MATH 504 Assignment 2 February 18, 2020

Name _____

Problem 1. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces over a scalar field \mathbb{F} . Let \mathcal{S} be a subspace of the direct product vector space $\mathcal{V} \times \mathcal{W}$. Define the following four subspaces

dom $S = \{v \in \mathcal{V} : \exists w \in \mathcal{W} \text{ such that } (v, w) \in S\},\$ ran $S = \{w \in \mathcal{W} : \exists v \in \mathcal{V} \text{ such that } (v, w) \in S\},\$ nul $S = \{v \in \mathcal{V} : (v, 0_{\mathcal{W}}) \in S\},\$ mul $S = \{w \in \mathcal{W} : (0_{\mathcal{V}}, w) \in S\}.\$

Prove the equality

 $\dim \operatorname{dom} \mathcal{S} + \dim \operatorname{mul} \mathcal{S} = \dim \operatorname{ran} \mathcal{S} + \dim \operatorname{nul} \mathcal{S}.$

Hint: The following equivalence holds. For all $v \in \mathcal{V}$ and all $w \in \mathcal{W}$ we have:

$$(v,w) \in \mathcal{S} \quad \Leftrightarrow \quad (\forall x \in \operatorname{nul} \mathcal{S}) \land (\forall y \in \operatorname{nul} \mathcal{S}) \quad (v+x,w+y) \in \mathcal{S}.$$

Problem 2. Let \mathcal{V} be a vector space over \mathbb{F} and $T \in \mathcal{L}(\mathcal{V})$. Assume that there exists a function $f: \mathcal{V} \to \mathbb{F}$ such that Tv = f(v)v for each $v \in \mathcal{V}$. Prove that T is a multiple of the identity operator. That is, there exists $\alpha \in \mathbb{F}$ such that $Tv = \alpha v$ for each $v \in \mathcal{V}$. (A plain English explanation: The equation Tv = f(v)v is telling us that T scales each vector in \mathcal{V} by the scaling coefficient f(v). The point of the problem is to prove that T must scale each vector by the same coefficient. This is a consequence of the linearity of T.)

Problem 3. Let \mathcal{V} be a nontrivial finite dimensional vector space, $n = \dim \mathcal{V}$, and let $T : \mathcal{V} \to \mathcal{V}$ be a linear operator. Define recursively:

 $T^0 = I$ and $\forall j \in \mathbb{N}$ $T^j = T^{j-1} \circ T$.

- (a) Prove that there exists $k \in \{1, ..., n\}$ such that $\operatorname{nul}(T^k) = \operatorname{nul}(T^{k+1})$.
- (b) If $\operatorname{nul}(T) \neq \{0_{\mathcal{V}}\}\)$, then there exists $k \in \{1, \ldots, n\}\)$ such that

 $\forall j \in \{1, \dots, k\} \quad \operatorname{nul}(T^{j-1}) \subsetneq \operatorname{nul}(T^j).$

and

$$\forall l \in \mathbb{N} \setminus \{1, \dots, k\}$$
 $\operatorname{nul}(T^k) = \operatorname{nul}(T^l).$

(c) Explore ran (T^j) with $j \in \mathbb{N}$ in the spirit of (a) and (b). Formulate your statements and prove them.

Problem 4. Let $\mathbb{C}[z]$ be the set of all polynomials with complex coefficients. For $n \in \mathbb{N}$ by $\mathbb{C}[z]_{< n}$ we denote the complex vector subspace of $\mathbb{C}[z]$ of all polynomials whose degree is less than n. (You do not need to prove this claim.) By $D : \mathbb{C}[z] \to \mathbb{C}[z]$ we denote the differentiation operator

$$(Df)(z) = f'(z), \quad f \in \mathbb{C}[z].$$

Let \mathcal{Q} be a nontrivial finite dimensional subspace of $\mathbb{C}[z]$. Prove that $D\mathcal{Q} \subseteq \mathcal{Q}$ if and only if there exists $n \in \mathbb{N}$ such that $\mathcal{Q} = \mathbb{C}[z]_{< n}$.

Problem 5. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be an inner product space over a scalar field \mathbb{F} with a positive definite inner product $\langle \cdot, \cdot \rangle$. Let $\|\cdot\|$ be the corresponding norm on \mathcal{V} . That is, for $v \in \mathcal{V}$, $\|v\| := \sqrt{\langle v, v \rangle}$. Find a necessary and sufficient condition (in terms of the vectors $v_1, \ldots, v_k \in \mathcal{V}$) for the following equality

$$||v_1 + \dots + v_k|| = ||v_1|| + \dots + ||v_k||$$

OVER

Problem 6. Let \mathcal{V} be a finite dimensional vector space over a scalar field \mathbb{F} . Assume that dim $\mathcal{V} > 1$. Let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathcal{V} . Let x and y be fixed nonzero vectors in \mathcal{V} . Define the operator $T \in \mathcal{L}(\mathcal{V})$ by

$$Tv = v - \langle v, x \rangle y, \qquad v \in \mathcal{V}.$$

You do not need to prove that $T \in \mathcal{L}(\mathcal{V})$. Answer the following questions and provide complete rigorous justifications.

- (a) Determine all eigenvalues and the corresponding eigenspaces of T. Provide a proof that you indeed found <u>all</u> the eigenvalues.
- (b) Determine an explicit formula for T^* .
- (c) Determine a necessary and sufficient condition for $Q \in \mathcal{L}(\mathcal{V})$ to commute with T.
- (d) Determine a necessary and sufficient condition for T to be normal.
- (e) Determine a necessary and sufficient condition for T to be self-adjoint.

Problem 7. Let \mathcal{U} and \mathcal{V} be finite-dimensional vector spaces over the complex field \mathbb{C} such that $m = \dim U$ and $n = \dim V$ are positive integers. Assume that $\langle \cdot, \cdot \rangle_{\mathcal{U}}$ is a positive definite inner product on \mathcal{U} and $\langle \cdot, \cdot \rangle_{\mathcal{V}}$ is a positive definite inner product on \mathcal{V} . Let $T \in \mathcal{L}(\mathcal{U}, \mathcal{V})$.

(a) Prove that the operator T^*T is a nonnegative operator on $(\mathcal{U}, \langle \cdot, \cdot \rangle_{\mathcal{U}})$ and

$$\operatorname{nul}(T^*T) = \operatorname{nul} T.$$

(b) Define an operator $S: \operatorname{ran}(T^*) \to \operatorname{ran} T$ by

$$Su = Tu$$
 for all $u \in \operatorname{ran}(T^*)$.

Prove that S is an isomorphism between the subspaces $\operatorname{ran}(T^*)$ of \mathcal{U} and $\operatorname{ran} T$ of \mathcal{V} .

Problem 8. Let \mathcal{U} and \mathcal{V} be finite-dimensional vector spaces over the complex field \mathbb{C} such that $m = \dim U$ and $n = \dim V$ are positive integers. Assume that $\langle \cdot, \cdot \rangle_{\mathcal{U}}$ is a positive definite inner product on \mathcal{U} and $\langle \cdot, \cdot \rangle_{\mathcal{V}}$ is a positive definite inner product on \mathcal{V} . Let $T \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ be such that $T \neq 0_{\mathcal{L}(\mathcal{U}, \mathcal{V})}$. Prove the existence of the following objects:

- (i) an orthonormal basis $\mathcal{B} = \{u_1, \ldots, u_m\}$ for \mathcal{U} ,
- (ii) an orthonormal basis $\mathcal{C} = \{v_1, \ldots, v_n\}$ for \mathcal{V} ,
- (iii) a positive integer r such that $r \leq \min\{m, n\}$,
- (iv) positive real numbers $\sigma_1, \ldots, \sigma_r$ such that $\sigma_1 \geq \cdots \geq \sigma_r$,

such that

$$M_{\mathcal{C}}^{\mathcal{B}}(T) = \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r \end{bmatrix} \begin{bmatrix} 0_{r \times (m-r)} \\ 0_{(n-r) \times r} \end{bmatrix}.$$