. By $u + \mathcal{A}$ we denote the set of vectors $\{u + v : v \in \mathcal{A}\}$.

- (a) Prove the following implication. If $w \notin \operatorname{span} \mathcal{A}$, then $w + \mathcal{A}$ is a linearly independent set.
- (b) Is the converse of the implication in (a) true? Justify your claim.
- (c) Let $\alpha_1, \dots, \alpha_n \in \mathbb{F}$, let v_1, \dots, v_n be distinct vectors in \mathcal{A} and let $w = \alpha_1 v_1 + \dots + \alpha_n v_n$. Find a necessary and sufficient condition (in terms of $\alpha_1, \dots, \alpha_n$) for the linear independence of the vectors $v_1 + w, \dots, v_n + w$.

Problem 5. Let D be a finite set and let \mathbb{F} be a scalar field. Then the set of all functions defined on D with values in \mathbb{F} is a vector space over \mathbb{F} with the addition and scalar multiplication of functions defined pointwise. This space is denoted by \mathbb{F}^{D} .

- (a) Prove that \mathbb{F}^D is finite dimensional if and only if D is finite.
- (b) If D is finite, then $\dim(\mathbb{F}^D) = |D|$.

Problem 6. Consider the vector space \mathcal{P}_2 (over the field of real numbers \mathbb{R}) of all polynomials with real coefficients of degree smaller or equal than 2. Let $s, t \in \mathbb{R}$. Consider the following two subsets of \mathcal{P}_2 :

$$\mathcal{Z}_s := \{ p \in \mathcal{P}_2 : p(s) = 0 \}$$
 and $\mathcal{V}_t := \{ p \in \mathcal{P}_2 : p'(t) = 0 \}$

- (a) Prove that \mathcal{Z}_s is a subspace of \mathcal{P}_2 . Find a basis of this subspace. What is dim \mathcal{Z}_s ?
- (b) Prove that \mathcal{V}_t is a subspace of \mathcal{P}_2 . Find a basis of this subspace. What is dim \mathcal{V}_t ?
- (c) Let $s, t \in \mathbb{R}$, $s \neq t$. Describe the polynomials in each of the subspaces $\mathcal{Z}_s \cap \mathcal{Z}_t$, $\mathcal{V}_t \cap \mathcal{Z}_s$ and $\mathcal{V}_s \cap \mathcal{V}_t$. Find a basis for each of these subspaces.
- (d) Let $s, t \in \mathbb{R}$ be given. Solve the equation $\mathcal{Z}_s \cap \mathcal{Z}_u = \mathcal{V}_v \cap \mathcal{Z}_t$ for u and v.