Jordan normal form

Branko Ćurgus

March 13, 2020 at 00:41

Throughout this note \mathscr{V} is a nontrivial finite dimensional vector space over \mathbb{C}. We set $n=\operatorname{dim} \mathscr{V}$. The symbol \mathbb{N} denotes the set of positive integers and $i, j, k, l, m, n, p, q, r \in \mathbb{N}$. For $T \in \mathscr{L}(\mathscr{V})$ by $\operatorname{nul}(T)$ we denote the null-space and by $\operatorname{ran}(T)$ the range of T.

1 Nilpotent operators

An operator $N \in \mathscr{L}(\mathscr{V})$ is nilpotent if there exists $q \in \mathbb{N}$ such that $N^{q}=0$. If $N^{q}=0$ and $N^{q-1} \neq 0$, then q is called the degree of nilpotency of N.

Theorem 1.1. Let \mathscr{V} be a nontrivial finite dimensional vector space over \mathbb{C} with $n=\operatorname{dim} \mathscr{V}$. Let $N \in \mathscr{L}(\mathscr{V})$ be a nilpotent operator such that $m=\operatorname{dim} \operatorname{nul}(N)$. Then there exist vectors $v_{1}, \ldots, v_{m} \in \mathscr{V}$ and positive integers q_{1}, \ldots, q_{m} such that the vectors

$$
N^{q_{k}-1} v_{k}, \quad k \in\{1, \ldots, m\},
$$

form a basis of $\operatorname{nul}(N)$ and the vectors

$$
N^{q_{k}-1} v_{k}, N^{q_{k}-2} v_{k}, \ldots, N^{2} v_{k}, N v_{k}, v_{k}, \quad k \in\{1, \ldots, m\},
$$

form a basis of \mathscr{V}.
Proof. The proof is by induction on the dimension n. Since in one-dimensional vector space each linear operator is a multiplication by a fixed scalar, the only nilpotent operator for $n=1$ is the zero operator. So the statement is trivially true for $n=1$.

Let $n \in \mathbb{N}$ be such that $n>1$ and assume that the statement is true for any vector space of dimension less than n. It is always a good idea to be specific and state what is being assumed. Let $n \in \mathbb{N}$ be such that $n>1$. The following implication is our inductive hypothesis:

If \mathscr{W} is a vector space over \mathbb{C} such that $\operatorname{dim} \mathscr{W}<n$ and if $M \in \mathscr{L}(\mathscr{W})$ is a nilpotent operator such that $l=\operatorname{dim} \operatorname{nul}(M)$, then there exist $w_{1}, \ldots, w_{l} \in \mathscr{W}$ and positive integers p_{1}, \ldots, p_{l} such that the vectors

$$
M^{p_{j}-1} w_{j}, \quad j \in\{1, \ldots, l\},
$$

form a basis of $\operatorname{nul}(M)$ and the vectors

$$
M^{p_{j}-1} w_{j}, \ldots, M w_{j}, w_{j}, \quad j \in\{1, \ldots, l\}
$$

form a basis of \mathscr{W}.
Next we present a proof of the inductive step.
Let \mathscr{V} be a nontrivial finite dimensional vector space over \mathbb{C} with $\operatorname{dim} \mathscr{V}=n$. Let $N \in \mathscr{L}(\mathscr{V})$ be a nilpotent operator.

First notice that if $N=0$, then $\operatorname{nul}(N)=\mathscr{V}$ and the claim is trivially true. In this case $m=n$ and any basis v_{1}, \ldots, v_{n} of \mathscr{V} with positive integers $q_{1}=\cdots=q_{n}=1$ satisfies the requirement of the theorem. From now on we assume that $N \neq 0$.

Set $m=\operatorname{dim} \operatorname{nul}(N)$ and $\mathscr{W}=\operatorname{ran}(N)$. Since all powers of an invertible operator are invertible and a power of N is $0, N$ it is not invertible. Thus $m=\operatorname{dim} \operatorname{nul}(N) \geq 1$. By the famous "nullity-rank" theorem $\operatorname{dim} \mathscr{W}<n$. Since $N \neq 0, \operatorname{dim} \mathscr{W}>0$. It is clear that \mathscr{W} is invariant under N. Set M to be the restriction of N onto \mathscr{W}. Then $M \in \mathscr{L}(\mathscr{W})$. Since N is nilpotent, M is nilpotent as well. Clearly, $\operatorname{nul}(M)=\operatorname{nul}(N) \cap \operatorname{ran}(N)$. Set $l=\operatorname{dim} \operatorname{nul}(M)$. The vector space \mathscr{W} and the operator M satisfy all the assumptions of the inductive hypothesis. This allows us to deduce that there exist $w_{1}, \ldots, w_{l} \in \mathscr{W}$ and positive integers p_{1}, \ldots, p_{l} such that the vectors

$$
\begin{equation*}
M^{p_{j}-1} w_{j}, \quad j \in\{1, \ldots, l\} \tag{1}
\end{equation*}
$$

form a basis of $\operatorname{nul}(M)=\operatorname{nul}(N) \cap \operatorname{ran}(N)$ and the vectors

$$
\begin{equation*}
M^{p_{j}-1} w_{j}, \ldots, M w_{j}, w_{j}, \quad j \in\{1, \ldots, l\}, \tag{2}
\end{equation*}
$$

form a basis of $\mathscr{W}=\operatorname{ran}(N)$. Since $w_{j} \in \operatorname{ran}(N)$, there exist $v_{j} \in \mathscr{V}$ such that $w_{j}=N v_{j}$ for all $j \in\{1, \ldots, l\}$. We know from (1) that the vectors

$$
M^{p_{1}-1} w_{j}=N^{p_{j}} v_{j}, \quad j \in\{1 \ldots, l\}
$$

form a basis of $\operatorname{nul}(M)=\operatorname{nul}(N) \cap \operatorname{ran}(N)$. Recall that $m=\operatorname{dim} \operatorname{nul}(N)$ and $l \leq m$. Let v_{l+1}, \ldots, v_{m} be such that

$$
\begin{equation*}
N^{p_{1}} v_{1}, \ldots, N^{p_{l}} v_{l}, v_{l+1}, \ldots, v_{m}, \tag{3}
\end{equation*}
$$

form a basis of $\operatorname{nul}(N)$. (It is possible that $l=m$. In this case we already have a basis of $\operatorname{nul}(N)$ and the last step can be skipped.)

Now let us review the stage: We started with the basis

$$
M^{p_{j}-1} w_{j}=N^{p_{j}} v_{j}, \ldots, M w_{j}=N^{2} v_{j}, w_{j}=N v_{j}, \quad j \in\{1, \ldots, l\},
$$

of $\mathscr{W}=\operatorname{ran}(N)$ with $\operatorname{dim} \operatorname{ran}(N)$ vectors. To this basis we added the vectors v_{1}, \ldots, v_{m} where $m=\operatorname{dim} \operatorname{nul}(N)$. Now we have

$$
\begin{equation*}
m+\operatorname{dim} \operatorname{ran}(N)=\operatorname{dim} \operatorname{nul}(N)+\operatorname{dim} \operatorname{ran}(N)=\operatorname{dim} \mathscr{V}=n \tag{4}
\end{equation*}
$$

vectors:

$$
\begin{equation*}
N^{p_{j}} v_{j}, N v_{j}, \ldots, N^{2} v_{j}, v_{j}, \quad j \in\{1, \ldots, l\}, \quad v_{l+1}, \ldots, v_{m} . \tag{5}
\end{equation*}
$$

For easier writing set

$$
q_{k}=\left\{\begin{array}{lll}
p_{k}+1 & \text { if } \quad k \in\{1, \ldots, l\} \\
1 & \text { if } \quad k \in\{l+1, \ldots, m\}
\end{array}\right.
$$

Then (5) can be rewritten as

$$
\begin{equation*}
N^{q_{k}-1} v_{k}, N v_{k}, \ldots, N^{2} v_{k}, v_{k}, \quad k \in\{1, \ldots, m\} . \tag{6}
\end{equation*}
$$

Next we will prove that the vectors in (6) are linearly independent. Let $\alpha_{k, j} \in \mathbb{C}, j \in$ $\left\{0, \ldots, q_{k}-1\right\}, k \in\{1, \ldots, m\}$ be such that

$$
\begin{equation*}
\sum_{k=1}^{m} \sum_{j=0}^{q_{k}-1} \alpha_{k, j} N^{j} v_{k}=0 \tag{7}
\end{equation*}
$$

Applying N to the last equality yields

$$
\sum_{k=1}^{l} \sum_{j=0}^{q_{k}-2} \alpha_{k, j} N^{j+1} v_{k}=\sum_{k=1}^{l} \sum_{j=0}^{p_{k}-1} \alpha_{k, j} M^{j} w_{k}=0
$$

Since the vectors in the last double sum are exactly the vectors from (2) which are linearly independent, we conclude that

$$
\alpha_{k, 0}=\cdots=\alpha_{k, q_{k}-2}=0 \quad \text { for all } \quad k \in\{1, \ldots, l\} .
$$

Substituting these values in (7) we get

$$
\sum_{k=1}^{m} \alpha_{k, q_{k}-1} N^{q_{k}-1} v_{k}=0
$$

But, beautifully, the vectors in the last sum are exactly the vectors in (3) which are linearly independent. Thus

$$
\alpha_{k, q_{k}-1}=0 \quad \text { for all } k \in\{1, \ldots, m\} .
$$

This completes the proof that all the coefficients in (7) must be zero. Thus, the vectors in (6) are linearly independent. Since by (4) there are exactly n vectors in (6) these vectors do form a basis of \mathscr{V}. This completes the proof.

2 A Decomposition of a Vector Space

Lemma 2.1. Let \mathscr{V} be a vector space over \mathbb{F}. Let A and B be commuting linear operators on \mathscr{V}. Then $\operatorname{nul}(B)$ and $\operatorname{ran}(B)$ are invariant subspaces for A.

Proof. This is a very simple exercise.
Proposition 2.2. Let \mathscr{V} be a vector space over \mathbb{F}. Let $T \in \mathscr{L}(\mathscr{V})$. If λ and μ are distinct eigenvalues of T and j and k are positive integers, then

$$
\operatorname{nul}\left((T-\lambda I)^{j}\right) \bigcap \operatorname{nul}\left((T-\mu I)^{k}\right)=\left\{0_{\mathscr{V}}\right\} .
$$

Proof. The set equality in the proposition is equivalent to the implication

$$
v \in \operatorname{nul}\left((T-\mu I)^{k}\right) \backslash\left\{0_{\mathscr{Y}}\right\} \quad \Rightarrow \quad v \notin \operatorname{nul}\left((T-\lambda I)^{j}\right)
$$

We will prove this implication. Let $v \in \mathscr{V}$ be such that $(T-\mu I)^{k} v=0_{\mathscr{V}}$ and $v \neq 0_{\mathscr{V}}$. Let $i \in\{1, \ldots, k\}$ be such that $(T-\mu I)^{i} v=0_{\mathscr{V}}$ and $(T-\mu I)^{i-1} v \neq 0_{\mathscr{V}}$. Set $w=(T-\mu I)^{i-1} v$. Then w is an eigenvector of T corresponding to μ, that is $T w=\mu w$ and $w \neq 0$. Then (as we must have proven before), for an arbitrary polynomial $p \in \mathbb{C}[z]$ we have $p(T) w=p(\mu) w$. In particular

$$
(T-\lambda I)^{l} w=(\mu-\lambda)^{l} w \quad \text { for all } \quad l \in \mathbb{N} .
$$

Since $\mu-\lambda \neq 0$ and $w \neq 0_{\mathscr{V}}$ we have that

$$
(T-\lambda I)^{l} w \neq 0_{\mathscr{V}} \quad \text { for all } \quad l \in \mathbb{N}
$$

Consequently,

$$
(T-\lambda I)^{l}(T-\mu I)^{i-1} v \neq 0_{\mathscr{V}} \quad \text { for all } \quad l \in \mathbb{N} .
$$

Since the operators $(T-\lambda I)^{l}$ and $(T-\mu I)^{i-1}$ commute we have

$$
(T-\mu I)^{i-1}(T-\lambda I)^{l} v \neq 0_{\mathscr{V}} \quad \text { for all } \quad l \in \mathbb{N} .
$$

Therefore $(T-\lambda I)^{l} v \neq 0_{\mathscr{V}}$ for all $l \in \mathbb{N}$. Hence $v \notin \operatorname{nul}\left((T-\lambda I)^{j}\right)$. This proves the proposition.

Corollary 2.3. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F}. Let $T \in \mathscr{L}(\mathscr{V})$. If λ and μ are distinct eigenvalues of T and j and k are positive integers, then

$$
\operatorname{nul}\left((T-\lambda I)^{j}\right) \subseteq \operatorname{ran}\left((T-\mu I)^{k}\right)
$$

Proof. Since the operators $(T-\lambda I)^{j}$ and $(T-\mu I)^{k}$ commute, by Lemma 2.1, nul $\left((T-\lambda I)^{j}\right)$ is invariant under $(T-\mu I)^{k}$. Denote by S the restriction of $(T-\mu I)^{k}$ onto nul $\left((T-\lambda I)^{j}\right)$. Since clearly,

$$
\operatorname{nul}(S)=\operatorname{nul}\left((T-\lambda I)^{j}\right) \cap \operatorname{nul}\left((T-\mu I)^{k}\right)
$$

Proposition 2.2 implies that S is an injection, and thus bijection. Hence,

$$
S\left(\operatorname{nul}\left((T-\lambda I)^{j}\right)\right)=\operatorname{nul}\left((T-\lambda I)^{j}\right)
$$

and consequently

$$
\operatorname{nul}\left((T-\lambda I)^{j}\right)=(T-\mu I)^{k}\left(\operatorname{nul}\left((T-\lambda I)^{j}\right)\right) \subseteq \operatorname{ran}\left((T-\mu I)^{k}\right)
$$

Lemma 2.4. Let \mathscr{V} be a vector space over \mathbb{F}. Let \mathscr{U} and \mathscr{W} be subspaces of \mathscr{V} such that

$$
\mathscr{V}=\mathscr{U} \oplus \mathscr{W} .
$$

Let $S \in \mathscr{L}(\mathscr{V})$ be such that $S \mathscr{U} \subseteq \mathscr{U}$ and $S \mathscr{W} \subseteq \mathscr{W}$. If $\operatorname{nul}(S) \cap \mathscr{W}=\{0\}$, then

$$
\begin{equation*}
\operatorname{nul}\left(\left(\left.S\right|_{\mathscr{U}}\right)^{j}\right)=\operatorname{nul}\left(S^{j}\right) \quad \text { for all } \quad j \in \mathbb{N} . \tag{8}
\end{equation*}
$$

Proof. Assume $\operatorname{nul}(S) \cap \mathscr{W}=\{0\}$. We first prove the equality for $j=1$. Since $\operatorname{nul}\left(\left.S\right|_{\mathscr{U}}\right)=$ $\operatorname{nul}(S) \cap \mathscr{U}$, the inclusion $\operatorname{nul}\left(\left.S\right|_{\mathscr{U}}\right) \subseteq \operatorname{nul}(S)$ is clear. Let $v \in \operatorname{nul}(S)$ be arbitrary. Then $v=u+w$ with $u \in \mathscr{U}$ and $w \in \mathscr{W}$. Applying S to this identity we get $0=S v=S u+S w$. Since $S u \in \mathscr{U}$ and $S w \in \mathscr{W}$, the assumption that the sum of \mathscr{U} and \mathscr{W} is direct yields $S w=0$. Since $\operatorname{nul}(S) \cap \mathscr{W}=\{0\}$, we have $w=0$. Thus, $v \in \mathscr{U}$, and hence $v \in \operatorname{nul}\left(\left.S\right|_{\mathscr{U}}\right)$.

To prove (8) for arbitrary $j \in \mathbb{N}$ we will first prove that

$$
\begin{equation*}
\operatorname{nul}\left(S^{j}\right) \cap \mathscr{W}=\{0\} \quad \text { for all } \quad j \in \mathbb{N} . \tag{9}
\end{equation*}
$$

A simple proof proceeds by mathematical induction. The statement in (9) is true for $j=1$. Let $j \in \mathbb{N}$ and assume that the statement in (9) is true for j. Now assume that $w \in \mathscr{W}$ and $S^{j+1} w=0$. Then $S w \in \mathscr{W}$ and $S^{j}(S w)=0$. By the inductive hypothesis, that is $\operatorname{nul}\left(S^{j}\right) \cap \mathscr{W}=\{0\}$ we conclude $S w=0$. Since $\operatorname{nul}(S) \cap \mathscr{W}=\{0\}$, we deduce that $w=0$.

Having (9), we can apply the equality proved in the first part of the proof to the operator S^{j}.

Corollary 2.5. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F}. Let \mathscr{U} and \mathscr{W} be subspaces of \mathscr{V} such that

$$
\mathscr{V}=\mathscr{U} \oplus \mathscr{W} .
$$

Let $T \in \mathscr{L}(V)$ be such that $T \mathscr{U} \subseteq \mathscr{U}$ and $T \mathscr{W} \subseteq \mathscr{W}$. Then

$$
\begin{equation*}
\sigma\left(\left.T\right|_{\mathscr{U}}\right) \cup \sigma\left(\left.T\right|_{\mathscr{W}}\right)=\sigma(T) . \tag{10}
\end{equation*}
$$

If $\lambda \in \sigma(T)$ and $\lambda \notin \sigma\left(\left.T\right|_{\mathscr{W}}\right)$, then $\lambda \in \sigma\left(\left.T\right|_{\mathscr{U}}\right)$ and

$$
\begin{equation*}
\operatorname{nul}\left(\left(\left.T\right|_{\mathscr{U}}-\lambda I\right)^{j}\right)=\operatorname{nul}\left((T-\lambda I)^{j}\right) \quad \text { for all } \quad j \in \mathbb{N} \text {. } \tag{11}
\end{equation*}
$$

Proof. The inclusion \subseteq in (10) is clear. To prove \supseteq, let $\lambda \in \sigma(T)$ and let $v \neq 0$ be such that $T v=\lambda v$. Let $v=u+w$, with $u \in \mathscr{U}$ and $w \in \mathscr{W}$. Since $v \neq 0$ we have $u \neq 0$ or $w \neq 0$. Applying T to both sides of $v=u+w$ and using the fact that v is an eigenvalue corresponding to λ we get $T u+T w=T v=\lambda v=\lambda u+\lambda w$. Consequently, $(T u-\lambda u)+(T w-\lambda w)=0$. Since the sum $\mathscr{V}=\mathscr{U} \oplus \mathscr{W}$ is direct and $T u-\lambda u \in \mathscr{U}$ and $T w-\lambda w \in \mathscr{W}$ we conclude $T w-\lambda w=0$ and $T u-\lambda u=0$. Since $u \neq 0$ or $w \neq 0$, we have $\lambda \in \sigma\left(\left.T\right|_{\mathscr{U}}\right)$ or $\lambda \in \sigma\left(\left.T\right|_{\mathscr{W}}\right)$.

Assume $\lambda \in \sigma(T)$ and $\lambda \notin \sigma\left(\left.T\right|_{\mathscr{W}}\right)$. Then $\operatorname{nul}(T-\lambda I) \cap \mathscr{W}=\{0\}$. Lemma 2.4 applies to the operator $T-\lambda I$ and yields (11). Since $\lambda \in \sigma(T), \operatorname{nul}(T-\lambda I) \neq\{0\}$. Now (11) with $j=1$ yields $\lambda \in \sigma\left(\left.T\right|_{\mathscr{U}}\right)$.

Theorem 2.6. Let \mathscr{V} be a finite dimensional vector space over $\mathbb{C}, n=\operatorname{dim} \mathscr{V}$ and let $T \in \mathscr{L}(\mathscr{V})$. Let $\lambda_{1}, \ldots, \lambda_{k}$, be all the distinct eigenvalues of T. Set

$$
\mathscr{W}_{j}=\operatorname{nul}\left(\left(T-\lambda_{j} I\right)^{n}\right) \quad \text { and } \quad n_{j}=\operatorname{dim} \mathscr{W}_{j}, \quad j \in\{1, \ldots, k\} .
$$

Then
(a) Each of the subspaces $\mathscr{W}_{1}, \ldots, \mathscr{W}_{k}$, is invariant under T.
(b) $\mathscr{V}=\mathscr{W}_{1} \oplus \cdots \oplus \mathscr{W}_{k}$.
(c) Set $T_{j}=\left.T\right|_{W_{j}}$ and $N_{j}=T_{j}-\lambda_{j} I, j \in\{1, \ldots, k\}$. Then $N_{j}^{n_{j}}=0$, that is, N_{j} is a nilpotent operator on \mathscr{W}_{j}.

Proof. (a) Since T commutes with each of the operators $\left(T-\lambda_{j} I\right)^{d}, j \in\{1, \ldots, k\}$ Lemma 2.1 implies that each subspace $\mathscr{W}_{1}, \ldots, \mathscr{W}_{k}$, is an invariant subspace of T.

To prove (b) we proceed by mathematical induction on the number k of distinct eigenvalues of T. We first prove the base step. Assume that λ is the only eigenvalue of T. Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of \mathscr{V} such that the matrix $\mathbf{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper triangular. Then, as we proved earlier all the diagonal entries of $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ equal to λ. From the definition of $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ it follows that

$$
(T-\lambda I)\left(\operatorname{span}\left\{v_{1}, \ldots, v_{j}\right\}\right) \subseteq\left(\operatorname{span}\left\{v_{1}, \ldots, v_{j}-1\right\}\right) \quad \text { for all } \quad j \in\{2, \ldots, n\} .
$$

Therefore

$$
\begin{aligned}
(T-\lambda I)^{n}(\mathscr{V}) & =(T-\lambda I)^{n-1}(T-\lambda I)\left(\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}\right) \\
& \subseteq(T-\lambda I)^{n-1}\left(\operatorname{span}\left\{v_{1}, \ldots, v_{n-1}\right\}\right) \\
& \vdots \\
& \subseteq(T-\lambda I)(T-\lambda I)\left(\operatorname{span}\left\{v_{1}, v_{2}\right\}\right) \\
& \subseteq(T-\lambda I)\left(\operatorname{span}\left\{v_{1}\right\}\right) \\
& =\left\{0_{\mathscr{V}}\right\} .
\end{aligned}
$$

Thus $\mathscr{V}=\operatorname{nul}\left((T-\lambda I)^{n}\right)$. This completes the proof of the base case.
Now we prove the inductive step. Let $k \in \mathbb{N}$ and assume that the statement is true for an operator with k distinct eigenvalues. Let T be an operator with $k+1$ distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}, \lambda_{k+1}$. For convenience we set $\lambda_{k+1}=\lambda$. Then, by assumption $\lambda \neq \lambda_{j}$ for all $j \in\{1, \ldots, k\}$. We set

$$
\mathscr{U}=\operatorname{ran}\left((T-\lambda I)^{n}\right) \quad \text { and } \quad \mathscr{W}=\operatorname{nul}\left((T-\lambda I)^{n}\right) .
$$

Since T and $(T-\lambda I)^{n}$ commute, Lemma 2.1 implies that both \mathscr{U} and \mathscr{W} are invariant under T.

Next we prove that

$$
\begin{equation*}
\operatorname{ran}\left((T-\lambda I)^{n}\right) \cap \operatorname{nul}\left((T-\lambda I)^{n}\right)=\mathscr{U} \cap \mathscr{W}=\{0\} . \tag{12}
\end{equation*}
$$

(Prove this as an exercise.)
By the Nullity-Rank theorem

$$
\begin{equation*}
\mathscr{V}=\mathscr{U} \oplus \mathscr{W} . \tag{13}
\end{equation*}
$$

(Provide details as an exercise.)
By Corollary 2.3

$$
\begin{equation*}
\operatorname{nul}\left(\left(T-\lambda_{j} I\right)^{n}\right) \subseteq \mathscr{U} \quad \text { for all } \quad j \in\{1, \ldots, k\} \tag{14}
\end{equation*}
$$

Let $m=\operatorname{dim} \mathscr{U}$. Denote by S the restriction of T onto \mathscr{U}. The inclusion in (14) implies that $\lambda_{1}, \ldots, \lambda_{k}$ are eigenvalues of S. Similarly, (12) implies that λ is not an eigenvalue of S. Now Corollary 2.5 yields

$$
\sigma(S)=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} .
$$

The second claim of Corollary 2.5 implies

$$
\operatorname{nul}\left(\left(T-\lambda_{j} I\right)^{n}\right)=\operatorname{nul}\left(\left(S-\lambda_{j} I\right)^{n}\right)
$$

Since $n>m=\operatorname{dim} \mathscr{U}$ we have

$$
\operatorname{nul}\left(\left(S-\lambda_{j} I\right)^{m}\right)=\operatorname{nul}\left(\left(S-\lambda_{j} I\right)^{m+1}\right)=\cdots=\operatorname{nul}\left(\left(S-\lambda_{j} I\right)^{n}\right)
$$

Therefore,

$$
\begin{equation*}
\operatorname{nul}\left(\left(T-\lambda_{j} I\right)^{n}\right)=\operatorname{nul}\left(\left(S-\lambda_{j} I\right)^{m}\right) . \tag{15}
\end{equation*}
$$

The inductive hypothesis applies to S. Therefore

$$
\begin{equation*}
\mathscr{U}=\operatorname{ran}\left((T-\lambda I)^{n}\right)=\bigoplus_{j=1}^{k} \operatorname{nul}\left(\left(S-\lambda_{j} I\right)^{m}\right) . \tag{16}
\end{equation*}
$$

Now (16), (15), and (13) yield

$$
\mathscr{V}=\bigoplus_{j=1}^{k+1} \operatorname{nul}\left(\left(T-\lambda_{j} I\right)^{n}\right)
$$

Now we prove (c). Lemma 2.1 implies that \mathscr{W}_{j} is an invariant subspace of $T-\lambda_{j} I$. Denote by N_{j} the restriction of $T-\lambda_{j} I$ to its invariant subspace \mathscr{W}_{j} and by T_{j} the restriction of T to \mathscr{W}_{j}. Then, $T_{j}=\lambda_{j} I+N_{j}$ and the operator N_{j} is nilpotent.

Definition 2.7. Let $k \in\{1, \ldots, n\}$ be such that $\lambda_{1}, \ldots, \lambda_{k}$ are all the distinct eigenvalues of T. Set

$$
n_{j}=\operatorname{dim} \operatorname{nul}\left(\left(T-\lambda_{j}\right)^{n}\right), \quad j \in\{1, \ldots, k\} .
$$

The number n_{j} is called the algebraic multiplicity of the eigenvalue λ_{j}. The polynomial

$$
\begin{equation*}
p(z)=\left(z-\lambda_{1}\right)^{n_{1}} \cdots\left(z-\lambda_{k}\right)^{n_{k}} \tag{17}
\end{equation*}
$$

is called the characteristic polynomial of T.

3 The Jordan Normal Form

Let T be an operator on a vector space \mathscr{V} over \mathbb{C}. Let λ be an eigenvalue of T and let v be such that $(T-\lambda I)^{l} v=0_{\mathscr{V}}$ and $(T-\lambda I)^{l-1} v \neq 0_{\mathscr{V}}$. Then the system of vectors

$$
\begin{equation*}
(T-\lambda I)^{l-1} v,(T-\lambda I)^{l-2} v, \ldots,(T-\lambda I) v, v \tag{18}
\end{equation*}
$$

is called a Jordan chain of T corresponding to the eigenvalue λ. The vectors in (18) are called generalized eigenvectors (or root vectors) corresponding to the eigenvalue λ.

Let \mathscr{W} be a subspace of \mathscr{V} generated by a Jordan chain

$$
v_{j}=(T-\lambda I)^{l-j} v, \quad j \in\{1, \ldots, l\},
$$

of T. Note that the vector $v_{1}=(T-\lambda I)^{l-1} v$ is an eigenvector of T corresponding to the eigenvalue λ. Therefore $T v_{1}=\lambda v_{1}$. We also have

$$
T v_{j}=(T-\lambda I) v_{j}+\lambda v_{j}=v_{j-1}+\lambda v_{j}, \quad j \in\{1, \ldots, l\} .
$$

It follows that \mathscr{W} is an invariant subspace of T. If we denote by A the restriction of T to \mathscr{W}, then the matrix representation of A with respect to the basis $\left\{v_{1}, \ldots, v_{l}\right\}$ is

$$
\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \tag{19}\\
0 & \lambda & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right] .
$$

A matrix of this form is called a Jordan block corresponding to the eigenvalue λ. In words: a Jordan block corresponding to the eigenvalue λ is a square matrix with all elements on the main diagonal equal to λ and all elements on the superdiagonal equal to 1 .

A basis for \mathscr{V} which consists of Jordan chains of T is called a Jordan basis for \mathscr{V} with respect to T.

If a basis \mathscr{B} for \mathscr{V} is a Jordan basis with respect to T then the matrix $\mathbf{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ has Jordan blocks of different sizes on the diagonal and all other elements of $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ are zeros. Each eigenvalue of T is represented in $\mathbf{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ by one or more Jordan blocks;

In the above matrix λ_{1} and λ_{2} are not necessarily distinct eigenvalues. A matrix of the form (20) is called the Jordan normal form for T. More precisely, a square matrix $\mathrm{M}=\left[a_{j, k}\right]$ is a Jordan normal form for T if:
(i) all elements of M outside of the main diagonal and the superdiagonal are 0 ,
(ii) all elements on the main diagonal of M are eigenvalues of T,
(iii) all elements on the superdiagonal of M are either 1 or 0 , and,
(iv) if $a_{j-1, j-1} \neq a_{j, j}$, with $j \in\{2, \ldots, n\}$, then $a_{j-1, j}=0$.

Theorem 3.1. Let \mathscr{V} be a vector space over \mathbb{C} and let T be a linear operator on \mathscr{V}. Then \mathscr{V} has a Jordan basis with respect to T.

Proof. We use the notation and the results of Theorem 2.6. Let $j \in\{1, \ldots, k\}$. It is important to notice that each Jordan chain of the nilpotent operator N_{j} is a Jordan chain of T which corresponds to the eigenvalue λ_{j}. Since N_{j} is a nilpotent operator in $\mathscr{L}\left(\mathscr{W}_{j}\right)$, by Theorem 1.1 there exists a basis $\mathscr{B}_{j}=\left\{v_{j, 1}, \ldots, v_{j, n_{j}}\right\}$ for \mathscr{W}_{j} which consists of Jordan chains of N_{j}. Consequently, \mathscr{B}_{j} consists of Jordan chains of T. Since \mathscr{V} is a direct sum of $\mathscr{W}_{1}, \ldots, \mathscr{W}_{k}$, the union $\mathscr{B}=\mathscr{B}_{1} \cup \cdots \cup \mathscr{B}_{k}$, that is,

$$
\mathscr{B}=\left\{v_{1,1}, \ldots, v_{1, n_{1}}, v_{2,1}, \ldots, v_{2, n_{2}}, \ldots, v_{k, 1}, \ldots, v_{k, n_{k}}\right\}
$$

is a basis for \mathscr{V}. This basis consists of Jordan chains of T.
The matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is a block diagonal with the blocks $\mathrm{M}_{\mathscr{B}_{j}}^{\mathscr{B}_{j}}\left(T_{j}\right), j \in\{1, \ldots, k\}$, on the diagonal and with zeros every where else:

$$
\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)=\left[\begin{array}{cccc}
\mathrm{M}_{\mathscr{B}_{1}}^{\mathscr{B}_{1}}\left(T_{1}\right) & 0 & \cdots & 0 \\
0 & \mathrm{M}_{\mathscr{B}_{2}}^{\mathscr{B}_{2}}\left(T_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mathrm{M}_{\mathscr{B}_{k}}^{\mathscr{B}_{k}}\left(T_{k}\right)
\end{array}\right] .
$$

Since $T_{j}=\lambda_{j} I+N_{j}$, we have

$$
\mathrm{M}_{\mathscr{B}_{j}}\left(T_{j}\right)=\lambda_{j} \mathrm{I}+\mathrm{M}_{\mathscr{B}_{j}}\left(N_{j}\right) .
$$

Thus all the elements on the main diagonal of $\mathbf{M}_{\mathscr{B}_{j}}^{\mathscr{B}_{j}}\left(T_{j}\right)$ equal λ_{j} and all the elements of superdiagonal of $\mathrm{M}_{\mathscr{B}_{j}}^{\mathscr{B}_{j}}\left(T_{j}\right)$ are either 1 or 0 . If there are exactly m_{j} Jordan chains in the basis \mathscr{B}_{j}, then 0 appears exactly $m_{j}-1$ times on the superdiagonal of $\mathrm{M}_{\mathscr{B}_{j}}^{\mathscr{B}_{j}}\left(T_{j}\right)$. Therefore $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is a Jordan normal form for T.

