\qquad

Problem 1. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces over a scalar field \mathbb{F}. Let \mathcal{S} be a subspace of the direct product vector space $\mathcal{V} \times \mathcal{W}$. Define the following four subspaces

$$
\begin{aligned}
\operatorname{dom} \mathcal{S} & =\{v \in \mathcal{V}: \exists w \in \mathcal{W} \text { such that }(v, w) \in \mathcal{S}\} \\
\operatorname{ran} \mathcal{S} & =\{w \in \mathcal{W}: \exists v \in \mathcal{V} \text { such that }(v, w) \in \mathcal{S}\} \\
\operatorname{nul} \mathcal{S} & =\left\{v \in \mathcal{V}:\left(v, 0_{\mathcal{W}}\right) \in \mathcal{S}\right\} \\
\operatorname{mul} \mathcal{S} & =\left\{w \in \mathcal{W}:\left(0_{\mathcal{V}}, w\right) \in \mathcal{S}\right\} .
\end{aligned}
$$

Prove the equality

$$
\operatorname{dim} \operatorname{dom} \mathcal{S}+\operatorname{dim} m u l \mathcal{S}=\operatorname{dim} \operatorname{ran} \mathcal{S}+\operatorname{dim} \operatorname{nul} \mathcal{S}
$$

Hint: The following equivalence holds. For all $v \in \mathcal{V}$ and all $w \in \mathcal{W}$ we have:

$$
(v, w) \in \mathcal{S} \quad \Leftrightarrow \quad(\forall x \in \operatorname{nul} \mathcal{S}) \wedge(\forall y \in \operatorname{mul} \mathcal{S}) \quad(v+x, w+y) \in \mathcal{S}
$$

Problem 2. Let \mathcal{V} be a vector space over \mathbb{F} and $T \in \mathcal{L}(\mathcal{V})$. Assume that there exists a function $f: \mathcal{V} \rightarrow \mathbb{F}$ such that $T v=f(v) v$ for each $v \in \mathcal{V}$. Prove that T is a multiple of the identity operator. That is, there exists $\alpha \in \mathbb{F}$ such that $T v=\alpha v$ for each $v \in \mathcal{V}$. (A plain English explanation: The equation $T v=f(v) v$ is telling us that T scales each vector in \mathcal{V} by the scaling coefficient $f(v)$. The point of the problem is to prove that T must scale each vector by the same coefficient. This is a consequence of the linearity of T.)

Problem 3. Let \mathcal{V} be a nontrivial finite dimensional vector space, $n=\operatorname{dim} \mathcal{V}$, and let $T: \mathcal{V} \rightarrow \mathcal{V}$ be a linear operator. Define recursively:

$$
T^{0}=I \quad \text { and } \quad \forall j \in \mathbb{N} \quad T^{j}=T^{j-1} \circ T
$$

(a) Prove that there exists $k \in\{1, \ldots, n\}$ such that $\operatorname{nul}\left(T^{k}\right)=\operatorname{nul}\left(T^{k+1}\right)$.
(b) If $\operatorname{nul}(T) \neq\left\{0_{\mathcal{\nu}}\right\}$, then there exists $k \in\{1, \ldots, n\}$ such that

$$
\forall j \in\{1, \ldots, k\} \quad \operatorname{nul}\left(T^{j-1}\right) \subsetneq \operatorname{nul}\left(T^{j}\right) .
$$

and

$$
\forall l \in \mathbb{N} \backslash\{1, \ldots, k\} \quad \operatorname{nul}\left(T^{k}\right)=\operatorname{nul}\left(T^{l}\right)
$$

(c) Explore $\operatorname{ran}\left(T^{j}\right)$ with $j \in \mathbb{N}$ in the spirit of (a) and (b). Formulate your statements and prove them.

Problem 4. Let $\mathbb{C}[z]$ be the set of all polynomials with complex coefficients. For $n \in \mathbb{N}$ by $\mathbb{C}[z]_{<n}$ we denote the complex vector subspace of $\mathbb{C}[z]$ of all polynomials whose degree is less than n. (You do not need to prove this claim.) By $D: \mathbb{C}[z] \rightarrow \mathbb{C}[z]$ we denote the differentiation operator

$$
(D f)(z)=f^{\prime}(z), \quad f \in \mathbb{C}[z]
$$

Let \mathcal{Q} be a nontrivial finite dimensional subspace of $\mathbb{C}[z]$. Prove that $D \mathcal{Q} \subseteq \mathcal{Q}$ if and only if there exists $n \in \mathbb{N}$ such that $\mathcal{Q}=\mathbb{C}[z]_{<n}$.

Problem 5. Let $(\mathcal{V},\langle\cdot, \cdot\rangle)$ be an inner product space over a scalar field \mathbb{F} with a positive definite inner product $\langle\cdot, \cdot\rangle$. Let $\|\cdot\|$ be the corresponding norm on \mathcal{V}. That is, for $v \in \mathcal{V},\|v\|:=\sqrt{\langle v, v\rangle}$. Find a necessary and sufficient condition (in terms of the vectors $v_{1}, \ldots, v_{k} \in \mathcal{V}$) for the following equality

$$
\left\|v_{1}+\cdots+v_{k}\right\|=\left\|v_{1}\right\|+\cdots+\left\|v_{k}\right\| .
$$

Problem 6. Let \mathcal{V} be a finite dimensional vector space over a scalar field \mathbb{F}. Assume that $\operatorname{dim} \mathcal{V}>1$. Let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathcal{V}. Let x and y be fixed nonzero vectors in \mathcal{V}. Define the operator $T \in \mathcal{L}(\mathcal{V})$ by

$$
T v=v-\langle v, x\rangle y, \quad v \in \mathcal{V}
$$

You do not need to prove that $T \in \mathcal{L}(\mathcal{V})$. Answer the following questions and provide complete rigorous justifications.
(a) Determine all eigenvalues and the corresponding eigenspaces of T. Provide a proof that you indeed found all the eigenvalues.
(b) Determine an explicit formula for T^{*}.
(c) Determine a necessary and sufficient condition for $Q \in \mathcal{L}(\mathcal{V})$ to commute with T.
(d) Determine a necessary and sufficient condition for T to be normal.
(e) Determine a necessary and sufficient condition for T to be self-adjoint.

Problem 7. Let \mathcal{U} and \mathcal{V} be finite-dimensional vector spaces over the complex field \mathbb{C} such that $m=\operatorname{dim} U$ and $n=\operatorname{dim} V$ are positive integers. Assume that $\langle\cdot, \cdot\rangle_{\mathcal{U}}$ is a positive definite inner product on \mathcal{U} and $\langle\cdot, \cdot\rangle_{\mathcal{V}}$ is a positive definite inner product on \mathcal{V}. Let $T \in \mathcal{L}(\mathcal{U}, \mathcal{V})$.
(a) Prove that the operator $T^{*} T$ is a nonnegative operator on $\left(\mathcal{U},\langle\cdot, \cdot\rangle_{\mathcal{U}}\right)$ and

$$
\operatorname{nul}\left(T^{*} T\right)=\operatorname{nul} T
$$

(b) Define an operator $S: \operatorname{ran}\left(T^{*}\right) \rightarrow \operatorname{ran} T$ by

$$
S u=T u \quad \text { for all } \quad u \in \operatorname{ran}\left(T^{*}\right) .
$$

Prove that S is an isomorphism between the subspaces $\operatorname{ran}\left(T^{*}\right)$ of \mathcal{U} and $\operatorname{ran} T$ of \mathcal{V}.
Problem 8. Let \mathcal{U} and \mathcal{V} be finite-dimensional vector spaces over the complex field \mathbb{C} such that $m=\operatorname{dim} U$ and $n=\operatorname{dim} V$ are positive integers. Assume that $\langle\cdot, \cdot\rangle_{\mathcal{U}}$ is a positive definite inner product on \mathcal{U} and $\langle\cdot, \cdot\rangle_{\mathcal{V}}$ is a positive definite inner product on \mathcal{V}. Let $T \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ be such that $T \neq 0_{\mathcal{L}(\mathcal{U}, \mathcal{V})}$.
Prove the existence of the following objects:
(i) an orthonormal basis $\mathcal{B}=\left\{u_{1}, \ldots, u_{m}\right\}$ for \mathcal{U},
(ii) an orthonormal basis $\mathcal{C}=\left\{v_{1}, \ldots, v_{n}\right\}$ for \mathcal{V},
(iii) a positive integer r such that $r \leq \min \{m, n\}$,
(iv) positive real numbers $\sigma_{1}, \ldots, \sigma_{r}$ such that $\sigma_{1} \geq \cdots \geq \sigma_{r}$,
such that

$$
M_{\mathcal{C}}^{\mathcal{B}}(T)=\left[\begin{array}{ccc|c}
\sigma_{1} & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & 0_{r \times(m-r)} \\
0 & \cdots & \sigma_{r} & \\
\hline 0_{(n-r) \times r} & & 0_{(n-r) \times(m-r)}
\end{array}\right] .
$$

