
BASES

BRANKO ĆURGUS

Throughout this note V is a vector space over a scalar field F. N denotes
the set of positive integers and i, j, k, l,m, n, p ∈ N.

1. Linear independence

Definition 1.1. If m ∈ N, α1, . . . , αm ∈ F and v1, . . . , vm ∈ V, then

α1v1 + · · ·+ αmvm

is called a linear combination of vectors in V. A linear combination is trivial
if α1 = · · · = αm = 0; otherwise it is a nontrivial linear combination.

Definition 1.2. Let A be a nonempty subset of V. The span of A is the
set of all linear combinations of vectors in A. The span of A is denoted by
spanA. The span of the empty set is the trivial vector space {0V}; that is,
the vector space which consists only of 0V . If spanA = V, then A is said to
be a spanning set for V.

Theorem 1.3. Let A ⊆ V. Then spanA is a subspace of V.

Proposition 1.4. If U is a subspace of V and A ⊆ U , then spanA ⊆ U .

Definition 1.5. Let A ⊆ V. The set A is linearly dependent if there exist
m ∈ N, α1, . . . , αm ∈ F and distinct vectors v1, . . . , vm ∈ A such that

α1v1 + · · ·+ αmvm = 0V and αk 6= 0 for some k ∈ {1, . . . ,m}.

Remark 1.6. The definition of linear dependence is equivalent to the fol-
lowing statement: Let A ⊆ V. The set A is linearly dependent if there exist
k ∈ N, α1, . . . , αk ∈ F \ {0} and distinct v1, . . . , vk ∈ A such that

α1v1 + · · ·+ αkvk = 0V .

Definition 1.7. Let A ⊆ V. The set A is linearly independent if for each
m ∈ N and arbitrary α1, . . . , αm ∈ F and distinct vectors v1, . . . , vm ∈ A we
have

α1v1 + · · · + αnvn = 0V implies αk = 0 for all k ∈ {1, . . . ,m}.

The empty set is by definition linearly independent.
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It is an interesting exercise in mathematical logic to show that the last
two definitions are formal negations of each other. Notice also that the last
two definitions can briefly be stated as follows: A set A ⊆ V is linearly
dependent if there exists a nontrivial linear combination of vectors in A
whose value is 0V . A set A ⊆ V is linearly independent if the only linear
combination whose value is 0V is the trivial linear combination.

The following proposition is an immediate consequence of the definitions.

Proposition 1.8. Let A ⊆ B ⊆ V. If A is linearly dependent, then B
is linearly dependent. Equivalently, if B is linearly independent, then A is
linearly independent.

Proposition 1.9. Let A be a linearly independent subset of V. Let u ∈ V
be such that u /∈ A. Then A ∪ {u} is linearly dependent if and only if
u ∈ spanA. Equivalently, A ∪ {u} is linearly independent if and only if
u /∈ spanA.

Proof. Assume that u ∈ spanA. Then there exist m ∈ N, α1, . . . , αm ∈ F

and distinct v1, . . . , vm ∈ A such that u =
∑m

j=1 αjvj . Then

1 · u− α1v1 − · · · − αmvm = 0V .

Since 1 6= 0 and u, v1, . . . , vm ∈ A ∪ {u} this proves that A∪ {u} is linearly
dependent.

Now assume that A∪{u} is linearly dependent. Then there exist m ∈ N,
α1, . . . , αm ∈ F and distinct vectors v1, . . . , vm ∈ A ∪ {u} such that

α1v1 + · · ·+ αmvm = 0V and αk 6= 0 for some k ∈ {1, . . . ,m}.

Since A is linearly independent it is not possible that v1, . . . , vm ∈ A. Thus,
u ∈

{

v1, . . . , vm
}

. Hence u = vj for some j ∈ {1, . . . ,m}. Again, since A is
linearly independent αj = 0 is not possible. Thus αj 6= 0 and consequently

u = vj = −
1

αj

m
∑

i=1
i 6=j

αi vi. �

Proposition 1.10. Let B be a nonempty subset of V. Then B is linearly
independent if and only if for every u ∈ B we have u 6∈ span

(

B \ {u}
)

.
Equivalently, B is linearly dependent if and only if there exists u ∈ B such
that u ∈ span

(

B \ {u}
)

.

Proof. We first prove the implication:

B linearly independent ⇒ ∀u ∈ B u 6∈ span
(

B \ {u}
)

.

Assume that B is linearly independent. Let u ∈ B be arbitrary. Then
B \ {u} is linearly independent by Proposition 1.8. Now, with A = B \ {u},
since B = A ∪ {u} is linearly independent, Proposition 1.9 yields that u 6∈
span

(

B \ {u}
)

.
To prove the converse of the displayed implication we will prove the con-

trapositive of the converse. (In mathematical logic the contrapositive of the
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converse is called the inverse of the starting implication. Consequently, the
converse and the inverse of an implication are equivalent.) That is we prove:

B linearly dependent ⇒ ∃u ∈ B such that u ∈ span
(

B \ {u}
)

.

Assume that B is linearly dependent. Then there exist m ∈ N, α1, . . . , αm ∈
F and distinct vectors v1, . . . , vm ∈ B such that

m
∑

j=1

αjvj = 0V and αk 6= 0 for some k ∈ {1, . . . ,m}.

Consequently,

vk = −
1

αk

m
∑

j=1

j 6=k

αjvj ,

and thus vk ∈ span
(

B \ {vk}
)

. �

The following equivalence will sometimes be helpful.

Lemma 1.11. Let B be a nonempty subset of V and u ∈ B. Then

span
(

B \ {u}
)

= spanB ⇔ u ∈ span
(

B \ {u}
)

.

With this lemma Proposition 1.10 can be restated as

Corollary 1.12. Let B be a nonempty subset of V. Then B is linearly
independent if and only if

span
(

B \ {u}
)

( spanB ∀u ∈ B.

2. Finite dimensional vector spaces. Bases

Definition 2.1. A vector space V over F is finite-dimensional if there exists
a finite subset A of V such that V = spanA. A vector space which is not
finite-dimensional is said to be infinite-dimensional.

Since the empty set is finite and since span ∅ =
{

0V
}

, the trivial vector

space
{

0V
}

is finite-dimensional.

Definition 2.2. A linearly independent spanning set is called a basis of V.

The next theorem shows that each finite-dimensional vector space has a
basis.

Theorem 2.3. Let V be a finite-dimensional vector space over F. Then V
has a basis.

Proof. If V is a trivial vector space its basis is the empty set. Let V 6= {0V}
be a finite-dimensional vector space. Let A be a finite subset of V such that
V = spanA. Let p = |A|. Set

K =
{

k ∈ N : ∃ C ⊆ A such that k = |C| and span C = V
}

.

Since p ∈ K, K is a nonempty set of positive integers. By the Well Ordering
Axiom K has a minimum. Set n = minK. By the definition of K there
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exists B ⊆ V such that |B| = n and spanB = V. Since n = minK we have
n− 1 /∈ K. Let u ∈ B be arbitrary. Then |B \ {u}| = n− 1 and consequently

span
(

B \ {u}
)

( V = spanB. (strict inclusion)

Corollary 1.12 implies that B is linearly independent. Thus B is a basis for
V. �

The second proof of Theorem 2.3. If V is a trivial vector space its basis is
the empty set. Let V 6= {0V} be a finite-dimensional vector space. Let A be
a finite subset of V such that V = spanA. Let p = |A|. Set

K =
{

|C| : C ⊆ A and C is linearly independent
}

.

We first prove that 1 ∈ K. Since V 6= {0V} there exists v ∈ A such that
v 6= 0V . Set C = {v}. Then clearly C ⊆ A and C is linearly independent.
Thus |C| = 1 ∈ K.

If C ⊆ A, then |C| ≤ |A| = p. Thus K ⊆ {0, 1, . . . , p}. As a subset of a
finite set the set K is finite. Thus K has a maximum. Set n = maxK. Since
n ∈ K there exists B ⊆ A such that B is linearly independent and n = |B|.

Next we will prove that spanB = V. In fact we will prove thatA ⊆ spanB.
If B = A, then this is trivial. So Assume that B ( A and let u ∈ A \ B be
arbitrary. Then

∣

∣B ∪ {u}
∣

∣ = n+ 1 and B ∪ {u} ⊆ A.

Since n = maxK, n + 1 6∈ K. Therefore B ∪ {u} is linearly dependent. By
Proposition 1.9 u ∈ spanB. Hence A ⊆ spanB. By Proposition 1.4, V =
spanA ⊆ spanB. Since spanB ⊆ V is obvious, we proved that spanB = V.
This proves that B is a basis of V. �

The third proof of Theorem 2.3. We will reformulate Theorem 2.3 so that
we can use the Mathematical induction. Let n be a nonnegative integer.
Denote by P (n) the following statement: If V = spanA and |A| = n, then
there exists linearly independent set B ⊆ A such that V = spanB.

First we prove that P (0) is true. Assume that V = spanA and |A| = 0.
Then A = ∅. Since ∅ is linearly independent we can take B = A = ∅.

Now let k be an arbitrary nonnegative integer and assume that P (k) is
true. That is we assume that the following implication is true: If U = span C
and |C| = k, then there exists linearly independent set D ⊆ C such that
U = spanD. This is the inductive hypothesis.

Next we will prove that P (k + 1) is true. Assume that V = spanA and
|A| = k + 1. Let u ∈ A be arbitrary. Set C = A \ {u}. Then |C| = k. Set
U = span C. The inductive hypothesis P (k) applies to the vector space U .
Thus we conclude that there exists a linearly independent set D ⊆ C such
that U = spanD.

We distinguish two cases: Case 1. u ∈ U = span C and Case 2. u 6∈
U = span C. In Case 1 we have A ⊆ span C. Therefore, by Proposition 1.4,
V = spanA ⊆ U ⊆ V. Thus V = U and we can take B = D in this case.
In Case 2, u 6∈ U = spanD. Since D is linearly independent Proposition 1.9



BASES 5

yields that D ∪ {u} is linearly independent. Set B = D ∪ {u}. Since U =
span C = spanD ⊆ spanB we have that C ⊆ spanB. Clearly u ∈ spanB.
Consequently, A ⊆ spanB. By Proposition 1.4 V = spanA ⊆ spanB ⊆ V.
Thus V = spanB. As proved earlier B is linearly independent and B ⊆ A.
This proves P (k + 1) and completes the proof. �

Notice that in the proof of Theorem 2.3 we have proved the following
proposition.

Proposition 2.4. Let V be a vector space over F and let A ⊆ V be a finite
subset of V such that V = spanA. Then there exists a basis B for V such
that B ⊆ A.

3. Dimension

Theorem 3.1 (The Steinitz exchange lemma). Let V be a vector space over
F. Let A and B be finite subsets of V such that A spans V and B is linearly
independent. Then |B| ≤ |A| and there exists C ⊆ A such that |C| = |A|−|B|
and B ∪ C spans V.

Proof. Let A ⊆ V be a finite spanning set for V such that |A| = p.
The proof is by mathematical induction on m = |B|. Since the empty set

is linearly independent the statement is true for m = 0. The statement is
trivially true in this case. (You should do a proof of the case m = 1 as an
exercise.)

Now let k be an arbitrary nonnegative integer and assume that the fol-
lowing statement (the inductive hypothesis) is true: If D ⊆ V is a linearly
independent set such that |D| = k, then k ≤ p and there exists E ⊆ A such
that |E| = p− k and D ∪ E is a spanning set for V.

To prove the inductive step we will prove the following statement: If
B ⊆ V is a linearly independent set such that |B| = k + 1, then k + 1 ≤ p
and there exists C ⊆ A such that |C| = p− k− 1 and B ∪C is a spanning set
for V.

Assume that B ⊆ V is a linearly independent set such that |B| = k + 1.
Let u ∈ B be arbitrary. Set D = B \ {u}. Since B = D ∪ {u} is linearly
independent, by Proposition 1.10 we have u 6∈ spanD. Also, D is linearly
independent and |D| = k. The inductive hypothesis implies that k ≤ p
and there exists E ⊆ A such that |E| = p − k and D ∪ E is a spanning set
for V. Since D ∪ E is a spanning set for V and u ∈ V, u can be written
as a linear combination of vectors in D ∪ E . But, as we noticed earlier,
u 6∈ spanD. Thus, E 6= ∅. Hence, p − k = |E| ≥ 1. Consequently, k + 1 ≤ p
is proved. Since u ∈ span

(

D ∪ E
)

, there exist i, j ∈ N and u1, . . . , ui ∈ D
and v1, . . . , vj ∈ E and α1, . . . , αi, β1, . . . , βj ∈ F such that

u = α1u1 + · · ·+ αiui + β1v1 + · · · + βjvj.

(If D = ∅, then i = 0 and the vectors from D are not present in the above
linear combination.) Since u 6∈ spanD at least one of β1, . . . , βj ∈ F is
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nonzero. But, by dropping v-s with zero coefficients we can assume that all
β1, . . . , βj ∈ F are nonzero. Then

v1 =
1

β1

(

u− α1u1 − · · · − αiui − β2v2 − · · · − βjvj
)

.

Now set C = E \{v1}. Then |C| = p−k−1. Notice that u, u1, . . . , ui ∈ B and
v2, . . . , vj ∈ C; so the last displayed equality implies that v1 ∈ span

(

B ∪ C
)

.

Since E = C∪{v1} and D ⊆ B, it follows that D∪E ⊆ span
(

B∪C
)

. Therefore,

V = span
(

D ∪ E
)

⊆ span
(

B ∪ C
)

.

Hence, span
(

B ∪ C
)

= V and the proof is complete. �

The following corollary is a direct logical consequence of the Steinitz ex-
change lemma. It is in fact a partial contrapositive of the lemma.

Corollary 3.2. Let B be a finite subset of V. If V is a finite-dimensional
vector space over F, then there exists p ∈ N such that |B| > p implies B is
linearly dependent.

Proof. Assume that B is a finite subset of V and V is a finite-dimensional
vector space over F. Then there exists a finite subset A of V such that V =
spanA. Set p = |A|. Then the Steinitz exchange lemma yields the following
implication: If B is linearly independent, then |B| ≤ p. The contrapositive
of the last implication is the claim of the corollary. �

Corollary 3.3. Let V be a finite-dimensional vector space over F. If C is
an infinite subset of V, then C is linearly dependent.

Proof. Let p ∈ N be a number whose existence has been proved in Corol-
lary 3.2. Let C be an infinite subset of V. Since C is infinite it has a finite
subset A such that |A| = p + 1. Corollary 3.2 yields that A is linearly
dependent. Since A ⊆ C, by Proposition 1.8, C is linearly dependent. �

Theorem 3.4. Let V be a finite-dimensional vector space and let B and C
be bases of V. Then both B and C are finite sets and |B| = |C|.

Proof. Let B and C be bases of V. Since both B and C are linearly inde-
pendent Corollary 3.3 implies that they are finite. Now we can apply the
Steinitz exchange lemma to the finite spanning set B and the finite linearly
independent set C. We conclude that |C| ≤ |B|. Applying again the Steinitz
exchange lemma to the finite spanning set C and the finite linearly indepen-
dent set B we conclude that |B| ≤ |C|. Thus |B| = |C|. �

Definition 3.5. The dimension of a finite-dimensional vector space is the
number of vectors in its basis. The dimension of a vector space V is denoted
by dim V.

The following corollary restates a part of Theorem 3.1 in terms of the
dimension.
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Corollary 3.6. Let V be a finite-dimensional vector space over F. Let A
and B be finite subsets of V. The following statements hold.

(a) If spanA = V, then |A| ≥ dimV.
(b) If B is linearly independent, then |B| ≤ dimV.
(c) If |A| < dimV, then spanA ( V.
(d) |B| > dimV, then B is linearly dependent.

Proposition 3.7. Let V be a finite-dimensional vector space over F and let
B he a finite subset of V. Then any two of the following three statements
imply the remaining one.

(a) |B| = dimV.
(b) spanB = V.
(c) B is linearly independent.

Proof. The easiest implication is: (b) and (c) imply (a). This is the definition
of the dimension.

Next we prove the implication (a) and (b) imply (c). Assume (a) and
(b). If B is an empty set, then by definition it is linearly independent, that
is (c) holds in this case. Assume now that B 6= ∅. Let u ∈ B be arbitrary.
Then |B \ {u}| < dimV, so Corollary 3.6 (c) yields span(B \ {u}) ( V.
Hence, for every u ∈ B we have that span(B \ {u}) ( spanB, which, by
Proposition 1.10, implies that B is linearly independent.

Now assume (a) and (c). Let A be a basis of V. By the Steinitz exchange
lemma there exists C ⊆ A such that |C| = |A|−|B| = 0 and span

(

B∪C
)

= V.
Since C = ∅, (b) follows. �

Remark 3.8. Notice that Corollary 3.6(a) and Proposition 3.7 imply that
a finite spanning set for V is a basis if and only if it has the smallest possible
cardinality. Similarly, Corollary 3.6(b) and Proposition 3.7 imply that in
a finite-dimensional vector space a linearly independent subset is a basis if
and only if it has the largest possible cardinality.

In the following proposition we characterize infinite-dimensional vector
spaces.

Proposition 3.9. Let V be a vector space over F. Set A0 = ∅. The following
statements are equivalent.

(a) The vector space V over F is infinite-dimensional.
(b) For every n ∈ N there exists linearly independent set An ⊆ V such that

|An| = n and An−1 ( An.
(c) There exists an infinite linearly independent subset of V.

Proof. We first prove (a)⇒(b). Assume (a). For n ∈ N, denote by P (n) the
following statement:

There exists linearly independent set An ⊆ V such that |An| = n and
An−1 ( An.
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We will prove that P (n) holds for every n ∈ N. Mathematical induction
is a natural tool here. Since the space {0V} is finite-dimensional, we have
V 6= {0V}. Therefore there exists v ∈ V such that v 6= 0V . Set A1 = {v}
and the proof of P (1) is complete. Let k ∈ N and assume that P (k) holds.
That is assume that there exists linearly independent set Ak ⊆ V such that
|Ak| = k. Since V is an infinite-dimensional, spanAk is a proper subset of V.
Therefore there exists u ∈ V such that u 6∈ spanAk. Since Ak is also linearly
independent, Proposition 1.9 implies that Ak ∪ {u} is linearly independent.
Set Ak+1 = Ak ∪ {u}. Then, since |Ak+1| = k + 1 and Ak ⊂ Ak+1, the
statement P (k + 1) is proved. This proves (b).

Now we prove (b)⇒(c). Assume (b) and set C = ∪
{

An : n ∈ N
}

. Then C
is infinite. To prove that C is linearly independent, let m ∈ N be arbitrary
and let v1, . . . , vm be distinct vectors in C and let α1, . . . , αm ∈ F such that

α1v1 + · · · + αmvm = 0V .

By the definition of C, for every k ∈ {1, . . . ,m} there exists nk ∈ N such that
vk ∈ Ank

. Set q = max
{

nk : k ∈ {1, . . . ,m}
}

. By the inclusion property
of the sequence An, we have Ank

⊆ Aq for all k ∈ {1, . . . ,m}. Therefore,
vk ∈ Aq for all k ∈ {1, . . . ,m}. Since the set Aq is linearly independent we
conclude that αk = 0F for all k ∈ {1, . . . ,m}. This proves (c).

The implication (c)⇒(a) is a partial contrapositive of Corollary 3.3. This
completes the proof. �

4. Subspaces

Proposition 4.1. Let U be a subspace of V. If U is infinite-dimensional,
then V is infinite-dimensional. Equivalently, if V is finite-dimensional,
then U is finite-dimensional. (In plain English, every subspace of a finite-
dimensional vector space is finite-dimensional.)

Proof. Assume that U is infinite-dimensional. Then, by the sufficient part
of Proposition 3.9, for every n ∈ N there exists A ⊆ U such that |A| = n
and A is linearly independent. Since U ⊆ V, we have that for every n ∈ N

there exists A ⊆ V such that |A| = n and A is linearly independent. Now
by the necessary part of Proposition 3.9 we conclude that V is infinite-
dimensional. �

Theorem 4.2. Let V be a finite-dimensional vector space and let U be a
subspace of V. Then there exists a subspace W of V such that V = U ⊕W.

Proof. Let B be a basis of V and let A a basis of U . By Proposition 4.1,
the Steinitz exchange lemma applies to the finite spanning set B and the
finite linearly independent set A. Consequently, there exists C ⊆ B such
that |C| = |B| − |A| and such that span

(

A ∪ C
)

= V. Applying the Steinitz
exchange lemma again to the linearly independent set B and the spanning set
A∪C we conclude that |A ∪ C| ≥ |B|. Since clearly |A ∪ C| ≤ |A|+ |C| = |B|
we have |A ∪ C| = |A| + |C| = |B| = dimV. Now the statement (a) and
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(b) imply (c) from Proposition 3.7 yields that A ∪ C is a basis of V. Set
W = span C. Then, since A∪C is a basis of V, V = U+W. It is not difficult
to show that U∩W = {0V}. Thus V = U⊕W. This proves the theorem. �

Lemma 4.3. Let V be a finite-dimensional vector space and let U and W
be subspaces of V such that V = U ⊕W. Then dimV = dimU + dimW.

Proof. Let A and B be basis of U and W respectively. Using V = U +W, it
can be proved that A ∪ B spans V. Using U ∩ W = {0V}, it can be shown
that A∪B is linearly independent and A∩B = ∅. Therefore A∪B is a basis
of V and consequently dimV = |A ∪ B| = |A|+ |B| = dimU + dimV. �

Theorem 4.4. Let V be a finite-dimensional vector space and let U and W
be subspaces of V such that V = U +W. Then

dimV = dimU + dimW − dim
(

U ∩W
)

.

Proof. Since U ∩W is a subspace of U , Theorem 4.2 implies that there exists
a subspace U1 of U such that

U = U1 ⊕ (U ∩W) and dimU = dimU1 + dim
(

U ∩W
)

.

Similarly, there exists a subspace W1 of W such that W = W1 ⊕ (U ∩ W)
and dimW = dimW1 +dim

(

U ∩W
)

. Next we will prove that V = U ⊕W1.
Let v ∈ V be arbitrary. Since V = U + W there exist u ∈ U and w ∈ W
such that v = u + w. Since W = W1 ⊕ (U ∩ W) there exist w1 ∈ W1 and
x ∈ U ∩ W such that w = w1 + x. Then v = u + w1 + x = (u + x) + w1.
Since u+x ∈ U this proves that V = U +W1. Clearly U ∩W1 ⊆ U ∩W and
U ∩W1 ⊆ W1. Thus,

U ∩W1 ⊆
(

U ∩W
)

∩W1 = {0V}.

Hence, U ∩W1 = {0V}. This proves V = U ⊕W1. By Lemma 4.3, dimV =
dimU +dimW1 = dimU +dimW − dim

(

U ∩V
)

. This completes the proof.
�

Combining the previous theorem and Lemma 4.3 we get the following
corollary.

Corollary 4.5. Let V be a finite-dimensional vector space and let U and W
be subspaces of V such that V = U +W. Then the sum U +W is direct if
and only if dimV = dimU + dimW.

The previous corollary holds for any number of subspaces of V. The proof
is by mathematical induction on the number of subspaces.

Proposition 4.6. Let V be a finite-dimensional vector space and let U1,
. . ., Um be subspaces of V such that V = U1 + · · · + Um. Then the sum
U1 + · · ·+ Um is direct if and only if dimV = dimU1 + · · · + dimUm.



10 BRANKO ĆURGUS

5. Problems

Problem 5.1. Prove that V is finite dimensional if and only if all linearly
independent subsets of V are finite. (Give a complete proof without citing
propositions in this section. You can, of course, use ideas utilized in the
proofs of this section.)

Problem 5.2. Let V be a finite-dimensional nonzero vector space V over
a scalar field F. Let n = dimV and let {v1, . . . , vn} be a basis of V. Let U
and W be subspaces of V such that V is a direct sum of U and W, that is

V = U ⊕W.

Let

vk = uk + wk, where uk ∈ U , wk ∈ W for all k ∈ {1, . . . , n}.

Prove that there exist subsets A and B of {1, . . . , n} such that:

{1, . . . , n} = A ∪ B and A ∩ B = ∅

and
{

uk : k ∈ A
}

is a basis for U and
{

wk : k ∈ B
}

is a basis for W.


