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1 Inner Product Spaces

We will first introduce several “dot-product-like” objects. We start with the
most general.

Definition 1.1. Let V be a vector space over a scalar field F. A function

[ · , · ] : V × V → F

is a sesquilinear form on V if the following two conditions are satisfied.

(a) (linearity in the first variable)

∀α, β ∈ F ∀u, v, w ∈ V [αu+ βv,w] = α[u,w] + β[v,w].

(b) (anti-linearity in the second variable)

∀α, β ∈ F ∀u, v, w ∈ V [u, αv + βw] = α[u, v] + β[u,w].

Example 1.2. Let M ∈ Cn×n be arbitrary. Then

[x,y] = (Mx) · y, x,y ∈ Cn,

is a sesquilinear form on the complex vector space Cn. Here · denotes the
usual dot product in C.

An abstract form of the Pythagorean Theorem holds for sesquilinear
forms.

Theorem 1.3 (Pythagorean Theorem). Let [ · , · ] be a sesquilinear form on

a vector space V over a scalar field F. If v1, · · · , vn ∈ V are such that

[vj , vk] = 0 whenever j 6= k, j, k ∈ {1, . . . , n}, then
[

n
∑

j=1

vj ,

n
∑

k=1

vk

]

=

n
∑

j=1

[vj , vj].
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Proof. Assume that [vj , vk] = 0 whenever j 6= k, j, k ∈ {1, . . . , n} and apply
the additivity of the sesquilinear form in both variables to get:

[

n
∑

j=1

vj ,
n
∑

k=1

vk

]

=
n
∑

j=1

n
∑

k=1

[vj , vk]

=

n
∑

j=1

[vj , vj ].

Theorem 1.4 (Polarization identity). Let V be a vector space over a scalar

field F and let [ · , · ] : V × V → F be a sesquilinear form on V . If i ∈ F,

then

[u, v] =
1

4

3
∑

k=0

ik
[

u+ ikv, u+ ikv
]

(1)

for all u, v ∈ V .

Corollary 1.5. Let V be a vector space over a scalar field F and let [ · , · ] :
V × V → F be a sesquilinear form on V . If i ∈ F and [v, v] = 0 for all

v ∈ V , then [u, v] = 0 for all u, v ∈ V .

Definition 1.6. Let V be a vector space over a scalar field F. A sesquilinear
form [ · , · ] : V × V → F is hermitian if

(c) (hermiticity) ∀u, v ∈ V [u, v] = [v, u].

A hermitian sesquilinear form is also called an inner product.

Corollary 1.7. Let V be a vector space over a scalar field F such that i ∈ F.

Let [ · , · ] : V ×V → F be a sesquilinear form on V . Then [ · , · ] is hermitian

if and only if [v, v] ∈ R for all v ∈ V .

Proof. The “only if” direction follows from the definition of a hermitian
sesquilinear form. To prove “if” direction assume that [v, v] ∈ R for all
v ∈ V . Let u, v ∈ V be arbitrary. By assumption

[

u+ ikv, u+ ikv
]

∈ R for
all k ∈ {0, 1, 2, 3}. Therefore

[u, v] =
1

4

3
∑

k=0

(−i)k
[

u+ ikv, u+ ikv
]

=
1

4

3
∑

k=0

(−i)kik(−i)k
[

(−i)ku+ v, (−i)ku+ v
]
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=
1

4

3
∑

k=0

(−i)k
[

v + (−i)ku, v + (−i)ku
]

.

Notice that the values of (−i)k at k = 0, 1, 2, 3, in this particular order are:
1,−i,−1, i. These are exactly the values of ik in the order k = 0, 3, 2, 1.
Therefore rearranging the order of terms in the last four-term-sum we have

1

4

3
∑

k=0

(−i)k
[

v + (−i)ku, v + (−i)ku
]

=
1

4

3
∑

k=0

ik
[

v + iku, v + iku
]

.

Together with Theorem 1.4, the last two displayed equalities yield [u, v] =
[v, u].

Let [ · , · ] be an inner product on V . The hermiticity of [ · , · ] implies
that [v, v] = [v, v] for all v ∈ V . Thus [v, v] ∈ R for all v ∈ V . The natural
trichotomy that arises is the motivation for the following definition.

Definition 1.8. An inner product [ · , · ] on V is called nonnegative if [v, v] ≥
0 for all v ∈ V , it is called nonpositive if [v, v] ≤ 0 for all v ∈ V , and it is
called indefinite if there exist u ∈ V and v ∈ V such that [u, u] < 0 and
[v, v] > 0.

2 Nonnegative inner products

The following implication that you might have learned in high school will
be useful below.

Theorem 2.1 (High School Theorem). Let a, b, c be real numbers. Assume

a ≥ 0. Then the following implication holds:

∀x ∈ Q ax2 + bx+ c ≥ 0 ⇒ b2 − 4ac ≤ 0. (2)

Theorem 2.2 (Cauchy-Bunyakovsky-Schwartz Inequality). Let V be a vec-

tor space over F and let 〈 · , · 〉 be a nonnegative inner product on V . Then

∀u, v ∈ V |〈u, v〉|2 ≤ 〈u, u〉〈v, v〉. (3)

The equality occurs in (3) if and only if there exists α, β ∈ F not both 0 such

that 〈αu+ βv, αu + βv〉 = 0.
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Proof. Let u, v ∈ V be arbitrary. Since 〈·, ·〉 is nonnegative we have

∀ t ∈ Q
〈

u+ t〈u, v〉v, u + t〈u, v〉v
〉

≥ 0. (4)

Since 〈·, ·〉 is a sesquilinear hermitian form on V , (4) is equivalent to

∀ t ∈ Q 〈u, u〉+ 2t|〈u, v〉|2 + t2|〈u, v〉|2〈v, v〉 ≥ 0. (5)

As 〈v, v〉 ≥ 0, the High School Theorem applies and (5) implies

4|〈u, v〉|4 − 4|〈u, v〉|2〈u, u〉〈v, v〉 ≤ 0. (6)

Again, since 〈u, u〉 ≥ 0 and 〈v, v〉 ≥ 0, (6) is equivalent to

|〈u, v〉|2 ≤ 〈u, u〉〈v, v〉.

Since u, v ∈ V were arbitrary, (3) is proved.
Next we prove the claim related to the equality in (3). We first prove the

“if” part. Assume that u, v ∈ V and α, β ∈ F are such that |α|2 + |β|2 > 0
and

〈αu+ βv, αu+ βv〉 = 0

We need to prove that |〈u, v〉|2 = 〈u, u〉〈v, v〉.
Since |α|2+ |β|2 > 0, we have two cases α 6= 0 or β 6= 0. We consider the

case α 6= 0. The case β 6= 0 is similar. Set w = αu + βv. Then 〈w,w〉 = 0
and u = γv + δw where γ = −β/α and δ = 1/α. Notice that the Cauchy-
Bunyakovsky-Schwarz inequality and 〈w,w〉 = 0 imply that 〈w, x〉 = 0 for
all x ∈ V . Now we calculate

|〈u, v〉| = |〈γv + δw, v〉| = |γ〈v, v〉 + δ〈w, v〉| = |γ〈v, v〉| = |γ|〈v, v〉

and
〈u, u〉 = 〈γv + δw, γv + δw〉 = 〈γv, γv〉 = |γ|2〈v, v〉.

Thus,
|〈u, v〉|2 = |γ|2〈v, v〉2 = 〈u, u〉〈v, v〉.

This completes the proof of the “if” part.
To prove the “only if” part, assume |〈u, v〉|2 = 〈u, u〉〈v, v〉. If 〈v, v〉 = 0,

then with α = 0 and β = 1 we have

〈αu+ βv, αu+ βv〉 = 〈v, v〉 = 0.
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If 〈v, v〉 6= 0, then with α = 〈v, v〉 and β = −〈u, v〉 we have |α|2 + |β|2 > 0
and

〈αu+ βv, αu+ βv〉 = 〈v, v〉
(

〈v, v〉〈u, u〉− |〈u, v〉|2 − |〈u, v〉|2 + |〈u, v〉|2
)

= 0.

This completes the proof of the characterization of equality in the Cauchy-
Bunyakovsky-Schwartz Inequality.

Corollary 2.3. Let V be a vector space over F and let 〈 · , · 〉 be a nonnegative

inner product on V . Then the following two implications are equivalent.

(i) If v ∈ V and 〈u, v〉 = 0 for all u ∈ V , then v = 0.

(ii) If v ∈ V and 〈v, v〉 = 0, then v = 0.

Proof. Assume that the implication (i) holds and let v ∈ V be such that
〈v, v〉 = 0. Let u ∈ V be arbitrary. By the the CBS inequality

|〈u, v〉|2 ≤ 〈u, u〉〈v, v〉 = 0.

Thus, 〈u, v〉 = 0 for all u ∈ V . By (i) we conclude v = 0. This proves (ii).
The converse is trivial. However, here is a proof. Assume that the

implication (ii) holds. To prove (i), let v ∈ V and assume 〈u, v〉 = 0 for all
u ∈ V . Setting u = v we get 〈v, v〉 = 0. Now (ii) yields v = 0.

Definition 2.4. Let V be a vector space over a scalar field F. An inner
product [ · , · ] on V is nondegenerate if the following implication holds

(d) (nondegenerecy) u ∈ V and [u, v] = 0 for all v ∈ V implies u = 0.

We conclude this section with a characterization of the best approxima-
tion property.

Theorem 2.5 (Best Approximation-Orthogonality Theorem). Let (V , 〈·, ·〉)
be an inner product space with a nonnegative inner product. Let U be a

subspace of V . Let v ∈ V and u0 ∈ U . Then

∀u ∈ U 〈v − u0, v − u0〉 ≤ 〈v − u, v − u〉. (7)

if and only if

∀u ∈ U 〈v − u0, u〉 = 0. (8)
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Proof. First we prove the “only if” part. Assume (7). Let u ∈ U be
arbitrary. Set α = 〈v − u0, u〉. Clearly α ∈ F. Let t ∈ Q ⊆ F be arbitrary.
Since u0 − tαu ∈ U , (7) implies

∀ t ∈ Q 〈v − u0, v − u0〉 ≤ 〈v − u0 + tαu, v − u0 + tαu〉. (9)

Now recall that α = 〈v − u0, u〉 and expand the right-hand side of (9):

〈v − u0 + tαu, v − u0 + tαu〉 = 〈v − u0, v − u0〉+ 〈v − u0, tαu〉
+ 〈tαu, v − u0〉+ 〈tαu, tαu〉

= 〈v − u0, v − u0〉+ tα〈v − u0, u〉
+ tα〈u, v − u0〉+ t2|α|2〈u, u〉

= 〈v − u0, v − u0〉+ 2t|α|2 + t2|α|2〈u, u〉.

Thus (9) is equivalent to

∀ t ∈ Q 0 ≤ 2t|α|2 + t2|α|2〈u, u〉. (10)

By the High School Theorem, (10) implies

4|α|4 − 4|α|2〈u, u〉 0 = 4|α|4 ≤ 0.

Consequently α = 〈v−u0, u〉 = 0. Since u ∈ U was arbitrary, (8) is proved.
For the “if” part assume that (8) is true. Let u ∈ U be arbitrary. Notice

that u0 − u ∈ U and calculate

〈v − u, v − u〉 = 〈v − u0 + u0 − u, v − u0 + u0 − u〉
by (8) and Pythag. thm. = 〈v − u0, v − u0〉+ 〈u0 − u, u0 − u〉

since 〈u0 − u, u0 − u〉 ≥ 0 ≥ 〈v − u0, v − u0〉.

This proves (7).

3 Positive definite inner products

It follows from Corollary 2.3 that a nonnegative inner product 〈 · , · 〉 on V

is nondegenerate if and only if 〈v, v〉 = 0 implies v = 0. A nonnegative
nondegenerate inner product is also called positive definite inner product.
Since positive definite inner products are the most often encountered inner
products we give the complete definition as it is commonly given in text-
books.
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Definition 3.1. Let V be a vector space over a scalar field F. A function
〈 · , · 〉 : V × V → F is called a positive definite inner product on V if the
following conditions are satisfied;

(a) ∀u, v, w ∈ V ∀α, β ∈ F 〈αu+ βv, v〉 = α〈u,w〉 + β〈v,w〉,
(b) ∀u, v ∈ V 〈u, v〉 = 〈v, u〉,
(c) ∀ v ∈ V 〈v, v〉 ≥ 0,

(d) If v ∈ V and 〈v, v〉 = 0, then v = 0.

A positive definite inner product gives rise to a norm.

Theorem 3.2. Let (V , 〈 · , · 〉) be a vector space over F with a positive defi-

nite inner product 〈 · , · 〉. The function ‖ · ‖ : V → R defined by

‖v‖ =
√

〈v, v〉, v ∈ V ,

is a norm on V . That is for all u, v ∈ V and all α ∈ F we have ‖v‖ ≥ 0,
‖αv‖ = |α|‖v‖, ‖u+ v‖ ≤ ‖u‖ + ‖v‖ and ‖v‖ = 0 implies v = 0V .

Definition 3.3. Let (V , 〈 · , · 〉) be a vector space over F with a positive
definite inner product 〈 · , · 〉. A set of vectors A ⊂ V is said to form an
orthogonal system in V if for all u, v ∈ A we have 〈u, v〉 = 0 whenever u 6= v
and for all v ∈ A we have 〈v, v〉 > 0. An orthogonal system A is called an
orthonormal system if for all v ∈ A we have 〈v, v〉 = 1.

Proposition 3.4. Let (V , 〈 · , · 〉) be a vector space over F with a positive

definite inner product 〈 · , · 〉. Let u1, . . . , un be an orthogonal system in V .

If v =
∑n

j=1 αjuj , then αj = 〈v, uj〉/〈uj , uj〉. In particular, an orthogonal

system is linearly independent.

Theorem 3.5 (The Gram-Schmidt orthogonalization). Let (V , 〈 · , · 〉) be a

vector space over F with a positive definite inner product 〈 · , · 〉. Let n ∈
N and let v1, . . . , vn be linearly independent vectors in V . Let the vectors

u1, . . . , un be defined recursively by

u1 = v1,

uk+1 = vk+1 −
k
∑

j=1

〈vk+1, uj〉
〈uj , uj〉

uj , k ∈ {1, . . . , n− 1}.

Then the vectors u1, . . . , un form an orthogonal system which has the same

fan as the given vectors v1, . . . , vn.

7



Proof. We will prove by Mathematical Induction the following statement:
For all k ∈ {1, . . . , n} we have:

(a) 〈uk, uk〉 > 0 and 〈uj , uk〉 = 0 whenever j ∈ {1, . . . , k − 1};
(b) vectors u1, . . . , uk are linearly independent;

(c) span{u1, . . . , uk} = span{v1, . . . , vk}.

For k = 1 statements (a), (b) and (c) are clearly true. Let m ∈
{1, . . . , n − 1} and assume that statements (a), (b) and (c) are true for
all k ∈ {1, . . . ,m}.

Next we will prove that statements (a), (b) and (c) are true for k = m+1.
Recall the definition of um+1:

um+1 = vm+1 −
m
∑

j=1

〈vm+1, uj〉
〈uj , uj〉

uj .

By the Inductive Hypothesis we have span{u1, . . . , um} = span{v1, . . . , vm}.
Since v1 . . . , vm+1 are linearly independent, vm+1 6∈ span{u1, . . . , um}. There-
fore, um+1 6= 0V . That is 〈um+1, um+1〉 > 0. Let k ∈ {1, . . . ,m} be arbi-
trary. Then by the Inductive Hypothesis we have that 〈uj , uk〉 = 0 whenever
j ∈ {1, . . . ,m} and j 6= k. Therefore,

〈um+1, uk〉 = 〈vm+1, uk〉 −
m
∑

j=1

〈vm+1, uj〉
〈uj , uj〉

〈uj , uk〉

= 〈vm+1, uk〉 − 〈vm+1, uk〉
= 0.

This proves claim (a). To prove claim (b) notice that by the Inductive Hy-
pothesis u1, . . . , um are linearly independent and um+1 6∈ span{u1, . . . , um}
since vm+1 6∈ span{u1, . . . , um}. To prove claim (c) notice that the definition
of um+1 implies um+1 ∈ span{v1, . . . , vm+1}. Since by the inductive hypoth-
esis span{u1, . . . , um} = span{v1, . . . , vm}, we have span{u1, . . . , um+1} ⊆
span{v1, . . . , vm+1}. The converse inclusion follows from the fact that vm+1 ∈
span{u1, . . . , um+1}.

It is clear that the claim of the theorem follows from the claim that has
been proven.

The following two statements are immediate consequences of the Gram-
Schmidt orthogonalization process.

8



Corollary 3.6. If V is a finite dimensional vector space with positive defi-

nite inner product 〈 · , · 〉, then V has an orthonormal basis.

Corollary 3.7. If V is a complex vector space with positive definite inner

product and T ∈ L (V ) then there exists an orthonormal basis B such that

M
B
B
(T ) is upper-triangular.

Definition 3.8. Let (V , 〈 · , · 〉) be a positive definite inner product space
and A ⊂ V . We define A ⊥ = {v ∈ V : 〈v, a〉 = 0 ∀ a ∈ A }.

The following is a simple proposition.

Proposition 3.9. Let (V , 〈 · , · 〉) be a positive definite inner product space

and A ⊂ V . Then A⊥ is a subspace of V .

Theorem 3.10. Let (V , 〈 · , · 〉) be a positive definite inner product space

and let U be a finite dimensional subspace of V . Then V = U ⊕ U ⊥.

Proof. We first prove that V = U ⊕ U ⊥. Note that since U is a subspace
of V , U inherits the positive definite inner product from V . Thus U is a
finite dimensional positive definite inner product space. Thus there exists
an orthonormal basis of U , B = {u1, u2, . . . uk}.

Let v ∈ V be arbitrary. Then

v =





k
∑

j=1

〈v, uj〉uj



+



v −
k
∑

j=1

〈v, uj〉uj



 ,

where the first summand is in U . We will prove that the second summand
is in U ⊥. Set w =

∑k
j=1〈v, uj〉uj ∈ U . We claim that v − w ∈ U ⊥. To

prove this claim let u ∈ U be arbitrary. Since B is an orhonormal basis of
U , by Proposition 3.4 we have

u =

k
∑

j=1

〈u, uj〉uj .

Therefore

〈v − w, u〉 = 〈v, u〉 −
k
∑

j=1

〈v, uj〉〈uj , u〉

= 〈v, u〉 −
〈

v,

k
∑

j=1

〈u, uj〉uj
〉
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= 〈v, u〉 − 〈v, u〉
= 0.

Thus 〈v − w, u〉 = 0 for all u ∈ U . That is v − w ∈ U ⊥. This proves that
V = U ⊕ U ⊥.

To prove that the sum is direct, let v ∈ U and v ∈ U ⊥. Then 〈v, v〉 =
0. Since 〈 · , · 〉 is positive definite, this implies v = 0V . The theorem is
proved.

Corollary 3.11. Let (V , 〈 · , · 〉) be a positive definite inner product space

and let U be a finite dimensional subspace of V . Then
(

U ⊥
)⊥

= U .

Exercise 3.12. Let (V , 〈 · , · 〉) be a positive definite inner product space

and let U be a subspace of V . Prove that
((

U ⊥
)⊥)⊥

= U ⊥.

Recall that an arbitrary direct sum V = U ⊕W gives rise to a projection
operator PU ‖W , the projection of V onto U parallel to W .

If V = U ⊕ U ⊥, then the resulting projection of V onto U parallel to
U ⊥ is called the orthogonal projection of V onto U ; it is denoted simply by
PU . By definition for every v ∈ V ,

u = PU v ⇔ u ∈ U and v − u ∈ U
⊥.

As for any projection we have PU ∈ L (V ), ranPU = U , nulPU = U ⊥,
and (PU )2 = PU .

Theorems 3.10 and 2.5 yield the following solution of the best approx-
imation problem for finite dimensional subspaces of a vector space with a
positive definite inner product.

Corollary 3.13. Let (V , 〈 · , · 〉) be a vector space with a positive definite

inner product and let U be a finite dimensional subspace of V . For arbitrary

v ∈ V the vector PU v ∈ U is the unique best approximation for v in U .

That is
∥

∥v − PU v
∥

∥ < ‖v − u‖ for all u ∈ U \
{

PU v
}

.

4 The definition of an adjoint operator

Let V be a vector space over F. The space L (V ,F) is called the dual space
of V ; it is denoted by V ∗.
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Theorem 4.1. Let V be a finite dimensional vector space over F and let

〈 · , · 〉 be a positive definite inner product on V . Define the mapping

Φ : V → V
∗

as follows: for w ∈ V we set

(

Φ(w)
)

(v) = 〈v,w〉 for all v ∈ V .

Then Φ is a anti-linear bijection.

Proof. Clearly, for each w ∈ V , Φ(w) ∈ V ∗. The mapping Φ is anti-linear,
since for α, β ∈ F and u,w ∈ V , for all v ∈ V we have

(

Φ(αu+ βw)
)

(v) = 〈v, αu + βw〉
= α〈v, u〉 + β〈v,w〉
= α

(

Φ(u)
)

(v) + β
(

Φ(w)
)

(v)

=
(

αΦ(u) + βΦ(w)
)

(v).

Thus Φ(αu+ βw) = αΦ(u) + βΦ(w). This proves anti-linearity.
To prove injectivity of Φ, let u,w ∈ V be such that Φ(u) = Φ(w). Then

(

Φ(u)
)

(v) =
(

Φ(w)
)

(v) for all v ∈ V . By the definition of Φ this means
〈v, u〉 = 〈v,w〉 for all v ∈ V . Consequently, 〈v, u − w〉 = 0 for all v ∈ V .
In particular, with v = u− w we have 〈u − w, u − w〉 = 0. Since 〈 · , · 〉 is a
positive definite inner product, it follows that u−w = 0V , that is u = w.

To prove that Φ is a surjection we use the assumption that V is finite
dimensional. Then there exists an orthonormal basis u1, . . . , un of V . Let
ϕ ∈ V ∗ be arbitrary. Set

w =
n
∑

j=1

ϕ(uj)uj.

The proof that Φ(w) = ϕ follows. Let v ∈ V be arbitrary.

(

Φ(w)
)

(v) = 〈v,w〉

=

〈

v,

n
∑

j=1

ϕ(uj)uj

〉

=
n
∑

j=1

ϕ(uj)〈v, uj〉
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=

n
∑

j=1

〈v, uj〉ϕ(uj)

= ϕ

(

n
∑

j=1

〈v, uj〉uj
)

= ϕ(v).

The theorem is proved.

The mapping Φ from the previous theorem is convenient to define the
adjoint of a linear operator. In the next definition we will deal with two
positive definite inner product spaces. To emphasize the different inner
products and different mappings Φ we will use subscripts.

Let
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be two finite dimensional vector spaces
over the same scalar field F and with positive definite inner products. Let
T ∈ L (V ,W ). We define the adjoint T ∗ : W → V of T by

T ∗w = Φ−1
V

(

ΦW (w) ◦ T
)

, w ∈ W . (11)

Since ΦW and Φ−1
V

are anti-linear, T ∗ is linear. For arbitrary α1, α1 ∈ F

and w1, w2 ∈ W we have

T ∗(α1w1 + α2w2) = Φ−1
V

(

ΦW (α1w1 + α2w2) ◦ T
)

= Φ−1
V

((

α1ΦW (w1) + α2ΦW (w2)
)

◦ T
)

= Φ−1
V

(

α1 ΦW (w1) ◦ T + α2ΦW (w2) ◦ T
)

= α1 Φ
−1
V

(

ΦW (w1) ◦ T
)

+ α2 Φ
−1
V

(

ΦW (w2) ◦ T
)

= α1 T
∗w1 + α2 T

∗w2.

Thus, T ∗ ∈ L (W ,V ).
Next we will deduce the most important property of T ∗. By the definition

of T ∗ : W → V , for a fixed arbitrary w ∈ W we have

T ∗w = Φ−1
V

(

ΦW (w) ◦ T
)

.

This is equivalent to
ΦV

(

T ∗w
)

= ΦW (w) ◦ T,
which is, by the definition of ΦV , equivalent to

(

ΦW (w) ◦ T
)

(v) = 〈v, T ∗w〉V for all v ∈ V ,
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which, in turn, is equivalent to

(

ΦW (w)
)

(Tv) = 〈v, T ∗w〉V for all v ∈ V .

From the definition of ΦW the last statement is equivalent to

〈Tv,w〉W = 〈v, T ∗w〉V for all v ∈ V .

The reasoning above proves the following proposition.

Proposition 4.2. Let
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be two finite dimen-

sional vector spaces over the same scalar field F and with positive definite

inner products. Let T ∈ L (V ,W ) and S ∈ L (W ,V ). Then S = T ∗ if and

only if

〈Tv,w〉W = 〈v, Sw〉V for all v ∈ V , w ∈ W . (12)

5 Properties of the adjoint operator

Theorem 5.1. Let
(

U , 〈 · , · 〉U
)

,
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be three

finite dimensional vector space over the same scalar field F and with posi-

tive definite inner products. Let S ∈ L (U ,V ) and T ∈ L (V ,W ). Then

(TS)∗ = S∗T ∗.

Proof. By definition for every u ∈ U , v ∈ V and w ∈ W we have

S∗v = Φ−1
U

(

ΦV (v) ◦ S
)

T ∗w = Φ−1
V

(

ΦW (w) ◦ T
)

(TS)∗w = Φ−1
U

(

ΦW (w) ◦ (TS)
)

With this, for arbitrary w ∈ W we calculate

S∗T ∗w = S∗(T ∗w)

= Φ−1
U

(

ΦV

(

Φ−1
V

(

ΦW (w) ◦ T
))

◦ S
)

= Φ−1
U

(

ΦW (w) ◦ T ◦ S
)

= (TS)∗w.

Thus (TS)∗ = S∗T ∗.

A function f : X → X is said to be an involution if it is its own inverse,
that is if f(f(x)) = x for all x ∈ X.
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Theorem 5.2. Let
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be two finite dimensional

vector spaces over the same scalar field F and with positive definite inner

products. The adjoint mapping

∗ : L (V ,W ) → L (W ,V )

is an anti-linear bijection. Its inverse is the adjoint mapping from L (W ,V )
to L (V ,W ). In particular the adjoint mapping in L (V ,V ) is an anti-linear

involution.

Proof. To prove that ∗ : L (V ,W ) → L (W ,V ) is anti-linear let α, β ∈ F

be arbitrary and let S, T ∈ L (V ,W ) be arbitrary. By the definition of ∗

for arbitrary w ∈ W we have

(αS + βT )∗w = Φ−1
V

(

ΦW (w) ◦ (αS + βT )
)

= Φ−1
V

(

αΦW (w) ◦ S + βΦW (w) ◦ T
)

= αΦ−1
V

(

ΦW (w) ◦ S
)

+ βΦ−1
V

(

ΦW (w) ◦ T
)

= αS∗w + βT ∗w

=
(

αS∗ + βT ∗
)

w.

Hence (αS + βT )∗ = αS∗ + βT ∗.
To prove that the adjoint mapping ∗ : L (V ,W ) → L (W ,V ) is a

bijection we will use the adjoint mapping ⋆ : L (W ,V ) → L (V ,W ). In
fact we will prove that ⋆ is the inverse of ∗. To this end we will prove that
for all S ∈ L (V ,W ) we have that (S∗)⋆ = S and that for all T ∈ L (W ,V )
we have that (T ⋆)∗ = T .

Here are the proofs. By the definition of the mapping ∗ : L (V ,W ) →
L (W ,V ) for an arbitrary S ∈ L (V ,W ) we have

∀ v ∈ V ∀w ∈ W 〈S∗w, v〉V = 〈w,Sv〉W .

By Proposition 4.2 this identity yields (S∗)⋆ = S. By the definition of the
mapping ⋆ : L (W ,V ) → L (V ,W ) for an arbitrary T ∈ L (W ,V ) we
have

∀w ∈ W ∀ v ∈ V 〈T ∗v,w〉W = 〈v, Tw〉V .

By Proposition 4.2 this identity yields (T ⋆)∗ = T .

Theorem 5.3. Let
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be two finite dimensional

vector spaces over the same scalar field F and with positive definite inner

products. The following statements hold.
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(i) nul(T ∗) = (ran T )⊥.

(ii) ran(T ∗) = (nulT )⊥.

(iii) nul(T ) = (ranT ∗)⊥.

(iv) ran(T ) = (nulT ∗)⊥.

Theorem 5.4. Let
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

be two finite dimensional

vector spaces over the same scalar field F and with positive definite inner

products. Let B and C be orthonormal bases of
(

V , 〈 · , · 〉V
)

and
(

W , 〈 · , · 〉W
)

,

respectively, and let T ∈
(

V , 〈 · , · 〉V
)

. Then M
C
B
(T ∗) is the conjugate trans-

pose of the matrix M
B
C
(T ).

Proof. Let B = {v1, . . . , vm} and C = {w1, . . . , wn} be orthonormal bases
from the theorem. Let i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Then the term in
the j-th column and the i-th row of the n×m matrix M

B
C
(T ) is 〈Tvj , wi〉,

while the term in the i-th column and the j-th row of the m×n matrix
M

C
B
(T ∗) is

〈T ∗wi, vj〉 = 〈wi, T vj〉 = 〈Tvj , wi〉.
This proves the claim.

Lemma 5.5. Let V be a vector space over F and let 〈 · , · 〉 be a positive

definite inner product on V . Let U be a subspace of V and let T ∈ L (V ).
The subspace U is invariant under T if and only if the subspace U ⊥ is

invariant under T ∗.

Proof. By the definition of adjoint we have

〈Tu, v〉 = 〈u, T ∗v〉 (13)

for all u, v ∈ V . Assume TU ⊆ U . From (13) we get

0 = 〈Tu, v〉 = 〈u, T ∗v〉 ∀u ∈ U and ∀v ∈ U
⊥.

Therefore, T ∗v ∈ U ⊥ for all v ∈ U ⊥. This proves “only if” part.
The proof of the “if” part is similar.

6 Self-adjoint and normal operators

Definition 6.1. Let V be a vector space over F and let 〈 · , · 〉 be a positive
definite inner product on V . An operator T ∈ L (V ) is said to be self-adjoint
if T = T ∗. An operator T ∈ L (V ) is said to be normal if TT ∗ = T ∗T .
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Proposition 6.2. Let V be a vector space over F and let 〈 · , · 〉 be a positive

definite inner product on V . All eigenvalues of a self-adjoint T ∈ L (V ) are
real.

Proof. Let λ ∈ F be an eigenvalue of T and let Tv = λv with a nonzero
v ∈ V . Then

λ〈v, v〉 = 〈Tv, v〉 = 〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉.

Since 〈v, v〉 > 0 the preceding equalities yield λ = λ.

In the rest of this section we will consider only scalar
fields F which contain the imaginary unit i.

Proposition 6.3. Let V be a vector space over F and let 〈 · , · 〉 be a positive

definite inner product on V . Let T ∈ L (V ). Then T = 0 if and only if

〈Tv, v〉 = 0 for all v ∈ V .

Proof. Set, [u, v] = 〈Tu, v〉 for all u, v ∈ V . Then [ · , · ] is a sesquilinear
form on V . Since 〈 · , · 〉 is a positive definite inner product, T = 0 if and
only if for all u, v ∈ V we have 〈Tu, v〉 = 0, which in turn is equivalent
to for all u, v ∈ V we have [u, v] = 0. By Corollary 1.5 [u, v] = 0 for all
u, v ∈ V is equivalent to [u, u] = 0 for all u ∈ V , that is to 〈Tu, u〉 = 0 for
all u ∈ V .

Proposition 6.4. Let V be a vector space over F and let 〈 · , · 〉 be a positive

definite inner product on V . An operator T ∈ L (V ) is self-adjoint if and

only if 〈Tv, v〉 ∈ R for all v ∈ V .

Proof.

Theorem 6.5. Let V be a vector space over F and let 〈 · , · 〉 be a positive

definite inner product on V . An operator T ∈ L (V ) is normal if and only

if ‖Tv‖ = ‖T ∗v‖ for all v ∈ V .

Corollary 6.6. Let V be a vector space over F, let 〈 · , · 〉 be a positive

definite inner product on V and let T ∈ L (V ) be normal. Then λ ∈ C is

an eigenvalue of T if and only if λ is an eigenvalue of T ∗ and

nul
(

T ∗ − λI
)

= nul(T − λI).
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7 The Spectral Theorem

In the rest of the notes we will consider only the
scalar field C.

Theorem 7.1 (Theorem 7.9). Let V be a finite dimensional vector space

over C and 〈 · , · 〉 be a positive definite inner product on V . Let T ∈ L (V ).
Then V has an orthonormal basis which consists of eigenvectors of T if and

only if T is normal. In other words, T is normal if and only if there exists

an orthonormal basis B of V such that MB
B
(T ) is a diagonal matrix.

Proof. Let n = dim(V ). Assume that T is normal. By Corollary 3.7 there
exists an orthonormal basis B = {u1, . . . , un} of V such that M

B
B
(T ) is

upper-triangular. That is,

M
B
B(T ) =











〈Tu1, u1〉 〈Tu2, u1〉 · · · 〈Tun, u1〉
0 〈Tu2, u2〉 · · · 〈Tun, u2〉
...

...
. . .

...
0 0 · · · 〈Tun, un〉











, (14)

or, equivalently,

Tuk =

k
∑

j=1

〈Tuk, uj〉uj for all k ∈ {1, . . . , n}. (15)

By Theorem 5.4(??) we have

M
B
B(T ∗) =











〈Tu1, u1〉 0 · · · 0

〈Tu2, u1〉 〈Tu2, u2〉 · · · 0
...

...
. . .

...

〈Tun, u1〉 〈Tun, u2〉 · · · 〈Tun, un〉











.

Consequently,

T ∗uk =

n
∑

j=k

〈Tuj , uk〉uj for all k ∈ {1, . . . , n}. (16)

Since T is normal, Theorem 6.5 implies

‖Tuk‖2 = ‖T ∗uk‖2 for all k ∈ {1, . . . , n}.
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Together with (15) and (16) the last identities become

k
∑

j=1

∣

∣〈Tuk, uj〉
∣

∣

2
=

n
∑

j=k

∣

∣〈Tuj, uk〉
∣

∣

2
for all k ∈ {1, . . . , n},

or, equivalently,

k
∑

j=1

∣

∣〈Tuk, uj〉
∣

∣

2
=

n
∑

j=k

∣

∣〈Tuj, uk〉
∣

∣

2
for all k ∈ {1, . . . , n}. (17)

The equality in (17) corresponding to k = 1 reads

∣

∣〈Tu1, u1〉
∣

∣

2
=
∣

∣〈Tu1, u1〉
∣

∣

2
+

n
∑

j=2

∣

∣〈Tuj, u1〉
∣

∣

2
,

which implies
〈Tuj , u1〉 = 0 for all j ∈ {2, . . . , n} (18)

In other words we have proved that the off-diagonal entries in the first row
of the upper triangular matrix M

B
B
(T ) in (14) are all zero.

Substituting the value 〈Tu2, u1〉 = 0 (from (18)) in the equality in (17)
corresponding to k = 2 reads we get

∣

∣〈Tu2, u2〉
∣

∣

2
=
∣

∣〈Tu2, u2〉
∣

∣

2
+

n
∑

j=3

∣

∣〈Tuj, u2〉
∣

∣

2
,

which implies
〈Tuj , u2〉 = 0 for all j ∈ {3, . . . , n} (19)

In other words we have proved that the off-diagonal entries in the second
row of the upper triangular matrix M

B
B
(T ) in (14) are all zero.

Repeating this reasoning n− 2 more times would prove that all the off-
diagonal entries of the upper triangular matrix M

B
B
(T ) in (14) are zero. That

is, MB
B
(T ) is a diagonal matrix.

To prove the converse, assume that there exists an orthonormal basis
B = {u1, . . . , un} of V which consists of eigenvectors of T . That is, for
some λj ∈ C,

Tuj = λjuj for all j ∈ {1, . . . , n},
Then, for arbitrary v ∈ V we have

Tv = T

(

n
∑

j=1

〈v, uj〉uj
)

=

n
∑

j=1

〈v, uj〉Tuj =
n
∑

j=1

λj〈v, uj〉uj . (20)
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Therefore, for arbitrary k ∈ {1, . . . , n} we have

〈Tv, uk〉 = λk〈v, uk〉. (21)

Now we calculate

T ∗Tv =
n
∑

j=1

〈T ∗Tv, uj〉uj

=

n
∑

j=1

〈Tv, Tuj〉uj

=
n
∑

j=1

〈Tv, Tuj〉uj

=

n
∑

j=1

λj〈Tv, uj〉uj

=

n
∑

j=1

λjλj〈v, uj〉uj .

Similarly,

TT ∗v = T

(

n
∑

j=1

〈T ∗v, uj〉uj
)

=
n
∑

j=1

〈v, Tuj〉Tuj

=

n
∑

j=1

〈v, λjuj〉λjuj

=

n
∑

j=1

λjλj〈v, uj〉uj .

Thus, we proved T ∗Tv = TT ∗v, that is, T is normal.

A different proof of the “only if” part of the spectral theorem for normal
operators follows. In this proof we use δij to represent the Kronecker delta
function; that is, δij = 1 if i = j and δij = 0 otherwise.
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Proof. Set n = dimV . We first prove “only if” part. Assume that T is
normal. Set

K =

{

k ∈ {1, . . . , n} :
∃w1, . . . , wk ∈ V and ∃λ1, . . . , λk ∈ C

such that 〈wi, wj〉 = δij and Twj = λjwj

for all i, j ∈ {1, . . . , k}

}

Clearly 1 ∈ K. Since K is finite, m = maxK exists. Clearly, m ≤ n.
Next we will prove that k ∈ K and k < n implies that k + 1 ∈ K.

Assume k ∈ K and k < n. Let w1, . . . , wk ∈ V and λ1, . . . , λk ∈ C be such
that 〈wi, wj〉 = δij and Twj = λjwj for all i, j ∈ {1, . . . , k}. Set

W = span{w1, . . . , wk}.

Since w1, . . . , wk are eigenvectors of T we have TW ⊆ W . By Lemma 5.5,
T ∗
(

W ⊥
)

⊆ W ⊥. Thus, T ∗|W ⊥ ∈ L
(

W ⊥
)

. Since dimW = k < n we
have dim

(

W ⊥
)

= n − k ≥ 1. Since W ⊥ is a complex vector space the
operator T ∗|W ⊥ has an eigenvalue µ with the corresponding unit eigenvector
u. Clearly, u ∈ W ⊥ and T ∗u = µu. Since T ∗ is normal, Corollary 6.6 yields
that Tu = µu. Since u ∈ W ⊥ and Tu = µu, setting wk+1 = u and λk+1 = µ
we have

〈wi, wj〉 = δij and Twj = λjwj for all i, j ∈ {1, . . . , k, k + 1}.

Thus k + 1 ∈ K. Consequently, k < m. Thus, for k ∈ K, we have proved
the implication

k < n ⇒ k < m.

The contrapositive of this implication is: For k ∈ K, we have

k ≥ m ⇒ k ≥ n.

In particular, for m ∈ K we have m = m implies m ≥ n. Since m ≤ n is also
true, this proves that m = n. That is, n ∈ K. This implies that there exist
u1, . . . , un ∈ V and λ1, . . . , λn ∈ C such that 〈ui, uj〉 = δij and Tuj = λjuj
for all i, j ∈ {1, . . . , n}.

Since u1, . . . , un are orthonormal, they are linearly independent. Since
n = dimV , it turns out that u1, . . . , un form a basis of V . This completes
the proof.
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8 Invariance under a normal operator

Theorem 8.1 (Theorem 7.18). Let V be a finite dimensional vector space

over C. Let 〈·, ·〉 be a positive definite inner product on V . Let T ∈ L (V )
be normal and let U be a subspace of V . Then

TU ⊆ U ⇔ TU
⊥ ⊆ U

⊥

(Recall that we have previously proved that for any T ∈ L (V ), TU ⊆
U ⇔ T ∗U ⊥ ⊆ U ⊥. Hence if T is normal, showing that any one of U or
U ⊥ is invariant under either T or T ∗ implies that the rest are, also.)

Proof. Assume TU ⊆ U . We know V = U ⊕ U ⊥. Let u1, . . . , um be
an orthonormal basis of U and um+1, . . . , un be an orthonormal basis of
U ⊥. Then u1, . . . , un is an orthonormal basis of V . If j ∈ {1, . . . ,m} then
uj ∈ U , so Tuj ∈ U . Hence

Tuj =

m
∑

k=1

〈Tuj , uk〉uk.

Also, clearly,

T ∗uj =
n
∑

k=1

〈T ∗uj, uk〉uk.

By normality of T we have ‖Tuj‖2 = ‖T ∗uj‖2 for all j ∈ {1, . . . ,m}. Start-
ing with this, we calculate

m
∑

j=1

‖Tuj‖2 =
m
∑

j=1

‖T ∗uj‖2

Pythag. thm. =

m
∑

j=1

n
∑

k=1

|〈T ∗uj, uk〉|2

group terms =
m
∑

j=1

m
∑

k=1

|〈T ∗uj, uk〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj, uk〉|2

def. of T ∗ =

m
∑

j=1

m
∑

k=1

|〈uj , Tuk〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj , uk〉|2

|α| = |α| =

m
∑

j=1

m
∑

k=1

|〈Tuk, uj〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj , uk〉|2
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order of sum. =

m
∑

k=1

m
∑

j=1

|〈Tuk, uj〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj , uk〉|2

Pythag. thm. =
m
∑

k=1

‖Tuk‖2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj, uk〉|2.

From the above equality we deduce that
∑m

j=1

∑n
k=m+1 |〈T ∗uj , uk〉|2 = 0. As

each term is nonnegative, we conclude that |〈T ∗uj , uk〉|2 = |〈uj , Tuk〉|2 = 0,
that is,

〈uj, Tuk〉 = 0 for all j ∈ {1, . . . ,m}, k ∈ {m+ 1, . . . , n}. (22)

Let now w ∈ U ⊥ be arbitrary. Then

Tw =

n
∑

j=1

〈

Tw, uj
〉

uj

=
n
∑

j=1

〈

n
∑

k=m+1

〈w, uk〉Tuk, uj
〉

uj

=

n
∑

j=1

n
∑

k=m+1

〈w, uk〉
〈

Tuk, uj
〉

uj

by (22) =
n
∑

j=m+1

n
∑

k=m+1

〈w, uk〉
〈

Tuk, uj
〉

uj

Hence Tw ∈ U ⊥, that is TU ⊥ ⊆ U ⊥.

A different proof follows. The proof below uses the property of polyno-
mials that for arbitrary distinct α1, . . . , αm ∈ C and arbitrary β1, . . . , βm ∈
C there exists a polynomial p(z) ∈ C[z]<m such that p(αj) = βj , j ∈
{1, . . . ,m}.

Proof. Assume T is normal. Then there exists an orthonormal basis {u1, . . . , un}
and {λ1, . . . , λn} ⊆ C such that

Tuj = λjuj for all j ∈ {1, . . . , n}.

Consequently,
T ∗uj = λjuj for all j ∈ {1, . . . , n}.
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Let v be arbitrary in V . Applying T and T ∗ to the expansion of v in the
basis vectors {u1, . . . , un} we obtain

Tv =
n
∑

j=1

λj〈v, uj〉uj

and

T ∗v =

n
∑

j=1

λj〈v, uj〉uj .

Let p(z) = a0 + a1z + · · ·+ amzm ∈ C[z] be such that

p(λj) = λj for all j ∈ {1, . . . , n}.

Clearly, for all j ∈ {1, . . . , n} we have

p(T )uj = p(λj)uj = λjuj = T ∗uj.

Therefore p(T ) = T ∗.
Now assume TU ⊆ U . Then T kU ⊆ U for all k ∈ N and also αTU ⊆

U for all α ∈ C. Hence p(T )U = T ∗U ⊆ U . The theorem follows from
Lemma 5.5.

Lastly we review the proof in the book. This proof is in essence very
similar to the first proof. It brings up a matrix representation of T for easier
visualization of what we are doing.

Proof. Assume TU ⊆ U . By Lemma 5.5 T ∗(U ⊥) ⊆ U ⊥.
Now V = U ⊕U ⊥. Let n = dim(V ). Let {u1, . . . , um} be an orthonor-

mal basis of U and {um+1, . . . , un} be an orthonormal basis of U ⊥. Then
B = {u1, . . . , un} is an orthonormal basis of V . Since Tuj ∈ U for all
j ∈ {1, . . . ,m} we have

M
B
B(T ) =





















Tu1 ··· Tum Tum+1 ··· Tun

u1 〈Tu1, um〉 · · · 〈Tum, u1〉
...

...
. . .

... B
um 〈Tu1, u1〉 · · · 〈Tum, um〉

um+1

... 0 C
un
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Here we added the basis vectors and their images around the matrix to
emphasize that a vector Tuk in the zeroth row is expended as a linear
combination of the vectors in the zeroth column with the coefficients given
in the k-th column of the matrix.

For j ∈ {1, . . . ,m} we have Tuj =
∑m

k=1〈Tuj, uk〉uk. By Pythagorean
Theorem ‖Tuj‖2 =

∑m
k=1 |〈Tuj , uk〉|2 and ‖T ∗uj‖2 =

∑n
k=1 |〈T ∗uj , uk〉|2.

Since T is normal,
∑m

j=1 ‖Tuj‖2 =
∑m

j=1 ‖T ∗uj‖2. Now we have

m
∑

j=1

m
∑

k=1

|〈Tuj , uk〉|2 =
m
∑

j=1

m
∑

k=1

|〈T ∗uj , uk〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj, uk〉|2

=
m
∑

j=1

m
∑

k=1

|〈Tuk, uj〉|2 +
m
∑

j=1

n
∑

k=m+1

|〈T ∗uj, uk〉|2.

Canceling the identical terms we get that the last double sum which consists
of the nonnegative terms is equal to 0. Hence |〈T ∗uj , uk〉|2 = |〈uj , Tuk〉|2
= |〈Tuk, uj〉|2, and thus, 〈Tuk, uj〉 = 0 for all j ∈ {1, . . . ,m} and for all k ∈
{m+1, . . . , n}. This proves that B = 0 in the above matrix representation.
Therefore, Tuk is orthogonal to U for all k ∈ {m+1, . . . , n}, which implies
T
(

U ⊥
)

⊆ U ⊥.

Theorem 8.1 and Lemma 5.5 yield the following corollary.

Corollary 8.2. Let V be a finite dimensional vector space over C. Let 〈·, ·〉
be a positive definite inner product on V . Let T ∈ L (V ) be normal and let

U be a subspace of V . The following statements are equivalent:

(a) TU ⊆ U .

(b) T
(

U ⊥
)

⊆ U ⊥.

(c) T ∗U ⊆ U .

(d) T ∗
(

U ⊥
)

⊆ U ⊥.

If any of the for above statements are true, then the following statements

are true

(e)
(

T
∣

∣

U

)∗
= T ∗

∣

∣

U
.

(f)
(

T
∣

∣

U⊥

)∗
= T ∗

∣

∣

U⊥.

(g) T
∣

∣

U
is a normal operator on U .

(h) T
∣

∣

U⊥ is a normal operator on U⊥.
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9 Polar Decomposition

There are two distinct subsets of C. Those are the set of nonnegative real
numbers, denoted by R≥0, and the set of complex numbers of modulus 1,
denoted by T. An important tool in complex analysis is the polar represen-
tation of a complex number: for every α ∈ C there exists r ∈ R≥0 and u ∈ T

such that α− r u.
In this section we will prove that an analogous statement holds for op-

erators in L (V ), where V is a finite dimensional vector space over C with
a positive definite inner product. The first step towards proving this anal-
ogous result is identifying operators in L (V ) which will play the role of
nonnegative real numbers and the role of complex numbers with modulus 1.
That is done in the following two definitions.

Definition 9.1. Let V be a finite dimensional vector space over C with a
positive definite inner product 〈 · , · 〉. An operator Q ∈ L (V ) is said to be
nonnegative if 〈Qv, v〉 ≥ 0 for all v ∈ V .

Note that Axler uses the term “positive” instead of nonnegative. We
think that nonnegative is more appropriate, since 0L (V ) is a nonnegative
operator. There is nothing positive about any zero, we think.

Proposition 9.2. Let V be a finite dimensional vector space over C with a

positive definite inner product 〈 · , · 〉 and let T ∈ L (V ). Then T is nonneg-

ative if and only if T is normal and all its eigenvalues are nonnegative.

Theorem 9.3. Let V be a finite dimensional vector space over C with a

positive definite inner product 〈 · , · 〉. Let Q ∈ L (V ) be a nonnegative opera-

tor and let u1, . . . , un be an orthonormal basis of V and let λ1, . . . , λn ∈ R≥0

be such that

Quj = λjuj for all j ∈ {1, . . . , n}. (23)

The following statements are equivalent.

(a) S ∈ L (V ) is a nonnegative operator and S2 = Q.

(b) For every λ ∈ R≥0 we have

nul(Q− λI) = nul(S −
√
λI).

(c) For every v ∈ V we have

Sv =

n
∑

j=1

√

λj〈v, uj〉uj .
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Proof. (a) ⇒ (b). We first prove that nulQ = nulS. Since Q = S2 we have
nulS ⊆ nulQ. Let v ∈ nulQ, that is, let Qv = S2v = 0. Then 〈S2v, v〉 = 0.
Since S is nonnegative it is self-adjoint. Therefore, 〈S2v, v〉 = 〈Sv, Sv〉 =
‖Sv‖2. Hence, ‖Sv‖ = 0, and thus Sv = 0. This proves that nulQ ⊆ nulS
and (b) is proved for λ = 0.

Let λ > 0. Then the operator S +
√
λI is invertible. To prove this, let

v ∈ V \ {0V } be arbitrary. Then ‖v‖ > 0 and therefore

〈

(S +
√
λI)v, v

〉

= 〈Sv, v〉 +
√
λ〈v, v〉 ≥

√
λ‖v‖2 > 0.

Thus, v 6= 0 implies (S+
√
λI)v 6= 0. This proves the injectivity of S+

√
λI.

To prove nul(Q−λI) = nul(S−
√
λI), let v ∈ V be arbitrary and notice

that (Q − λI)v = 0 if and only if
(

S2 −
√
λ
2
I
)

v = 0, which, in turn, is
equivalent to

(

S +
√
λI
)(

S −
√
λI
)

v = 0.

Since S+
√
λI is injective, the last equality is equivalent to

(

S−
√
λI
)

v = 0.
This completes the proof of (b).

(b)⇒ (c). Let u1, . . . , un be an orthonormal basis of V and let λ1, . . . , λn ∈
R≥0 be such that (23) holds. For arbitrary j ∈ {1, . . . , n} (23) yields
uj ∈ nul(Q− λjI). By (b), uj ∈ nul(S −

√

λjI). Thus

Suj =
√

λjuj for all j ∈ {1, . . . , n}. (24)

Let v =
∑n

j=1〈v, uj〉uj be arbitrary vector in V . Then, the linearity of S
and (24) imply the claim in (c).

The implication (c) ⇒ (a) is straightforward.

The implication (a) ⇒ (c) of Theorem 9.3 yields that for a given non-
negative Q a nonnegative S such that Q = S2 is uniquely determined. The
common notation for this unique S is

√
Q.

Definition 9.4. Let V be a finite dimensional vector space over C with a
positive definite inner product 〈 · , · 〉. An operator U ∈ L (V ) is said to be
unitary if U∗U = I.

Proposition 9.5. Let V be a finite dimensional vector space over C with

a positive definite inner product 〈 · , · 〉 and let T ∈ L (V ). The following

statements are equivalent.

(a) T is unitary.

(b) For all u, v ∈ V we have 〈Tu, Tv〉 = 〈u, v〉.
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(c) For all v ∈ V we have ‖Tv‖ = ‖v‖.
(d) T is normal and all its eigenvalues have modulus 1.

Theorem 9.6 (Polar Decomposition in L (V ), Theorem 7.41). Let V be a

finite dimensional vector space over C with a positive definite inner product

〈 · , · 〉. For every T ∈ L (V ) there exist a unitary operator U in L (V ) and
a unique nonnegative Q ∈ L (V ) such that T = UQ; U is unique if and only

if T is invertible.

Proof. First, notice that the operator T ∗T is nonnegative: for every v ∈ V

we have
〈T ∗Tv, v〉 = 〈Tv, Tv〉 = ||Tv||2 ≥ 0.

To prove the uniqueness of Q assume that T = UQ with U unitary and
Q nonnegative. Then Q∗ = Q, U∗ = U−1 and therefore, T ∗T = Q∗U∗UQ =
QU−1UQ = Q2. Since Q is nonnegative we have Q =

√
T ∗T .

Set Q =
√
T ∗T . By Theorem 9.3(b) we have nulQ = nul(T ∗T ). More-

over, we have nul(T ∗T ) = nulT . The inclusion nulT ⊆ nul(T ∗T ) is trivial.
For the converse inclusion notice that v ∈ nul(T ∗T ) implies T ∗Tv = 0, which
yields 〈T ∗Tv, v〉 = 0 and thus 〈Tv, Tv〉 = 0. Consequently, ‖Tv‖ = 0, that
is Tv = 0, yielding v ∈ nulT . So,

nulQ = nul(T ∗T ) = nulT (25)

is proved.
First assume that T is invertible. By (25) and ??, Q is invertible as

well. Therefore T = UQ is equivalent to U = TQ−1 in this case. Since
Q is unique, this proves the uniqueness of U . Set U = TQ−1. Since Q
is self-adjoint, Q−1 is also self-adjoint. Therefore U∗ = Q−1T ∗, yielding
U∗U = Q−1T ∗TQ−1 = Q−1Q2Q−1 = I. That is, U is unitary.

Now assume that T is not invertible. Since by (25) we have nulQ =
nulT , the Nullity-Rank Theorem implies that dim(ranQ) = dim(ranT ).
Notice that nulQ = (ranQ)⊥ since Q is self-adjoint. Since T is not invert-
ible, dim(ranQ) = dim(ranT ) < dimV , implying that

dim(nulQ) = dim
(

(ranQ)⊥
)

= dim
(

(ranT )⊥
)

> 0. (26)

We have two orthogonal decompositions of V :

V = (ranQ)⊕ (nulQ) = (ranT )⊕
(

(ranT )⊥
)

.

These two orthogonal decompositions are compatibile in the sense that the
corresponding components have same dimensions, that is

dim(ranQ) = dim(ranT ) and dim(nulQ) = dim
(

(ranT )⊥
)

.
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We will define U : V → V in two steps based on these two orthogonal
decompositions. First we define the action of U on ranQ, that is we define
the operator Ur : ranQ → ranT , then we define an operator Un : nulQ →
(ranT )⊥.

We define Ur : ranQ → ranT in the following way: Let u ∈ ranQ be
arbitrary and let x ∈ V be such that u = Qx. Then we set

Uru = Tx.

First we need to show that Ur is well defined. Let x1, x2 ∈ V be such that
u = Qx1 = Qx2. Then, x1 − x2 ∈ nulQ. Since nulQ = nulT , we thus have
x1 − x2 ∈ nulT . Consequently, Tx1 = Tx2, that is Ur is well defined.

Next we prove that Ur is angle-preserving. Let u1, u2 ∈ ranQ be arbi-
trary and let x1, x1 ∈ V be such that u1 = Qx1 and u2 = Qx2 and calculate

〈Uru1, Uru2〉 =
〈

Ur(Qx1), Ur(Qx2)
〉

by definition of Ur = 〈Tx1, Tx2〉

by definition of adjoint = 〈T ∗Tx1, x2〉
by definition of Q = 〈Q2x1, x2〉

since Q is self-adjoint = 〈Qx1, Qx2〉
by definition of x1, x2 = 〈u1, u2〉

Thus Ur : ranQ → ranT is angle-preserving.
Next we define an angle-preserving operator

Un : nulQ → (ranT )⊥.

By (26), we can set

m = dim(nulQ) = dim
(

(ranT )⊥
)

> 0.

Let e1, . . . , em be an orthonormal basis on nulQ and let f1, . . . , fm be an
orthonormal basis on (ranT )⊥. For arbitrary w ∈ nulQ define

Unw = Un

( m
∑

j=1

〈w, ej〉ej
)

:=

m
∑

j=1

〈w, ej〉fj.

Then, for w1, w2 ∈ nulQ we have

〈Unw1, Unw2〉 =
〈 m
∑

i=1

〈w1, ei〉fi,
m
∑

j=1

〈w2, ej〉fj
〉
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=

m
∑

j=1

〈w1, ej〉〈w2, ej〉

= 〈w1, w2〉.

Hence Un is angle-preserving on (ranQ)⊥.
Since the orthomormal bases in the definition of Un were arbitrary and

since m > 0, the operator Un is not unique.
Finally we define U : V → V as a direct sum of Ur and Un. Recall that

V = (ranQ)⊕ (nulQ).

Let v ∈ V be arbitrary. Then there exist unique u ∈ (ranQ) and w ∈ (nulQ)
such that v = u+ w. Set

Uv = Uru+ Unw.

We claim that U is angle-preserving. Let v1, v2 ∈ V be arbitrary and let
vi = ui +wi with ui ∈ (ranQ) and wi ∈ (nulQ) with i ∈ {1, 2}. Notice that

〈v1, v2〉 = 〈u1 + w1, u2 + w2〉 = 〈u1, u2〉+ 〈w1, w2〉, (27)

since u1, u2 are orthogonal to w1, w2. Similarly

〈Uru1 + Unw1, Uru2 + Unw2〉 = 〈Uru1, Uru2〉+ 〈Unw1, Unw2〉, (28)

since Uru1, Uru2 ∈ (ranT ) and Unw1, Unw2 ∈ (ranT )⊥. Now we calculate,
starting with the definition of U ,

〈Uv1, Uv2〉 = 〈Uru1 + Unw1, Uru2 + Unw2〉
by (28) = 〈Uru1, Uru2〉+ 〈Unw1, Unw2〉

Ur and Un are angle-preserving = 〈u1, u2〉+ 〈w1, w2〉

by (27) = 〈v1, v2〉.

Hence U is angle-preserving and by Proposition 9.5 we have that U is uni-
tary.

Finally we show that T = UQ. Let v ∈ V be arbitrary. Then Qv ∈
ranQ. By definitions of U and Ur we have

UQv = UrQv = Tv.

Thus T = UQ, where U is unitary and Q is nonnegative.
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Theorem 9.7 (Singular-Value Decomposition, Theorem 7.46). Let V be a

finite dimensional vector space over C with a positive definite inner prod-

uct 〈 · , · 〉 and let T ∈ L (V ). Then there exist orthonormal bases B =
{u1, . . . , un} and C = {w1, . . . , wn} and nonnegative scalars σ1, . . . , σn such

that for every v ∈ V we have

Tv =
n
∑

j=1

σj〈v, uj〉wj . (29)

In other words, there exist orthonormal bases B and C such that the matrix

M
B

C
(T ) is diagonal with nonnegative entries on the diagonal.

Proof. Let T = UQ be a polar decomposition of T , that is let U be unitary
and Q =

√
T ∗T . Since Q is nonnegative, it is normal with nonnegative

eigenvalues. By the spectral theorem, there exists an orthonormal basis
{u1, . . . , un} of V and nonnegative scalars σ1, . . . , σn such that

Quj = σjuj for all j ∈ {1, . . . , n}. (30)

Since {u1, . . . , un} is an orthonormal basis, for arbitrary v ∈ V we have

v =
n
∑

j=1

〈v, uj〉uj . (31)

Applying Q to (31), using its linearity and (30) we get

Qv =

n
∑

j=1

σj〈v, uj〉uj . (32)

Applying U to (32) and using its linearity we get

UQv =
n
∑

j=1

σj〈v, uj〉Uuj . (33)

Set wj = Uuj, j ∈ {1, . . . , n}. This definition and the fact that U is angle-
preserving yield

〈wi, wj〉 = 〈Uui, Uuj〉 = 〈ui, uj〉 = δij .

Thus {w1, . . . , wn} is an orthonormal basis. Substituting wj = Uuj in (33)
and using T = UQ we get (29).

The values σ1, . . . , σn from Theorem 9.7, which are in fact the eigenvalues
of

√
T ∗T , are called singular values of T .
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