Inner Product Spaces

Branko Ćurgus

March 5, 2020 at 23:11

1 Inner Product Spaces

We will first introduce several "dot-product-like" objects. We start with the most general.

Definition 1.1. Let \mathscr{V} be a vector space over a scalar field \mathbb{F} . A function

$$[\,\cdot\,,\cdot\,]:\mathscr{V}\times\mathscr{V}\to\mathbb{F}$$

is a sesquilinear form on \mathscr{V} if the following two conditions are satisfied.

(a) (linearity in the first variable)

$$\forall\,\alpha,\beta\in\mathbb{F}\quad\forall\,u,v,w\in\mathscr{V}\quad [\alpha u+\beta v,w]=\alpha[u,w]+\beta[v,w].$$

(b) (anti-linearity in the second variable)

 $\forall \, \alpha, \beta \in \mathbb{F} \quad \forall \, u, v, w \in \mathscr{V} \quad [u, \alpha v + \beta w] = \overline{\alpha}[u, v] + \overline{\beta}[u, w].$

Example 1.2. Let $M \in \mathbb{C}^{n \times n}$ be arbitrary. Then

$$[\mathbf{x}, \mathbf{y}] = (M\mathbf{x}) \cdot \mathbf{y}, \qquad \mathbf{x}, \mathbf{y} \in \mathbb{C}^n,$$

is a sesquilinear form on the complex vector space \mathbb{C}^n . Here \cdot denotes the usual dot product in \mathbb{C} .

An abstract form of the Pythagorean Theorem holds for sesquilinear forms.

Theorem 1.3 (Pythagorean Theorem). Let $[\cdot, \cdot]$ be a sesquilinear form on a vector space \mathscr{V} over a scalar field \mathbb{F} . If $v_1, \dots, v_n \in \mathscr{V}$ are such that $[v_j, v_k] = 0$ whenever $j \neq k, j, k \in \{1, \dots, n\}$, then

$$\left[\sum_{j=1}^{n} v_j, \sum_{k=1}^{n} v_k\right] = \sum_{j=1}^{n} [v_j, v_j].$$

Proof. Assume that $[v_j, v_k] = 0$ whenever $j \neq k, j, k \in \{1, ..., n\}$ and apply the additivity of the sesquilinear form in both variables to get:

$$\begin{bmatrix} \sum_{j=1}^{n} v_j, \sum_{k=1}^{n} v_k \end{bmatrix} = \sum_{j=1}^{n} \sum_{k=1}^{n} [v_j, v_k] \\ = \sum_{j=1}^{n} [v_j, v_j].$$

Theorem 1.4 (Polarization identity). Let \mathscr{V} be a vector space over a scalar field \mathbb{F} and let $[\cdot, \cdot] : \mathscr{V} \times \mathscr{V} \to \mathbb{F}$ be a sesquilinear form on \mathscr{V} . If $i \in \mathbb{F}$, then

$$[u,v] = \frac{1}{4} \sum_{k=0}^{3} i^{k} [u + i^{k}v, u + i^{k}v]$$
(1)

for all $u, v \in \mathscr{V}$.

Corollary 1.5. Let \mathscr{V} be a vector space over a scalar field \mathbb{F} and let $[\cdot, \cdot]$: $\mathscr{V} \times \mathscr{V} \to \mathbb{F}$ be a sesquilinear form on \mathscr{V} . If $i \in \mathbb{F}$ and [v, v] = 0 for all $v \in \mathscr{V}$, then [u, v] = 0 for all $u, v \in \mathscr{V}$.

Definition 1.6. Let \mathscr{V} be a vector space over a scalar field \mathbb{F} . A sesquilinear form $[\cdot, \cdot] : \mathscr{V} \times \mathscr{V} \to \mathbb{F}$ is *hermitian* if

(c) (hermiticity) $\forall u, v \in \mathscr{V} \quad \overline{[u, v]} = [v, u].$

A hermitian sesquilinear form is also called an *inner product*.

Corollary 1.7. Let \mathscr{V} be a vector space over a scalar field \mathbb{F} such that $i \in \mathbb{F}$. Let $[\cdot, \cdot] : \mathscr{V} \times \mathscr{V} \to \mathbb{F}$ be a sesquilinear form on \mathscr{V} . Then $[\cdot, \cdot]$ is hermitian if and only if $[v, v] \in \mathbb{R}$ for all $v \in \mathscr{V}$.

Proof. The "only if" direction follows from the definition of a hermitian sesquilinear form. To prove "if" direction assume that $[v, v] \in \mathbb{R}$ for all $v \in \mathcal{V}$. Let $u, v \in \mathcal{V}$ be arbitrary. By assumption $[u + i^k v, u + i^k v] \in \mathbb{R}$ for all $k \in \{0, 1, 2, 3\}$. Therefore

$$\overline{[u,v]} = \frac{1}{4} \sum_{k=0}^{3} (-\mathbf{i})^k \left[u + \mathbf{i}^k v, u + \mathbf{i}^k v \right]$$
$$= \frac{1}{4} \sum_{k=0}^{3} (-\mathbf{i})^k \mathbf{i}^k (-\mathbf{i})^k \left[(-\mathbf{i})^k u + v, (-\mathbf{i})^k u + v \right]$$

$$= \frac{1}{4} \sum_{k=0}^{3} (-\mathbf{i})^{k} \left[v + (-\mathbf{i})^{k} u, v + (-\mathbf{i})^{k} u \right].$$

Notice that the values of $(-i)^k$ at k = 0, 1, 2, 3, in this particular order are: 1, -i, -1, i. These are exactly the values of i^k in the order k = 0, 3, 2, 1. Therefore rearranging the order of terms in the last four-term-sum we have

$$\frac{1}{4}\sum_{k=0}^{3}(-\mathbf{i})^{k}\left[v+(-\mathbf{i})^{k}u,v+(-\mathbf{i})^{k}u\right] = \frac{1}{4}\sum_{k=0}^{3}\mathbf{i}^{k}\left[v+\mathbf{i}^{k}u,v+\mathbf{i}^{k}u\right].$$

Together with Theorem 1.4, the last two displayed equalities yield $\overline{[u, v]} = [v, u]$.

Let $[\cdot, \cdot]$ be an inner product on \mathscr{V} . The hermiticity of $[\cdot, \cdot]$ implies that $\overline{[v, v]} = [v, v]$ for all $v \in \mathscr{V}$. Thus $[v, v] \in \mathbb{R}$ for all $v \in \mathscr{V}$. The natural trichotomy that arises is the motivation for the following definition.

Definition 1.8. An inner product $[\cdot, \cdot]$ on \mathscr{V} is called *nonnegative* if $[v, v] \geq 0$ for all $v \in \mathscr{V}$, it is called *nonpositive* if $[v, v] \leq 0$ for all $v \in \mathscr{V}$, and it is called *indefinite* if there exist $u \in \mathscr{V}$ and $v \in \mathscr{V}$ such that [u, u] < 0 and [v, v] > 0.

2 Nonnegative inner products

The following implication that you might have learned in high school will be useful below.

Theorem 2.1 (High School Theorem). Let a, b, c be real numbers. Assume $a \ge 0$. Then the following implication holds:

$$\forall x \in \mathbb{Q} \quad ax^2 + bx + c \ge 0 \qquad \Rightarrow \qquad b^2 - 4ac \le 0. \tag{2}$$

Theorem 2.2 (Cauchy-Bunyakovsky-Schwartz Inequality). Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a nonnegative inner product on \mathscr{V} . Then

$$\forall u, v \in \mathscr{V} \quad |\langle u, v \rangle|^2 \le \langle u, u \rangle \langle v, v \rangle.$$
(3)

The equality occurs in (3) if and only if there exists $\alpha, \beta \in \mathbb{F}$ not both 0 such that $\langle \alpha u + \beta v, \alpha u + \beta v \rangle = 0$.

Proof. Let $u, v \in \mathcal{V}$ be arbitrary. Since $\langle \cdot, \cdot \rangle$ is nonnegative we have

$$\forall t \in \mathbb{Q} \qquad \left\langle u + t \langle u, v \rangle v, u + t \langle u, v \rangle v \right\rangle \ge 0.$$
(4)

Since $\langle \cdot, \cdot \rangle$ is a sesquilinear hermitian form on \mathscr{V} , (4) is equivalent to

$$\forall t \in \mathbb{Q} \qquad \langle u, u \rangle + 2t |\langle u, v \rangle|^2 + t^2 |\langle u, v \rangle|^2 \langle v, v \rangle \ge 0.$$
(5)

As $\langle v, v \rangle \geq 0$, the High School Theorem applies and (5) implies

$$4|\langle u,v\rangle|^4 - 4|\langle u,v\rangle|^2\langle u,u\rangle\langle v,v\rangle \le 0.$$
(6)

Again, since $\langle u, u \rangle \ge 0$ and $\langle v, v \rangle \ge 0$, (6) is equivalent to

$$|\langle u, v \rangle|^2 \le \langle u, u \rangle \langle v, v \rangle.$$

Since $u, v \in \mathscr{V}$ were arbitrary, (3) is proved.

Next we prove the claim related to the equality in (3). We first prove the "if" part. Assume that $u, v \in \mathscr{V}$ and $\alpha, \beta \in \mathbb{F}$ are such that $|\alpha|^2 + |\beta|^2 > 0$ and

$$\langle \alpha u + \beta v, \alpha u + \beta v \rangle = 0$$

We need to prove that $|\langle u, v \rangle|^2 = \langle u, u \rangle \langle v, v \rangle$.

Since $|\alpha|^2 + |\beta|^2 > 0$, we have two cases $\alpha \neq 0$ or $\beta \neq 0$. We consider the case $\alpha \neq 0$. The case $\beta \neq 0$ is similar. Set $w = \alpha u + \beta v$. Then $\langle w, w \rangle = 0$ and $u = \gamma v + \delta w$ where $\gamma = -\beta/\alpha$ and $\delta = 1/\alpha$. Notice that the Cauchy-Bunyakovsky-Schwarz inequality and $\langle w, w \rangle = 0$ imply that $\langle w, x \rangle = 0$ for all $x \in \mathscr{V}$. Now we calculate

$$|\langle u, v \rangle| = |\langle \gamma v + \delta w, v \rangle| = |\gamma \langle v, v \rangle + \delta \langle w, v \rangle| = |\gamma \langle v, v \rangle| = |\gamma| \langle v, v \rangle$$

and

$$\langle u, u \rangle = \langle \gamma v + \delta w, \gamma v + \delta w \rangle = \langle \gamma v, \gamma v \rangle = |\gamma|^2 \langle v, v \rangle.$$

Thus,

$$|\langle u, v \rangle|^2 = |\gamma|^2 \langle v, v \rangle^2 = \langle u, u \rangle \langle v, v \rangle^2$$

This completes the proof of the "if" part.

To prove the "only if" part, assume $|\langle u, v \rangle|^2 = \langle u, u \rangle \langle v, v \rangle$. If $\langle v, v \rangle = 0$, then with $\alpha = 0$ and $\beta = 1$ we have

$$\langle \alpha u + \beta v, \alpha u + \beta v \rangle = \langle v, v \rangle = 0.$$

If $\langle v, v \rangle \neq 0$, then with $\alpha = \langle v, v \rangle$ and $\beta = -\langle u, v \rangle$ we have $|\alpha|^2 + |\beta|^2 > 0$ and

$$\langle \alpha u + \beta v, \alpha u + \beta v \rangle = \langle v, v \rangle \big(\langle v, v \rangle \langle u, u \rangle - |\langle u, v \rangle|^2 - |\langle u, v \rangle|^2 + |\langle u, v \rangle|^2 \big) = 0.$$

This completes the proof of the characterization of equality in the Cauchy-Bunyakovsky-Schwartz Inequality. $\hfill \Box$

Corollary 2.3. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a nonnegative inner product on \mathscr{V} . Then the following two implications are equivalent.

- (i) If $v \in \mathscr{V}$ and $\langle u, v \rangle = 0$ for all $u \in \mathscr{V}$, then v = 0.
- (ii) If $v \in \mathscr{V}$ and $\langle v, v \rangle = 0$, then v = 0.

Proof. Assume that the implication (i) holds and let $v \in \mathscr{V}$ be such that $\langle v, v \rangle = 0$. Let $u \in \mathscr{V}$ be arbitrary. By the the CBS inequality

$$|\langle u, v \rangle|^2 \le \langle u, u \rangle \langle v, v \rangle = 0.$$

Thus, $\langle u, v \rangle = 0$ for all $u \in \mathscr{V}$. By (i) we conclude v = 0. This proves (ii).

The converse is trivial. However, here is a proof. Assume that the implication (ii) holds. To prove (i), let $v \in \mathscr{V}$ and assume $\langle u, v \rangle = 0$ for all $u \in \mathscr{V}$. Setting u = v we get $\langle v, v \rangle = 0$. Now (ii) yields v = 0.

Definition 2.4. Let \mathscr{V} be a vector space over a scalar field \mathbb{F} . An inner product $[\cdot, \cdot]$ on \mathscr{V} is *nondegenerate* if the following implication holds

(d) (nondegenerecy) $u \in \mathscr{V}$ and [u, v] = 0 for all $v \in \mathscr{V}$ implies u = 0.

We conclude this section with a characterization of the best approximation property.

Theorem 2.5 (Best Approximation-Orthogonality Theorem). Let $(\mathscr{V}, \langle \cdot, \cdot \rangle)$ be an inner product space with a nonnegative inner product. Let \mathscr{U} be a subspace of \mathscr{V} . Let $v \in \mathscr{V}$ and $u_0 \in \mathscr{U}$. Then

$$\forall u \in \mathscr{U} \qquad \langle v - u_0, v - u_0 \rangle \le \langle v - u, v - u \rangle. \tag{7}$$

if and only if

$$\forall u \in \mathscr{U} \qquad \langle v - u_0, u \rangle = 0. \tag{8}$$

Proof. First we prove the "only if" part. Assume (7). Let $u \in \mathscr{U}$ be arbitrary. Set $\alpha = \langle v - u_0, u \rangle$. Clearly $\alpha \in \mathbb{F}$. Let $t \in \mathbb{Q} \subseteq \mathbb{F}$ be arbitrary. Since $u_0 - t\alpha u \in \mathscr{U}$, (7) implies

$$\forall t \in \mathbb{Q} \qquad \langle v - u_0, v - u_0 \rangle \le \langle v - u_0 + t\alpha u, v - u_0 + t\alpha u \rangle. \tag{9}$$

Now recall that $\alpha = \langle v - u_0, u \rangle$ and expand the right-hand side of (9):

$$\begin{split} \langle v - u_0 + t\alpha u, v - u_0 + t\alpha u \rangle &= \langle v - u_0, v - u_0 \rangle + \langle v - u_0, t\alpha u \rangle \\ &+ \langle t\alpha u, v - u_0 \rangle + \langle t\alpha u, t\alpha u \rangle \\ &= \langle v - u_0, v - u_0 \rangle + t\overline{\alpha} \langle v - u_0, u \rangle \\ &+ t\alpha \langle u, v - u_0 \rangle + t^2 |\alpha|^2 \langle u, u \rangle \\ &= \langle v - u_0, v - u_0 \rangle + 2t |\alpha|^2 + t^2 |\alpha|^2 \langle u, u \rangle. \end{split}$$

Thus (9) is equivalent to

$$\forall t \in \mathbb{Q} \qquad 0 \le 2t|\alpha|^2 + t^2|\alpha|^2 \langle u, u \rangle.$$
(10)

By the High School Theorem, (10) implies

$$4|\alpha|^4 - 4|\alpha|^2 \langle u, u \rangle 0 = 4|\alpha|^4 \le 0.$$

Consequently $\alpha = \langle v - u_0, u \rangle = 0$. Since $u \in \mathscr{U}$ was arbitrary, (8) is proved.

For the "if" part assume that (8) is true. Let $u \in \mathscr{U}$ be arbitrary. Notice that $u_0 - u \in \mathscr{U}$ and calculate

$$\langle v - u, v - u \rangle = \langle v - u_0 + u_0 - u, v - u_0 + u_0 - u \rangle$$

by (8) and Pythag. thm.
$$= \langle v - u_0, v - u_0 \rangle + \langle u_0 - u, u_0 - u \rangle$$

since $\langle u_0 - u, u_0 - u \rangle \ge 0 \ge \langle v - u_0, v - u_0 \rangle$.

This proves (7).

3 Positive definite inner products

It follows from Corollary 2.3 that a nonnegative inner product $\langle \cdot, \cdot \rangle$ on \mathscr{V} is nondegenerate if and only if $\langle v, v \rangle = 0$ implies v = 0. A nonnegative nondegenerate inner product is also called *positive definite inner product*. Since positive definite inner products are the most often encountered inner products we give the complete definition as it is commonly given in textbooks.

Definition 3.1. Let \mathscr{V} be a vector space over a scalar field \mathbb{F} . A function $\langle \cdot, \cdot \rangle : \mathscr{V} \times \mathscr{V} \to \mathbb{F}$ is called a *positive definite inner product* on \mathscr{V} if the following conditions are satisfied;

- (a) $\forall u, v, w \in \mathscr{V} \ \forall \alpha, \beta \in \mathbb{F} \ \langle \alpha u + \beta v, v \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle,$
- (b) $\forall u, v \in \mathscr{V} \quad \langle u, v \rangle = \overline{\langle v, u \rangle},$
- (c) $\forall v \in \mathscr{V} \quad \langle v, v \rangle \ge 0,$

(d) If
$$v \in \mathscr{V}$$
 and $\langle v, v \rangle = 0$, then $v = 0$.

A positive definite inner product gives rise to a norm.

Theorem 3.2. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle \cdot, \cdot \rangle$. The function $\|\cdot\| : \mathcal{V} \to \mathbb{R}$ defined by

$$\|v\| = \sqrt{\langle v, v \rangle}, \quad v \in \mathscr{V},$$

is a norm on \mathscr{V} . That is for all $u, v \in \mathscr{V}$ and all $\alpha \in \mathbb{F}$ we have $||v|| \ge 0$, $||\alpha v|| = |\alpha|||v||$, $||u + v|| \le ||u|| + ||v||$ and ||v|| = 0 implies $v = 0_{\mathscr{V}}$.

Definition 3.3. Let $(\mathscr{V}, \langle \cdot, \cdot \rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle \cdot, \cdot \rangle$. A set of vectors $\mathscr{A} \subset \mathscr{V}$ is said to form an *orthogonal system* in \mathscr{V} if for all $u, v \in \mathscr{A}$ we have $\langle u, v \rangle = 0$ whenever $u \neq v$ and for all $v \in \mathscr{A}$ we have $\langle v, v \rangle > 0$. An orthogonal system \mathscr{A} is called an *orthonormal system* if for all $v \in \mathscr{A}$ we have $\langle v, v \rangle = 1$.

Proposition 3.4. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle \cdot, \cdot \rangle$. Let u_1, \ldots, u_n be an orthogonal system in \mathcal{V} . If $v = \sum_{j=1}^n \alpha_j u_j$, then $\alpha_j = \langle v, u_j \rangle / \langle u_j, u_j \rangle$. In particular, an orthogonal system is linearly independent.

Theorem 3.5 (The Gram-Schmidt orthogonalization). Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle \cdot, \cdot \rangle$. Let $n \in \mathbb{N}$ and let v_1, \ldots, v_n be linearly independent vectors in \mathcal{V} . Let the vectors u_1, \ldots, u_n be defined recursively by

$$u_{1} = v_{1},$$

$$u_{k+1} = v_{k+1} - \sum_{j=1}^{k} \frac{\langle v_{k+1}, u_{j} \rangle}{\langle u_{j}, u_{j} \rangle} u_{j}, \quad k \in \{1, \dots, n-1\}.$$

Then the vectors u_1, \ldots, u_n form an orthogonal system which has the same fan as the given vectors v_1, \ldots, v_n .

Proof. We will prove by Mathematical Induction the following statement: For all $k \in \{1, ..., n\}$ we have:

- (a) $\langle u_k, u_k \rangle > 0$ and $\langle u_j, u_k \rangle = 0$ whenever $j \in \{1, \dots, k-1\}$;
- (b) vectors u_1, \ldots, u_k are linearly independent;
- (c) $\operatorname{span}\{u_1,\ldots,u_k\}=\operatorname{span}\{v_1,\ldots,v_k\}.$

For k = 1 statements (a), (b) and (c) are clearly true. Let $m \in \{1, \ldots, n-1\}$ and assume that statements (a), (b) and (c) are true for all $k \in \{1, \ldots, m\}$.

Next we will prove that statements (a), (b) and (c) are true for k = m+1. Recall the definition of u_{m+1} :

$$u_{m+1} = v_{m+1} - \sum_{j=1}^{m} \frac{\langle v_{m+1}, u_j \rangle}{\langle u_j, u_j \rangle} u_j.$$

By the Inductive Hypothesis we have $\operatorname{span}\{u_1, \ldots, u_m\} = \operatorname{span}\{v_1, \ldots, v_m\}$. Since $v_1 \ldots, v_{m+1}$ are linearly independent, $v_{m+1} \notin \operatorname{span}\{u_1, \ldots, u_m\}$. Therefore, $u_{m+1} \neq 0_{\mathscr{V}}$. That is $\langle u_{m+1}, u_{m+1} \rangle > 0$. Let $k \in \{1, \ldots, m\}$ be arbitrary. Then by the Inductive Hypothesis we have that $\langle u_j, u_k \rangle = 0$ whenever $j \in \{1, \ldots, m\}$ and $j \neq k$. Therefore,

$$\langle u_{m+1}, u_k \rangle = \langle v_{m+1}, u_k \rangle - \sum_{j=1}^m \frac{\langle v_{m+1}, u_j \rangle}{\langle u_j, u_j \rangle} \langle u_j, u_k \rangle$$

= $\langle v_{m+1}, u_k \rangle - \langle v_{m+1}, u_k \rangle$
= 0.

This proves claim (a). To prove claim (b) notice that by the Inductive Hypothesis u_1, \ldots, u_m are linearly independent and $u_{m+1} \notin \operatorname{span}\{u_1, \ldots, u_m\}$ since $v_{m+1} \notin \operatorname{span}\{u_1, \ldots, u_m\}$. To prove claim (c) notice that the definition of u_{m+1} implies $u_{m+1} \in \operatorname{span}\{v_1, \ldots, v_{m+1}\}$. Since by the inductive hypothesis $\operatorname{span}\{u_1, \ldots, u_m\} = \operatorname{span}\{v_1, \ldots, v_m\}$, we have $\operatorname{span}\{u_1, \ldots, u_{m+1}\} \subseteq \operatorname{span}\{v_1, \ldots, v_{m+1}\}$. The converse inclusion follows from the fact that $v_{m+1} \in \operatorname{span}\{u_1, \ldots, u_{m+1}\}$.

It is clear that the claim of the theorem follows from the claim that has been proven. $\hfill \Box$

The following two statements are immediate consequences of the Gram-Schmidt orthogonalization process. **Corollary 3.6.** If \mathscr{V} is a finite dimensional vector space with positive definite inner product $\langle \cdot, \cdot \rangle$, then \mathscr{V} has an orthonormal basis.

Corollary 3.7. If \mathscr{V} is a complex vector space with positive definite inner product and $T \in \mathscr{L}(\mathscr{V})$ then there exists an orthonormal basis \mathscr{B} such that $\mathsf{M}^{\mathscr{B}}_{\mathscr{B}}(T)$ is upper-triangular.

Definition 3.8. Let $(\mathscr{V}, \langle \cdot, \cdot \rangle)$ be a positive definite inner product space and $\mathscr{A} \subset \mathscr{V}$. We define $\mathscr{A}^{\perp} = \{v \in \mathscr{V} : \langle v, a \rangle = 0 \forall a \in \mathscr{A}\}.$

The following is a simple proposition.

Proposition 3.9. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be a positive definite inner product space and $\mathscr{A} \subset \mathscr{V}$. Then A^{\perp} is a subspace of \mathscr{V} .

Theorem 3.10. Let $(\mathscr{V}, \langle \cdot, \cdot \rangle)$ be a positive definite inner product space and let \mathscr{U} be a finite dimensional subspace of \mathscr{V} . Then $\mathscr{V} = \mathscr{U} \oplus \mathscr{U}^{\perp}$.

Proof. We first prove that $\mathscr{V} = \mathscr{U} \oplus \mathscr{U}^{\perp}$. Note that since \mathscr{U} is a subspace of \mathscr{V}, \mathscr{U} inherits the positive definite inner product from \mathscr{V} . Thus \mathscr{U} is a finite dimensional positive definite inner product space. Thus there exists an orthonormal basis of $\mathscr{U}, \mathscr{B} = \{u_1, u_2, \dots, u_k\}.$

Let $v \in \mathscr{V}$ be arbitrary. Then

$$v = \left(\sum_{j=1}^{k} \langle v, u_j \rangle u_j\right) + \left(v - \sum_{j=1}^{k} \langle v, u_j \rangle u_j\right),$$

where the first summand is in \mathscr{U} . We will prove that the second summand is in \mathscr{U}^{\perp} . Set $w = \sum_{j=1}^{k} \langle v, u_j \rangle u_j \in \mathscr{U}$. We claim that $v - w \in \mathscr{U}^{\perp}$. To prove this claim let $u \in \mathscr{U}$ be arbitrary. Since \mathscr{B} is an orthonormal basis of \mathscr{U} , by Proposition 3.4 we have

$$u = \sum_{j=1}^{k} \langle u, u_j \rangle u_j.$$

Therefore

$$\langle v - w, u \rangle = \langle v, u \rangle - \sum_{j=1}^{k} \langle v, u_j \rangle \langle u_j, u \rangle$$
$$= \langle v, u \rangle - \left\langle v, \sum_{j=1}^{k} \langle u, u_j \rangle u_j \right\rangle$$

$$= \langle v, u \rangle - \langle v, u \rangle$$
$$= 0.$$

Thus $\langle v - w, u \rangle = 0$ for all $u \in \mathscr{U}$. That is $v - w \in \mathscr{U}^{\perp}$. This proves that $\mathscr{V} = \mathscr{U} \oplus \mathscr{U}^{\perp}$.

To prove that the sum is direct, let $v \in \mathscr{U}$ and $v \in \mathscr{U}^{\perp}$. Then $\langle v, v \rangle = 0$. Since $\langle \cdot, \cdot \rangle$ is positive definite, this implies $v = 0_{\mathscr{V}}$. The theorem is proved.

Corollary 3.11. Let $(\mathscr{V}, \langle \cdot, \cdot \rangle)$ be a positive definite inner product space and let \mathscr{U} be a finite dimensional subspace of \mathscr{V} . Then $(\mathscr{U}^{\perp})^{\perp} = \mathscr{U}$.

Exercise 3.12. Let $(\mathscr{V}, \langle \cdot, \cdot \rangle)$ be a positive definite inner product space and let \mathscr{U} be a subspace of \mathscr{V} . Prove that $((\mathscr{U}^{\perp})^{\perp})^{\perp} = \mathscr{U}^{\perp}$.

Recall that an arbitrary direct sum $\mathscr{V} = \mathscr{U} \oplus \mathscr{W}$ gives rise to a projection operator $P_{\mathscr{U}||\mathscr{W}}$, the projection of \mathscr{V} onto \mathscr{U} parallel to \mathscr{W} .

If $\mathscr{V} = \mathscr{U} \oplus \mathscr{U}^{\perp}$, then the resulting projection of \mathscr{V} onto \mathscr{U} parallel to \mathscr{U}^{\perp} is called the *orthogonal projection* of \mathscr{V} onto \mathscr{U} ; it is denoted simply by $P_{\mathscr{U}}$. By definition for every $v \in \mathscr{V}$,

$$u = P_{\mathscr{U}}v \quad \Leftrightarrow \quad u \in \mathscr{U} \text{ and } v - u \in \mathscr{U}^{\perp}.$$

As for any projection we have $P_{\mathscr{U}} \in \mathscr{L}(\mathscr{V})$, ran $P_{\mathscr{U}} = \mathscr{U}$, nul $P_{\mathscr{U}} = \mathscr{U}^{\perp}$, and $(P_{\mathscr{U}})^2 = P_{\mathscr{U}}$.

Theorems 3.10 and 2.5 yield the following solution of the best approximation problem for finite dimensional subspaces of a vector space with a positive definite inner product.

Corollary 3.13. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be a vector space with a positive definite inner product and let \mathcal{U} be a finite dimensional subspace of \mathcal{V} . For arbitrary $v \in \mathcal{V}$ the vector $P_{\mathcal{U}}v \in \mathcal{U}$ is the unique best approximation for v in \mathcal{U} . That is

 $\|v - P_{\mathscr{U}}v\| < \|v - u\| \quad \text{for all} \quad u \in \mathscr{U} \setminus \{P_{\mathscr{U}}v\}.$

4 The definition of an adjoint operator

Let \mathscr{V} be a vector space over \mathbb{F} . The space $\mathscr{L}(\mathscr{V}, \mathbb{F})$ is called the *dual space* of \mathscr{V} ; it is denoted by \mathscr{V}^* .

Theorem 4.1. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathscr{V} . Define the mapping

$$\Phi:\mathscr{V}\to\mathscr{V}$$

as follows: for $w \in \mathscr{V}$ we set

$$(\Phi(w))(v) = \langle v, w \rangle$$
 for all $v \in \mathscr{V}$.

Then Φ is a anti-linear bijection.

Proof. Clearly, for each $w \in \mathcal{V}$, $\Phi(w) \in \mathcal{V}^*$. The mapping Φ is anti-linear, since for $\alpha, \beta \in \mathbb{F}$ and $u, w \in \mathcal{V}$, for all $v \in \mathcal{V}$ we have

$$(\Phi(\alpha u + \beta w))(v) = \langle v, \alpha u + \beta w \rangle$$

= $\overline{\alpha} \langle v, u \rangle + \overline{\beta} \langle v, w \rangle$
= $\overline{\alpha} (\Phi(u))(v) + \overline{\beta} (\Phi(w))(v)$
= $(\overline{\alpha} \Phi(u) + \overline{\beta} \Phi(w))(v).$

Thus $\Phi(\alpha u + \beta w) = \overline{\alpha} \Phi(u) + \overline{\beta} \Phi(w)$. This proves anti-linearity.

To prove injectivity of Φ , let $u, w \in \mathcal{V}$ be such that $\Phi(u) = \Phi(w)$. Then $(\Phi(u))(v) = (\Phi(w))(v)$ for all $v \in \mathcal{V}$. By the definition of Φ this means $\langle v, u \rangle = \langle v, w \rangle$ for all $v \in \mathcal{V}$. Consequently, $\langle v, u - w \rangle = 0$ for all $v \in \mathcal{V}$. In particular, with v = u - w we have $\langle u - w, u - w \rangle = 0$. Since $\langle \cdot, \cdot \rangle$ is a positive definite inner product, it follows that $u - w = 0_{\mathcal{V}}$, that is u = w.

To prove that Φ is a surjection we use the assumption that \mathscr{V} is finite dimensional. Then there exists an orthonormal basis u_1, \ldots, u_n of \mathscr{V} . Let $\varphi \in \mathscr{V}^*$ be arbitrary. Set

$$w = \sum_{j=1}^{n} \overline{\varphi(u_j)} u_j.$$

The proof that $\Phi(w) = \varphi$ follows. Let $v \in \mathscr{V}$ be arbitrary.

$$(\Phi(w))(v) = \langle v, w \rangle$$
$$= \left\langle v, \sum_{j=1}^{n} \overline{\varphi(u_j)} u_j \right\rangle$$
$$= \sum_{j=1}^{n} \varphi(u_j) \langle v, u_j \rangle$$

$$= \sum_{j=1}^{n} \langle v, u_j \rangle \varphi(u_j)$$
$$= \varphi\left(\sum_{j=1}^{n} \langle v, u_j \rangle u_j\right)$$
$$= \varphi(v).$$

The theorem is proved.

The mapping Φ from the previous theorem is convenient to define the adjoint of a linear operator. In the next definition we will deal with two positive definite inner product spaces. To emphasize the different inner products and different mappings Φ we will use subscripts.

Let $(\mathcal{V}, \langle \cdot, \cdot \rangle_{\mathcal{V}})$ and $(\mathcal{W}, \langle \cdot, \cdot \rangle_{\mathcal{W}})$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. Let $T \in \mathscr{L}(\mathcal{V}, \mathcal{W})$. We define the adjoint $T^* : \mathcal{W} \to \mathcal{V}$ of T by

$$T^*w = \Phi_{\mathscr{V}}^{-1} \big(\Phi_{\mathscr{W}}(w) \circ T \big), \qquad w \in \mathscr{W}.$$
(11)

Since $\Phi_{\mathscr{W}}$ and $\Phi_{\mathscr{V}}^{-1}$ are anti-linear, T^* is linear. For arbitrary $\alpha_1, \alpha_1 \in \mathbb{F}$ and $w_1, w_2 \in \mathscr{W}$ we have

$$T^*(\alpha_1 w_1 + \alpha_2 w_2) = \Phi_{\mathscr{V}}^{-1} \left(\Phi_{\mathscr{W}}(\alpha_1 w_1 + \alpha_2 w_2) \circ T \right)$$

$$= \Phi_{\mathscr{V}}^{-1} \left(\left(\overline{\alpha}_1 \Phi_{\mathscr{W}}(w_1) + \overline{\alpha}_2 \Phi_{\mathscr{W}}(w_2) \right) \circ T \right)$$

$$= \Phi_{\mathscr{V}}^{-1} \left(\overline{\alpha}_1 \Phi_{\mathscr{W}}(w_1) \circ T + \overline{\alpha}_2 \Phi_{\mathscr{W}}(w_2) \circ T \right)$$

$$= \alpha_1 \Phi_{\mathscr{V}}^{-1} \left(\Phi_{\mathscr{W}}(w_1) \circ T \right) + \alpha_2 \Phi_{\mathscr{V}}^{-1} \left(\Phi_{\mathscr{W}}(w_2) \circ T \right)$$

$$= \alpha_1 T^* w_1 + \alpha_2 T^* w_2.$$

Thus, $T^* \in \mathscr{L}(\mathscr{W}, \mathscr{V})$.

Next we will deduce the most important property of T^* . By the definition of $T^*: \mathscr{W} \to \mathscr{V}$, for a fixed arbitrary $w \in \mathscr{W}$ we have

$$T^*w = \Phi_{\mathscr{V}}^{-1} \big(\Phi_{\mathscr{W}}(w) \circ T \big).$$

This is equivalent to

$$\Phi_{\mathscr{V}}(T^*w) = \Phi_{\mathscr{W}}(w) \circ T,$$

which is, by the definition of $\Phi_{\mathscr{V}}$, equivalent to

$$(\Phi_{\mathscr{W}}(w) \circ T)(v) = \langle v, T^*w \rangle_{\mathscr{V}} \text{ for all } v \in \mathscr{V},$$

which, in turn, is equivalent to

$$(\Phi_{\mathscr{W}}(w))(Tv) = \langle v, T^*w \rangle_{\mathscr{V}} \text{ for all } v \in \mathscr{V}.$$

From the definition of $\Phi_{\mathscr{W}}$ the last statement is equivalent to

$$\langle Tv, w \rangle_{\mathscr{W}} = \langle v, T^*w \rangle_{\mathscr{V}} \text{ for all } v \in \mathscr{V}.$$

The reasoning above proves the following proposition.

Proposition 4.2. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle_{\mathcal{V}})$ and $(\mathcal{W}, \langle \cdot, \cdot \rangle_{\mathcal{W}})$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. Let $T \in \mathscr{L}(\mathcal{V}, \mathcal{W})$ and $S \in \mathscr{L}(\mathcal{W}, \mathcal{V})$. Then $S = T^*$ if and only if

$$\langle Tv, w \rangle_{\mathscr{W}} = \langle v, Sw \rangle_{\mathscr{V}} \quad for \ all \quad v \in \mathscr{V}, w \in \mathscr{W}.$$
 (12)

5 Properties of the adjoint operator

Theorem 5.1. Let $(\mathcal{U}, \langle \cdot, \cdot \rangle_{\mathscr{U}})$, $(\mathscr{V}, \langle \cdot, \cdot \rangle_{\mathscr{V}})$ and $(\mathscr{W}, \langle \cdot, \cdot \rangle_{\mathscr{W}})$ be three finite dimensional vector space over the same scalar field \mathbb{F} and with positive definite inner products. Let $S \in \mathscr{L}(\mathscr{U}, \mathscr{V})$ and $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$. Then $(TS)^* = S^*T^*$.

Proof. By definition for every $u \in \mathcal{U}$, $v \in \mathcal{V}$ and $w \in \mathcal{W}$ we have

$$S^*v = \Phi_{\mathscr{U}}^{-1} (\Phi_{\mathscr{V}}(v) \circ S)$$
$$T^*w = \Phi_{\mathscr{V}}^{-1} (\Phi_{\mathscr{W}}(w) \circ T)$$
$$(TS)^*w = \Phi_{\mathscr{U}}^{-1} (\Phi_{\mathscr{W}}(w) \circ (TS))$$

With this, for arbitrary $w \in \mathcal{W}$ we calculate

$$S^*T^*w = S^*(T^*w)$$

= $\Phi_{\mathscr{U}}^{-1} \left(\Phi_{\mathscr{V}} \left(\Phi_{\mathscr{V}}^{-1} \left(\Phi_{\mathscr{W}}(w) \circ T \right) \right) \circ S \right)$
= $\Phi_{\mathscr{U}}^{-1} \left(\Phi_{\mathscr{W}}(w) \circ T \circ S \right)$
= $(TS)^*w.$

Thus $(TS)^* = S^*T^*$.

A function $f: X \to X$ is said to be an *involution* if it is its own inverse, that is if f(f(x)) = x for all $x \in X$.

Theorem 5.2. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle_{\mathcal{V}})$ and $(\mathcal{W}, \langle \cdot, \cdot \rangle_{\mathcal{W}})$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. The adjoint mapping

$$^*:\mathscr{L}(\mathscr{V},\mathscr{W})\to\mathscr{L}(\mathscr{W},\mathscr{V})$$

is an anti-linear bijection. Its inverse is the adjoint mapping from $\mathscr{L}(\mathscr{W}, \mathscr{V})$ to $\mathscr{L}(\mathscr{V}, \mathscr{W})$. In particular the adjoint mapping in $\mathscr{L}(\mathscr{V}, \mathscr{V})$ is an anti-linear involution.

Proof. To prove that $*: \mathscr{L}(\mathscr{V}, \mathscr{W}) \to \mathscr{L}(\mathscr{W}, \mathscr{V})$ is anti-linear let $\alpha, \beta \in \mathbb{F}$ be arbitrary and let $S, T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ be arbitrary. By the definition of * for arbitrary $w \in \mathscr{W}$ we have

$$(\alpha S + \beta T)^* w = \Phi_{\mathscr{V}}^{-1} (\Phi_{\mathscr{W}}(w) \circ (\alpha S + \beta T))$$

$$= \Phi_{\mathscr{V}}^{-1} (\alpha \Phi_{\mathscr{W}}(w) \circ S + \beta \Phi_{\mathscr{W}}(w) \circ T)$$

$$= \overline{\alpha} \Phi_{\mathscr{V}}^{-1} (\Phi_{\mathscr{W}}(w) \circ S) + \overline{\beta} \Phi_{\mathscr{V}}^{-1} (\Phi_{\mathscr{W}}(w) \circ T)$$

$$= \overline{\alpha} S^* w + \overline{\beta} T^* w$$

$$= (\overline{\alpha} S^* + \overline{\beta} T^*) w.$$

Hence $(\alpha S + \beta T)^* = \overline{\alpha} S^* + \overline{\beta} T^*$.

To prove that the adjoint mapping $* : \mathscr{L}(\mathscr{V}, \mathscr{W}) \to \mathscr{L}(\mathscr{W}, \mathscr{V})$ is a bijection we will use the adjoint mapping $* : \mathscr{L}(\mathscr{W}, \mathscr{V}) \to \mathscr{L}(\mathscr{V}, \mathscr{W})$. In fact we will prove that * is the inverse of *. To this end we will prove that for all $S \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ we have that $(S^*)^* = S$ and that for all $T \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ we have that $(T^*)^* = T$.

Here are the proofs. By the definition of the mapping $*: \mathscr{L}(\mathscr{V}, \mathscr{W}) \to \mathscr{L}(\mathscr{W}, \mathscr{V})$ for an arbitrary $S \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ we have

$$\forall v \in \mathscr{V} \ \forall w \in \mathscr{W} \ \langle S^* w, v \rangle_{\mathscr{V}} = \langle w, Sv \rangle_{\mathscr{W}}.$$

By Proposition 4.2 this identity yields $(S^*)^* = S$. By the definition of the mapping $* : \mathscr{L}(\mathscr{W}, \mathscr{V}) \to \mathscr{L}(\mathscr{V}, \mathscr{W})$ for an arbitrary $T \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ we have

$$\forall w \in \mathscr{W} \ \forall v \in \mathscr{V} \ \langle T^*v, w \rangle_{\mathscr{W}} = \langle v, Tw \rangle_{\mathscr{V}}.$$

By Proposition 4.2 this identity yields $(T^*)^* = T$.

Theorem 5.3. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle_{\mathcal{V}})$ and $(\mathcal{W}, \langle \cdot, \cdot \rangle_{\mathcal{W}})$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. The following statements hold.

(i) $\operatorname{nul}(T^*) = (\operatorname{ran} T)^{\perp}$. (ii) $\operatorname{ran}(T^*) = (\operatorname{nul} T)^{\perp}$. (iii) $\operatorname{nul}(T) = (\operatorname{ran} T^*)^{\perp}$. (iv) $\operatorname{ran}(T) = (\operatorname{nul} T^*)^{\perp}$.

Theorem 5.4. Let $(\mathcal{V}, \langle \cdot, \cdot \rangle_{\mathcal{V}})$ and $(\mathcal{W}, \langle \cdot, \cdot \rangle_{\mathcal{W}})$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. Let \mathcal{B} and \mathcal{C} be orthonormal bases of $(\mathcal{V}, \langle \cdot, \cdot \rangle_{\mathcal{V}})$ and $(\mathcal{W}, \langle \cdot, \cdot \rangle_{\mathcal{W}})$, respectively, and let $T \in (\mathcal{V}, \langle \cdot, \cdot \rangle_{\mathcal{V}})$. Then $\mathsf{M}^{\mathscr{C}}_{\mathscr{B}}(T^*)$ is the conjugate transpose of the matrix $\mathsf{M}^{\mathscr{B}}_{\mathscr{C}}(T)$.

Proof. Let $\mathscr{B} = \{v_1, \ldots, v_m\}$ and $\mathscr{C} = \{w_1, \ldots, w_n\}$ be orthonormal bases from the theorem. Let $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$. Then the term in the *j*-th column and the *i*-th row of the $n \times m$ matrix $\mathsf{M}^{\mathscr{B}}_{\mathscr{C}}(T)$ is $\langle Tv_j, w_i \rangle$, while the term in the *i*-th column and the *j*-th row of the $m \times n$ matrix $\mathsf{M}^{\mathscr{C}}_{\mathscr{C}}(T^*)$ is

$$\langle T^*w_i, v_j \rangle = \langle w_i, Tv_j \rangle = \overline{\langle Tv_j, w_i \rangle}.$$

This proves the claim.

Lemma 5.5. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathscr{V} . Let \mathscr{U} be a subspace of \mathscr{V} and let $T \in \mathscr{L}(\mathscr{V})$. The subspace \mathscr{U} is invariant under T if and only if the subspace \mathscr{U}^{\perp} is invariant under T^* .

Proof. By the definition of adjoint we have

$$\langle Tu, v \rangle = \langle u, T^*v \rangle \tag{13}$$

for all $u, v \in \mathscr{V}$. Assume $T\mathscr{U} \subseteq \mathscr{U}$. From (13) we get

$$0 = \langle Tu, v \rangle = \langle u, T^*v \rangle \qquad \forall u \in \mathscr{U} \quad \text{and} \quad \forall v \in \mathscr{U}^{\perp}.$$

Therefore, $T^*v \in \mathscr{U}^{\perp}$ for all $v \in \mathscr{U}^{\perp}$. This proves "only if" part.

The proof of the "if" part is similar.

6 Self-adjoint and normal operators

Definition 6.1. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathscr{V} . An operator $T \in \mathscr{L}(\mathscr{V})$ is said to be *self-adjoint* if $T = T^*$. An operator $T \in \mathscr{L}(\mathscr{V})$ is said to be *normal* if $TT^* = T^*T$.

Proposition 6.2. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathscr{V} . All eigenvalues of a self-adjoint $T \in \mathscr{L}(\mathscr{V})$ are real.

Proof. Let $\lambda \in \mathbb{F}$ be an eigenvalue of T and let $Tv = \lambda v$ with a nonzero $v \in \mathcal{V}$. Then

$$\lambda \langle v, v \rangle = \langle Tv, v \rangle = \langle v, Tv \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \langle v, v \rangle.$$

Since $\langle v, v \rangle > 0$ the preceding equalities yield $\lambda = \overline{\lambda}$.

In the rest of this section we will consider only scalar fields \mathbb{F} which contain the imaginary unit i.

Proposition 6.3. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathscr{V} . Let $T \in \mathscr{L}(\mathscr{V})$. Then T = 0 if and only if $\langle Tv, v \rangle = 0$ for all $v \in \mathscr{V}$.

Proof. Set, $[u, v] = \langle Tu, v \rangle$ for all $u, v \in \mathscr{V}$. Then $[\cdot, \cdot]$ is a sesquilinear form on \mathscr{V} . Since $\langle \cdot, \cdot \rangle$ is a positive definite inner product, T = 0 if and only if for all $u, v \in \mathscr{V}$ we have $\langle Tu, v \rangle = 0$, which in turn is equivalent to for all $u, v \in \mathscr{V}$ we have [u, v] = 0. By Corollary 1.5 [u, v] = 0 for all $u, v \in \mathscr{V}$ is equivalent to [u, u] = 0 for all $u \in \mathscr{V}$, that is to $\langle Tu, u \rangle = 0$ for all $u \in \mathscr{V}$.

Proposition 6.4. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathscr{V} . An operator $T \in \mathscr{L}(\mathscr{V})$ is self-adjoint if and only if $\langle Tv, v \rangle \in \mathbb{R}$ for all $v \in \mathscr{V}$.

Proof.

Theorem 6.5. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathscr{V} . An operator $T \in \mathscr{L}(\mathscr{V})$ is normal if and only if $||Tv|| = ||T^*v||$ for all $v \in \mathscr{V}$.

Corollary 6.6. Let \mathscr{V} be a vector space over \mathbb{F} , let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathscr{V} and let $T \in \mathscr{L}(\mathscr{V})$ be normal. Then $\lambda \in \mathbb{C}$ is an eigenvalue of T if and only if $\overline{\lambda}$ is an eigenvalue of T^* and

$$\operatorname{nul}(T^* - \overline{\lambda}I) = \operatorname{nul}(T - \lambda I).$$

7 The Spectral Theorem

In the rest of the notes we will consider only the scalar field \mathbb{C} .

Theorem 7.1 (Theorem 7.9). Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} and $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathscr{V} . Let $T \in \mathscr{L}(\mathscr{V})$. Then \mathscr{V} has an orthonormal basis which consists of eigenvectors of T if and only if T is normal. In other words, T is normal if and only if there exists an orthonormal basis \mathscr{B} of \mathscr{V} such that $\mathsf{M}^{\mathscr{B}}_{\mathscr{B}}(T)$ is a diagonal matrix.

Proof. Let $n = \dim(\mathscr{V})$. Assume that T is normal. By Corollary 3.7 there exists an orthonormal basis $\mathscr{B} = \{u_1, \ldots, u_n\}$ of \mathscr{V} such that $\mathsf{M}^{\mathscr{B}}_{\mathscr{B}}(T)$ is upper-triangular. That is,

$$\mathsf{M}_{\mathscr{B}}^{\mathscr{B}}(T) = \begin{bmatrix} \langle Tu_1, u_1 \rangle & \langle Tu_2, u_1 \rangle & \cdots & \langle Tu_n, u_1 \rangle \\ 0 & \langle Tu_2, u_2 \rangle & \cdots & \langle Tu_n, u_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \langle Tu_n, u_n \rangle \end{bmatrix},$$
(14)

or, equivalently,

$$Tu_k = \sum_{j=1}^k \langle Tu_k, u_j \rangle u_j \quad \text{for all} \quad k \in \{1, \dots, n\}.$$
(15)

By Theorem 5.4(??) we have

$$\mathsf{M}_{\mathscr{B}}^{\mathscr{B}}(T^*) = \begin{bmatrix} \overline{\langle Tu_1, u_1 \rangle} & 0 & \cdots & 0\\ \overline{\langle Tu_2, u_1 \rangle} & \overline{\langle Tu_2, u_2 \rangle} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ \overline{\langle Tu_n, u_1 \rangle} & \overline{\langle Tu_n, u_2 \rangle} & \cdots & \overline{\langle Tu_n, u_n \rangle} \end{bmatrix}$$

Consequently,

$$T^* u_k = \sum_{j=k}^n \overline{\langle Tu_j, u_k \rangle} u_j \quad \text{for all} \quad k \in \{1, \dots, n\}.$$
 (16)

Since T is normal, Theorem 6.5 implies

 $||Tu_k||^2 = ||T^*u_k||^2$ for all $k \in \{1, \dots, n\}.$

Together with (15) and (16) the last identities become

$$\sum_{j=1}^{k} |\langle Tu_k, u_j \rangle|^2 = \sum_{j=k}^{n} |\overline{\langle Tu_j, u_k \rangle}|^2 \quad \text{for all} \quad k \in \{1, \dots, n\},$$

or, equivalently,

$$\sum_{j=1}^{k} \left| \langle Tu_k, u_j \rangle \right|^2 = \sum_{j=k}^{n} \left| \langle Tu_j, u_k \rangle \right|^2 \quad \text{for all} \quad k \in \{1, \dots, n\}.$$
(17)

The equality in (17) corresponding to k = 1 reads

$$\left|\langle Tu_1, u_1 \rangle\right|^2 = \left|\langle Tu_1, u_1 \rangle\right|^2 + \sum_{j=2}^n \left|\langle Tu_j, u_1 \rangle\right|^2,$$

which implies

$$\langle Tu_j, u_1 \rangle = 0 \quad \text{for all} \quad j \in \{2, \dots, n\}$$
 (18)

In other words we have proved that the off-diagonal entries in the first row of the upper triangular matrix $M^{\mathscr{B}}_{\mathscr{R}}(T)$ in (14) are all zero.

Substituting the value $\langle Tu_2, u_1 \rangle = 0$ (from (18)) in the equality in (17) corresponding to k = 2 reads we get

$$|\langle Tu_2, u_2 \rangle|^2 = |\langle Tu_2, u_2 \rangle|^2 + \sum_{j=3}^n |\langle Tu_j, u_2 \rangle|^2,$$

which implies

 $\langle Tu_j, u_2 \rangle = 0 \quad \text{for all} \quad j \in \{3, \dots, n\}$ (19)

In other words we have proved that the off-diagonal entries in the second row of the upper triangular matrix $\mathsf{M}^{\mathscr{B}}_{\mathscr{B}}(T)$ in (14) are all zero.

Repeating this reasoning n-2 more times would prove that all the offdiagonal entries of the upper triangular matrix $\mathsf{M}^{\mathscr{B}}_{\mathscr{B}}(T)$ in (14) are zero. That is, $\mathsf{M}^{\mathscr{B}}_{\mathscr{B}}(T)$ is a diagonal matrix.

To prove the converse, assume that there exists an orthonormal basis $\mathscr{B} = \{u_1, \ldots, u_n\}$ of \mathscr{V} which consists of eigenvectors of T. That is, for some $\lambda_j \in \mathbb{C}$,

$$Tu_j = \lambda_j u_j$$
 for all $j \in \{1, \dots, n\},$

Then, for arbitrary $v \in \mathscr{V}$ we have

$$Tv = T\left(\sum_{j=1}^{n} \langle v, u_j \rangle u_j\right) = \sum_{j=1}^{n} \langle v, u_j \rangle Tu_j = \sum_{j=1}^{n} \lambda_j \langle v, u_j \rangle u_j.$$
(20)

Therefore, for arbitrary $k \in \{1, \ldots, n\}$ we have

$$\langle Tv, u_k \rangle = \lambda_k \langle v, u_k \rangle.$$
 (21)

Now we calculate

$$T^*Tv = \sum_{j=1}^n \langle T^*Tv, u_j \rangle u_j$$
$$= \sum_{j=1}^n \langle Tv, Tu_j \rangle u_j$$
$$= \sum_{j=1}^n \langle Tv, Tu_j \rangle u_j$$
$$= \sum_{j=1}^n \overline{\lambda}_j \langle Tv, u_j \rangle u_j$$
$$= \sum_{j=1}^n \lambda_j \overline{\lambda}_j \langle v, u_j \rangle u_j.$$

Similarly,

$$TT^*v = T\left(\sum_{j=1}^n \langle T^*v, u_j \rangle u_j\right)$$
$$= \sum_{j=1}^n \langle v, Tu_j \rangle Tu_j$$
$$= \sum_{j=1}^n \langle v, \lambda_j u_j \rangle \lambda_j u_j$$
$$= \sum_{j=1}^n \lambda_j \overline{\lambda}_j \langle v, u_j \rangle u_j.$$

Thus, we proved $T^*Tv = TT^*v$, that is, T is normal.

A different proof of the "only if" part of the spectral theorem for normal operators follows. In this proof we use δ_{ij} to represent the Kronecker delta function; that is, $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ otherwise.

Proof. Set $n = \dim \mathscr{V}$. We first prove "only if" part. Assume that T is normal. Set

$$\mathbb{K} = \left\{ k \in \{1, \dots, n\} : \text{ such that } \langle w_i, w_j \rangle = \delta_{ij} \text{ and } Tw_j = \lambda_j w_j \\ \text{ for all } i, j \in \{1, \dots, k\} \end{array} \right\}$$

Clearly $1 \in \mathbb{K}$. Since \mathbb{K} is finite, $m = \max \mathbb{K}$ exists. Clearly, $m \leq n$.

Next we will prove that $k \in \mathbb{K}$ and k < n implies that $k + 1 \in \mathbb{K}$. Assume $k \in \mathbb{K}$ and k < n. Let $w_1, \ldots, w_k \in \mathcal{V}$ and $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$ be such that $\langle w_i, w_j \rangle = \delta_{ij}$ and $Tw_j = \lambda_j w_j$ for all $i, j \in \{1, \ldots, k\}$. Set

$$\mathscr{W} = \operatorname{span}\{w_1, \ldots, w_k\}.$$

Since w_1, \ldots, w_k are eigenvectors of T we have $T\mathscr{W} \subseteq \mathscr{W}$. By Lemma 5.5, $T^*(\mathscr{W}^{\perp}) \subseteq \mathscr{W}^{\perp}$. Thus, $T^*|_{\mathscr{W}^{\perp}} \in \mathscr{L}(\mathscr{W}^{\perp})$. Since dim $\mathscr{W} = k < n$ we have dim $(\mathscr{W}^{\perp}) = n - k \geq 1$. Since \mathscr{W}^{\perp} is a complex vector space the operator $T^*|_{\mathscr{W}^{\perp}}$ has an eigenvalue μ with the corresponding unit eigenvector u. Clearly, $u \in \mathscr{W}^{\perp}$ and $T^*u = \mu u$. Since T^* is normal, Corollary 6.6 yields that $Tu = \overline{\mu}u$. Since $u \in \mathscr{W}^{\perp}$ and $Tu = \overline{\mu}u$, setting $w_{k+1} = u$ and $\lambda_{k+1} = \overline{\mu}$ we have

$$\langle w_i, w_j \rangle = \delta_{ij}$$
 and $Tw_j = \lambda_j w_j$ for all $i, j \in \{1, \dots, k, k+1\}$.

Thus $k + 1 \in \mathbb{K}$. Consequently, k < m. Thus, for $k \in \mathbb{K}$, we have proved the implication

 $k < n \qquad \Rightarrow \qquad k < m.$

The contrapositive of this implication is: For $k \in \mathbb{K}$, we have

$$k \ge m \qquad \Rightarrow \qquad k \ge n.$$

In particular, for $m \in \mathbb{K}$ we have m = m implies $m \ge n$. Since $m \le n$ is also true, this proves that m = n. That is, $n \in \mathbb{K}$. This implies that there exist $u_1, \ldots, u_n \in \mathscr{V}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that $\langle u_i, u_j \rangle = \delta_{ij}$ and $Tu_j = \lambda_j u_j$ for all $i, j \in \{1, \ldots, n\}$.

Since u_1, \ldots, u_n are orthonormal, they are linearly independent. Since $n = \dim \mathcal{V}$, it turns out that u_1, \ldots, u_n form a basis of \mathcal{V} . This completes the proof.

8 Invariance under a normal operator

Theorem 8.1 (Theorem 7.18). Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} . Let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathscr{V} . Let $T \in \mathscr{L}(\mathscr{V})$ be normal and let \mathscr{U} be a subspace of \mathscr{V} . Then

$$T\mathscr{U} \subseteq \mathscr{U} \quad \Leftrightarrow \quad T\mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp}$$

(Recall that we have previously proved that for any $T \in \mathscr{L}(\mathscr{V}), T\mathscr{U} \subseteq \mathscr{U} \Leftrightarrow T^*\mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp}$. Hence if T is normal, showing that any one of \mathscr{U} or \mathscr{U}^{\perp} is invariant under either T or T^* implies that the rest are, also.)

Proof. Assume $T\mathscr{U} \subseteq \mathscr{U}$. We know $\mathscr{V} = \mathscr{U} \oplus \mathscr{U}^{\perp}$. Let u_1, \ldots, u_m be an orthonormal basis of \mathscr{U} and u_{m+1}, \ldots, u_n be an orthonormal basis of \mathscr{U}^{\perp} . Then u_1, \ldots, u_n is an orthonormal basis of \mathscr{V} . If $j \in \{1, \ldots, m\}$ then $u_j \in \mathscr{U}$, so $Tu_j \in \mathscr{U}$. Hence

$$Tu_j = \sum_{k=1}^m \langle Tu_j, u_k \rangle u_k.$$

Also, clearly,

$$T^*u_j = \sum_{k=1}^n \langle T^*u_j, u_k \rangle u_k.$$

By normality of T we have $||Tu_j||^2 = ||T^*u_j||^2$ for all $j \in \{1, \ldots, m\}$. Starting with this, we calculate

$$\sum_{j=1}^{m} ||Tu_j||^2 = \sum_{j=1}^{m} ||T^*u_j||^2$$
Pythag. thm.
$$= \sum_{j=1}^{m} \sum_{k=1}^{n} |\langle T^*u_j, u_k \rangle|^2$$
group terms
$$= \sum_{j=1}^{m} \sum_{k=1}^{m} |\langle T^*u_j, u_k \rangle|^2 + \sum_{j=1}^{m} \sum_{k=m+1}^{n} |\langle T^*u_j, u_k \rangle|^2$$
(def. of T^*)
$$= \sum_{j=1}^{m} \sum_{k=1}^{m} |\langle u_j, Tu_k \rangle|^2 + \sum_{j=1}^{m} \sum_{k=m+1}^{n} |\langle T^*u_j, u_k \rangle|^2$$
 $||\alpha| = |\overline{\alpha}|| = \sum_{j=1}^{m} \sum_{k=1}^{m} |\langle Tu_k, u_j \rangle|^2 + \sum_{j=1}^{m} \sum_{k=m+1}^{n} |\langle T^*u_j, u_k \rangle|^2$

$$\boxed{\text{order of sum.}} = \sum_{k=1}^{m} \sum_{j=1}^{m} |\langle Tu_k, u_j \rangle|^2 + \sum_{j=1}^{m} \sum_{k=m+1}^{n} |\langle T^*u_j, u_k \rangle|^2$$
$$\boxed{\text{Pythag. thm.}} = \sum_{k=1}^{m} ||Tu_k||^2 + \sum_{j=1}^{m} \sum_{k=m+1}^{n} |\langle T^*u_j, u_k \rangle|^2.$$

From the above equality we deduce that $\sum_{j=1}^{m} \sum_{k=m+1}^{n} |\langle T^*u_j, u_k \rangle|^2 = 0$. As each term is nonnegative, we conclude that $|\langle T^*u_j, u_k \rangle|^2 = |\langle u_j, Tu_k \rangle|^2 = 0$, that is,

 $\langle u_j, Tu_k \rangle = 0$ for all $j \in \{1, \dots, m\}, k \in \{m+1, \dots, n\}.$ (22)

Let now $w \in \mathscr{U}^{\perp}$ be arbitrary. Then

$$Tw = \sum_{j=1}^{n} \langle Tw, u_j \rangle u_j$$
$$= \sum_{j=1}^{n} \left\langle \sum_{k=m+1}^{n} \langle w, u_k \rangle Tu_k, u_j \right\rangle u_j$$
$$= \sum_{j=1}^{n} \sum_{k=m+1}^{n} \langle w, u_k \rangle \langle Tu_k, u_j \rangle u_j$$
$$\boxed{\text{by (22)}} = \sum_{j=m+1}^{n} \sum_{k=m+1}^{n} \langle w, u_k \rangle \langle Tu_k, u_j \rangle u_j$$

Hence $Tw \in \mathscr{U}^{\perp}$, that is $T\mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp}$.

A different proof follows. The proof below uses the property of polynomials that for arbitrary distinct $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$ and arbitrary $\beta_1, \ldots, \beta_m \in \mathbb{C}$ there exists a polynomial $p(z) \in \mathbb{C}[z]_{\leq m}$ such that $p(\alpha_j) = \beta_j, j \in \{1, \ldots, m\}$.

Proof. Assume T is normal. Then there exists an orthonormal basis $\{u_1, \ldots, u_n\}$ and $\{\lambda_1, \ldots, \lambda_n\} \subseteq \mathbb{C}$ such that

$$Tu_j = \lambda_j u_j$$
 for all $j \in \{1, \dots, n\}$.

Consequently,

$$T^*u_j = \overline{\lambda}_j u_j \quad \text{for all} \quad j \in \{1, \dots, n\}.$$

Let v be arbitrary in \mathscr{V} . Applying T and T^* to the expansion of v in the basis vectors $\{u_1, \ldots, u_n\}$ we obtain

$$Tv = \sum_{j=1}^{n} \lambda_j \langle v, u_j \rangle u_j$$

and

$$T^*v = \sum_{j=1}^n \overline{\lambda_j} \langle v, u_j \rangle u_j.$$

Let $p(z) = a_0 + a_1 z + \dots + a_m z^m \in \mathbb{C}[z]$ be such that

$$p(\lambda_j) = \overline{\lambda}_j \quad \text{for all} \quad j \in \{1, \dots, n\}.$$

Clearly, for all $j \in \{1, \ldots, n\}$ we have

$$p(T)u_j = p(\lambda_j)u_j = \overline{\lambda}_j u_j = T^* u_j.$$

Therefore $p(T) = T^*$.

Now assume $T\mathscr{U} \subseteq \mathscr{U}$. Then $T^k\mathscr{U} \subseteq \mathscr{U}$ for all $k \in \mathbb{N}$ and also $\alpha T\mathscr{U} \subseteq \mathscr{U}$ for all $\alpha \in \mathbb{C}$. Hence $p(T)\mathscr{U} = T^*\mathscr{U} \subseteq \mathscr{U}$. The theorem follows from Lemma 5.5.

Lastly we review the proof in the book. This proof is in essence very similar to the first proof. It brings up a matrix representation of T for easier visualization of what we are doing.

Proof. Assume $T\mathscr{U} \subseteq \mathscr{U}$. By Lemma 5.5 $T^*(\mathscr{U}^{\perp}) \subseteq \mathscr{U}^{\perp}$.

Now $\mathscr{V} = \mathscr{U} \oplus \mathscr{U}^{\perp}$. Let $n = \dim(\mathscr{V})$. Let $\{u_1, \ldots, u_m\}$ be an orthonormal basis of \mathscr{U} and $\{u_{m+1}, \ldots, u_n\}$ be an orthonormal basis of \mathscr{U}^{\perp} . Then $\mathscr{B} = \{u_1, \ldots, u_n\}$ is an orthonormal basis of \mathscr{V} . Since $Tu_j \in \mathscr{U}$ for all $j \in \{1, \ldots, m\}$ we have

Here we added the basis vectors and their images around the matrix to emphasize that a vector Tu_k in the zeroth row is expended as a linear combination of the vectors in the zeroth column with the coefficients given in the k-th column of the matrix.

For $j \in \{1, \ldots, m\}$ we have $Tu_j = \sum_{k=1}^m \langle Tu_j, u_k \rangle u_k$. By Pythagorean Theorem $||Tu_j||^2 = \sum_{k=1}^m |\langle Tu_j, u_k \rangle|^2$ and $||T^*u_j||^2 = \sum_{k=1}^n |\langle T^*u_j, u_k \rangle|^2$. Since T is normal, $\sum_{j=1}^m ||Tu_j||^2 = \sum_{j=1}^m ||T^*u_j||^2$. Now we have

$$\sum_{j=1}^{m} \sum_{k=1}^{m} |\langle Tu_j, u_k \rangle|^2 = \sum_{j=1}^{m} \sum_{k=1}^{m} |\langle T^*u_j, u_k \rangle|^2 + \sum_{j=1}^{m} \sum_{k=m+1}^{n} |\langle T^*u_j, u_k \rangle|^2$$
$$= \sum_{j=1}^{m} \sum_{k=1}^{m} |\langle Tu_k, u_j \rangle|^2 + \sum_{j=1}^{m} \sum_{k=m+1}^{n} |\langle T^*u_j, u_k \rangle|^2.$$

Canceling the identical terms we get that the last double sum which consists of the nonnegative terms is equal to 0. Hence $|\langle T^*u_j, u_k \rangle|^2 = |\langle u_j, Tu_k \rangle|^2$ $= |\langle Tu_k, u_j \rangle|^2$, and thus, $\langle Tu_k, u_j \rangle = 0$ for all $j \in \{1, \ldots, m\}$ and for all $k \in \{m+1, \ldots, n\}$. This proves that B = 0 in the above matrix representation. Therefore, Tu_k is orthogonal to \mathscr{U} for all $k \in \{m+1, \ldots, n\}$, which implies $T(\mathscr{U}^{\perp}) \subseteq \mathscr{U}^{\perp}$.

Theorem 8.1 and Lemma 5.5 yield the following corollary.

Corollary 8.2. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} . Let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on \mathscr{V} . Let $T \in \mathscr{L}(\mathscr{V})$ be normal and let \mathscr{U} be a subspace of \mathscr{V} . The following statements are equivalent:

- (a) $T\mathscr{U} \subseteq \mathscr{U}$.
- (b) $T(\mathscr{U}^{\perp}) \subseteq \mathscr{U}^{\perp}$.
- (c) $T^*\mathscr{U} \subseteq \mathscr{U}$.
- (d) $T^*(\mathscr{U}^{\perp}) \subseteq \mathscr{U}^{\perp}$.

If any of the for above statements are true, then the following statements are true

- (e) $(T|_{\mathscr{U}})^* = T^*|_{\mathscr{U}}.$
- (f) $(T|_{\mathscr{U}^{\perp}})^* = T^*|_{\mathscr{U}^{\perp}}.$
- (g) $T|_{\mathscr{U}}$ is a normal operator on \mathscr{U} .
- (h) $T|_{\mathscr{U}^{\perp}}$ is a normal operator on \mathscr{U}^{\perp} .

9 Polar Decomposition

There are two distinct subsets of \mathbb{C} . Those are the set of nonnegative real numbers, denoted by $\mathbb{R}_{\geq 0}$, and the set of complex numbers of modulus 1, denoted by \mathbb{T} . An important tool in complex analysis is the polar representation of a complex number: for every $\alpha \in \mathbb{C}$ there exists $r \in \mathbb{R}_{\geq 0}$ and $u \in \mathbb{T}$ such that $\alpha - r u$.

In this section we will prove that an analogous statement holds for operators in $\mathscr{L}(\mathscr{V})$, where \mathscr{V} is a finite dimensional vector space over \mathbb{C} with a positive definite inner product. The first step towards proving this analogous result is identifying operators in $\mathscr{L}(\mathscr{V})$ which will play the role of nonnegative real numbers and the role of complex numbers with modulus 1. That is done in the following two definitions.

Definition 9.1. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle \cdot, \cdot \rangle$. An operator $Q \in \mathscr{L}(\mathscr{V})$ is said to be *nonnegative* if $\langle Qv, v \rangle \geq 0$ for all $v \in \mathscr{V}$.

Note that Axler uses the term "positive" instead of nonnegative. We think that nonnegative is more appropriate, since $0_{\mathscr{L}(\mathscr{V})}$ is a nonnegative operator. There is nothing positive about any zero, we think.

Proposition 9.2. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle \cdot, \cdot \rangle$ and let $T \in \mathscr{L}(\mathscr{V})$. Then T is nonnegative if and only if T is normal and all its eigenvalues are nonnegative.

Theorem 9.3. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle \cdot, \cdot \rangle$. Let $Q \in \mathscr{L}(\mathscr{V})$ be a nonnegative operator and let u_1, \ldots, u_n be an orthonormal basis of \mathscr{V} and let $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_{\geq 0}$ be such that

$$Qu_j = \lambda_j u_j \quad \text{for all} \quad j \in \{1, \dots, n\}.$$
(23)

The following statements are equivalent.

- (a) $S \in \mathscr{L}(\mathscr{V})$ is a nonnegative operator and $S^2 = Q$.
- (b) For every $\lambda \in \mathbb{R}_{>0}$ we have

$$\operatorname{nul}(Q - \lambda I) = \operatorname{nul}(S - \sqrt{\lambda}I).$$

(c) For every $v \in \mathscr{V}$ we have

$$Sv = \sum_{j=1}^{n} \sqrt{\lambda_j} \langle v, u_j \rangle u_j.$$

Proof. (a) \Rightarrow (b). We first prove that nul Q = nul S. Since $Q = S^2$ we have nul $S \subseteq$ nul Q. Let $v \in$ nul Q, that is, let $Qv = S^2v = 0$. Then $\langle S^2v, v \rangle = 0$. Since S is nonnegative it is self-adjoint. Therefore, $\langle S^2v, v \rangle = \langle Sv, Sv \rangle = \|Sv\|^2$. Hence, $\|Sv\| = 0$, and thus Sv = 0. This proves that nul $Q \subseteq$ nul S and (b) is proved for $\lambda = 0$.

Let $\lambda > 0$. Then the operator $S + \sqrt{\lambda}I$ is invertible. To prove this, let $v \in \mathscr{V} \setminus \{0_{\mathscr{V}}\}$ be arbitrary. Then ||v|| > 0 and therefore

$$\left\langle (S + \sqrt{\lambda}I)v, v \right\rangle = \left\langle Sv, v \right\rangle + \sqrt{\lambda} \left\langle v, v \right\rangle \ge \sqrt{\lambda} \|v\|^2 > 0$$

Thus, $v \neq 0$ implies $(S + \sqrt{\lambda}I)v \neq 0$. This proves the injectivity of $S + \sqrt{\lambda}I$.

To prove $\operatorname{nul}(Q - \lambda I) = \operatorname{nul}(S - \sqrt{\lambda}I)$, let $v \in \mathcal{V}$ be arbitrary and notice that $(Q - \lambda I)v = 0$ if and only if $(S^2 - \sqrt{\lambda}^2 I)v = 0$, which, in turn, is equivalent to

$$(S + \sqrt{\lambda}I)(S - \sqrt{\lambda}I)v = 0.$$

Since $S + \sqrt{\lambda}I$ is injective, the last equality is equivalent to $(S - \sqrt{\lambda}I)v = 0$. This completes the proof of (b).

(b) \Rightarrow (c). Let u_1, \ldots, u_n be an orthonormal basis of \mathscr{V} and let $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_{\geq 0}$ be such that (23) holds. For arbitrary $j \in \{1, \ldots, n\}$ (23) yields $u_j \in \operatorname{nul}(Q - \lambda_j I)$. By (b), $u_j \in \operatorname{nul}(S - \sqrt{\lambda_j}I)$. Thus

$$Su_j = \sqrt{\lambda_j} u_j \quad \text{for all} \quad j \in \{1, \dots, n\}.$$
 (24)

Let $v = \sum_{j=1}^{n} \langle v, u_j \rangle u_j$ be arbitrary vector in \mathscr{V} . Then, the linearity of S and (24) imply the claim in (c).

The implication (c) \Rightarrow (a) is straightforward.

The implication (a) \Rightarrow (c) of Theorem 9.3 yields that for a given nonnegative Q a nonnegative S such that $Q = S^2$ is uniquely determined. The common notation for this unique S is \sqrt{Q} .

Definition 9.4. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle \cdot, \cdot \rangle$. An operator $U \in \mathscr{L}(\mathscr{V})$ is said to be *unitary* if $U^*U = I$.

Proposition 9.5. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle \cdot, \cdot \rangle$ and let $T \in \mathscr{L}(\mathscr{V})$. The following statements are equivalent.

- (a) T is unitary.
- (b) For all $u, v \in \mathscr{V}$ we have $\langle Tu, Tv \rangle = \langle u, v \rangle$.

- (c) For all $v \in \mathscr{V}$ we have ||Tv|| = ||v||.
- (d) T is normal and all its eigenvalues have modulus 1.

Theorem 9.6 (Polar Decomposition in $\mathscr{L}(\mathscr{V})$, Theorem 7.41). Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle \cdot, \cdot \rangle$. For every $T \in \mathscr{L}(\mathscr{V})$ there exist a unitary operator U in $\mathscr{L}(\mathscr{V})$ and a unique nonnegative $Q \in \mathscr{L}(\mathscr{V})$ such that T = UQ; U is unique if and only if T is invertible.

Proof. First, notice that the operator T^*T is nonnegative: for every $v \in \mathcal{V}$ we have

$$\langle T^*Tv, v \rangle = \langle Tv, Tv \rangle = ||Tv||^2 \ge 0.$$

To prove the uniqueness of Q assume that T = UQ with U unitary and Q nonnegative. Then $Q^* = Q$, $U^* = U^{-1}$ and therefore, $T^*T = Q^*U^*UQ = QU^{-1}UQ = Q^2$. Since Q is nonnegative we have $Q = \sqrt{T^*T}$.

Set $Q = \sqrt{T^*T}$. By Theorem 9.3(b) we have nul $Q = \text{nul}(T^*T)$. Moreover, we have nul $(T^*T) = \text{nul } T$. The inclusion nul $T \subseteq \text{nul}(T^*T)$ is trivial. For the converse inclusion notice that $v \in \text{nul}(T^*T)$ implies $T^*Tv = 0$, which yields $\langle T^*Tv, v \rangle = 0$ and thus $\langle Tv, Tv \rangle = 0$. Consequently, ||Tv|| = 0, that is Tv = 0, yielding $v \in \text{nul } T$. So,

$$\operatorname{nul} Q = \operatorname{nul}(T^*T) = \operatorname{nul} T \tag{25}$$

is proved.

First assume that T is invertible. By (25) and ??, Q is invertible as well. Therefore T = UQ is equivalent to $U = TQ^{-1}$ in this case. Since Q is unique, this proves the uniqueness of U. Set $U = TQ^{-1}$. Since Qis self-adjoint, Q^{-1} is also self-adjoint. Therefore $U^* = Q^{-1}T^*$, yielding $U^*U = Q^{-1}T^*TQ^{-1} = Q^{-1}Q^2Q^{-1} = I$. That is, U is unitary.

Now assume that T is not invertible. Since by (25) we have nul Q = nul T, the Nullity-Rank Theorem implies that dim(ran Q) = dim(ran T). Notice that nul $Q = (\operatorname{ran} Q)^{\perp}$ since Q is self-adjoint. Since T is not invertible, dim(ran Q) = dim(ran T) < dim \mathscr{V} , implying that

$$\dim(\operatorname{nul} Q) = \dim((\operatorname{ran} Q)^{\perp}) = \dim((\operatorname{ran} T)^{\perp}) > 0.$$
(26)

We have two orthogonal decompositions of \mathscr{V} :

$$\mathscr{V} = (\operatorname{ran} Q) \oplus (\operatorname{nul} Q) = (\operatorname{ran} T) \oplus ((\operatorname{ran} T)^{\perp}).$$

These two orthogonal decompositions are compatibile in the sense that the corresponding components have same dimensions, that is

 $\dim(\operatorname{ran} Q) = \dim(\operatorname{ran} T) \quad \text{and} \quad \dim(\operatorname{nul} Q) = \dim((\operatorname{ran} T)^{\perp}).$

We will define $U : \mathscr{V} \to \mathscr{V}$ in two steps based on these two orthogonal decompositions. First we define the action of U on ran Q, that is we define the operator $U_r : \operatorname{ran} Q \to \operatorname{ran} T$, then we define an operator $U_n : \operatorname{nul} Q \to (\operatorname{ran} T)^{\perp}$.

We define $U_r : \operatorname{ran} Q \to \operatorname{ran} T$ in the following way: Let $u \in \operatorname{ran} Q$ be arbitrary and let $x \in \mathcal{V}$ be such that u = Qx. Then we set

$$U_r u = T x$$

First we need to show that U_r is well defined. Let $x_1, x_2 \in \mathscr{V}$ be such that $u = Qx_1 = Qx_2$. Then, $x_1 - x_2 \in \operatorname{nul} Q$. Since $\operatorname{nul} Q = \operatorname{nul} T$, we thus have $x_1 - x_2 \in \operatorname{nul} T$. Consequently, $Tx_1 = Tx_2$, that is U_r is well defined.

Next we prove that U_r is angle-preserving. Let $u_1, u_2 \in \operatorname{ran} Q$ be arbitrary and let $x_1, x_1 \in \mathscr{V}$ be such that $u_1 = Qx_1$ and $u_2 = Qx_2$ and calculate

$$\langle U_r u_1, U_r u_2 \rangle = \langle U_r(Qx_1), U_r(Qx_2) \rangle$$

by definition of $U_r = \langle Tx_1, Tx_2 \rangle$
by definition of adjoint $= \langle T^*Tx_1, x_2 \rangle$
by definition of $Q = \langle Q^2x_1, x_2 \rangle$
since Q is self-adjoint $= \langle Qx_1, Qx_2 \rangle$
by definition of $x_1, x_2 = \langle u_1, u_2 \rangle$

Thus $U_r : \operatorname{ran} Q \to \operatorname{ran} T$ is angle-preserving.

Next we define an angle-preserving operator

$$U_n: \operatorname{nul} Q \to (\operatorname{ran} T)^{\perp}.$$

By (26), we can set

$$m = \dim(\operatorname{nul} Q) = \dim((\operatorname{ran} T)^{\perp}) > 0.$$

Let e_1, \ldots, e_m be an orthonormal basis on nul Q and let f_1, \ldots, f_m be an orthonormal basis on $(\operatorname{ran} T)^{\perp}$. For arbitrary $w \in \operatorname{nul} Q$ define

$$U_n w = U_n \left(\sum_{j=1}^m \langle w, e_j \rangle e_j \right) := \sum_{j=1}^m \langle w, e_j \rangle f_j.$$

Then, for $w_1, w_2 \in \operatorname{nul} Q$ we have

$$\langle U_n w_1, U_n w_2 \rangle = \left\langle \sum_{i=1}^m \langle w_1, e_i \rangle f_i, \sum_{j=1}^m \langle w_2, e_j \rangle f_j \right\rangle$$

$$= \sum_{j=1}^{m} \langle w_1, e_j \rangle \overline{\langle w_2, e_j \rangle}$$
$$= \langle w_1, w_2 \rangle.$$

Hence U_n is angle-preserving on $(\operatorname{ran} Q)^{\perp}$.

Since the orthomormal bases in the definition of U_n were arbitrary and since m > 0, the operator U_n is not unique.

Finally we define $U: \mathscr{V} \to \mathscr{V}$ as a direct sum of U_r and U_n . Recall that

$$\mathscr{V} = (\operatorname{ran} Q) \oplus (\operatorname{nul} Q).$$

Let $v \in \mathscr{V}$ be arbitrary. Then there exist unique $u \in (\operatorname{ran} Q)$ and $w \in (\operatorname{nul} Q)$ such that v = u + w. Set

$$Uv = U_r u + U_n w.$$

We claim that U is angle-preserving. Let $v_1, v_2 \in \mathscr{V}$ be arbitrary and let $v_i = u_i + w_i$ with $u_i \in (\operatorname{ran} Q)$ and $w_i \in (\operatorname{nul} Q)$ with $i \in \{1, 2\}$. Notice that

$$\langle v_1, v_2 \rangle = \langle u_1 + w_1, u_2 + w_2 \rangle = \langle u_1, u_2 \rangle + \langle w_1, w_2 \rangle, \tag{27}$$

since u_1, u_2 are orthogonal to w_1, w_2 . Similarly

$$\langle U_r u_1 + U_n w_1, U_r u_2 + U_n w_2 \rangle = \langle U_r u_1, U_r u_2 \rangle + \langle U_n w_1, U_n w_2 \rangle, \qquad (28)$$

since $U_r u_1, U_r u_2 \in (\operatorname{ran} T)$ and $U_n w_1, U_n w_2 \in (\operatorname{ran} T)^{\perp}$. Now we calculate, starting with the definition of U,

$$\langle Uv_1, Uv_2 \rangle = \langle U_r u_1 + U_n w_1, U_r u_2 + U_n w_2 \rangle$$
$$\boxed{\text{by } (28)} = \langle U_r u_1, U_r u_2 \rangle + \langle U_n w_1, U_n w_2 \rangle$$
$$\boxed{U_r \text{ and } U_n \text{ are angle-preserving}} = \langle u_1, u_2 \rangle + \langle w_1, w_2 \rangle$$
$$\boxed{\text{by } (27)} = \langle v_1, v_2 \rangle.$$

Hence U is angle-preserving and by Proposition 9.5 we have that U is unitary.

Finally we show that T = UQ. Let $v \in \mathscr{V}$ be arbitrary. Then $Qv \in ran Q$. By definitions of U and U_r we have

$$UQv = U_r Qv = Tv.$$

Thus T = UQ, where U is unitary and Q is nonnegative.

Theorem 9.7 (Singular-Value Decomposition, Theorem 7.46). Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle \cdot, \cdot \rangle$ and let $T \in \mathscr{L}(\mathscr{V})$. Then there exist orthonormal bases $\mathscr{B} = \{u_1, \ldots, u_n\}$ and $\mathscr{C} = \{w_1, \ldots, w_n\}$ and nonnegative scalars $\sigma_1, \ldots, \sigma_n$ such that for every $v \in \mathscr{V}$ we have

$$Tv = \sum_{j=1}^{n} \sigma_j \langle v, u_j \rangle w_j.$$
⁽²⁹⁾

In other words, there exist orthonormal bases \mathscr{B} and \mathscr{C} such that the matrix $\mathsf{M}^{\mathscr{B}}_{\mathscr{C}}(T)$ is diagonal with nonnegative entries on the diagonal.

Proof. Let T = UQ be a polar decomposition of T, that is let U be unitary and $Q = \sqrt{T^*T}$. Since Q is nonnegative, it is normal with nonnegative eigenvalues. By the spectral theorem, there exists an orthonormal basis $\{u_1, \ldots, u_n\}$ of \mathscr{V} and nonnegative scalars $\sigma_1, \ldots, \sigma_n$ such that

$$Qu_j = \sigma_j u_j \quad \text{for all} \quad j \in \{1, \dots, n\}.$$
(30)

Since $\{u_1, \ldots, u_n\}$ is an orthonormal basis, for arbitrary $v \in \mathscr{V}$ we have

$$v = \sum_{j=1}^{n} \langle v, u_j \rangle u_j.$$
(31)

Applying Q to (31), using its linearity and (30) we get

$$Qv = \sum_{j=1}^{n} \sigma_j \langle v, u_j \rangle u_j.$$
(32)

Applying U to (32) and using its linearity we get

$$UQv = \sum_{j=1}^{n} \sigma_j \langle v, u_j \rangle Uu_j.$$
(33)

Set $w_j = Uu_j, j \in \{1, ..., n\}$. This definition and the fact that U is angle-preserving yield

$$\langle w_i, w_j \rangle = \langle Uu_i, Uu_j \rangle = \langle u_i, u_j \rangle = \delta_{ij}.$$

Thus $\{w_1, \ldots, w_n\}$ is an orthonormal basis. Substituting $w_j = Uu_j$ in (33) and using T = UQ we get (29).

The values $\sigma_1, \ldots, \sigma_n$ from Theorem 9.7, which are in fact the eigenvalues of $\sqrt{T^*T}$, are called *singular values* of T.