LINEAR OPERATORS

BRANKO ĆURGUS

Throughout this note \mathscr{V} is a vector space over a scalar field $\mathbb{F} . \mathbb{N}$ denotes the set of positive integers and $i, j, k, l, m, n, p \in \mathbb{N}$.

1. Functions

First we review formal definitions related to functions. In this section A and B are nonempty sets.

The formal definition of function identifies a function and its graph. A justification for this is the fact that if you know the graph of a function, then you know the function, and conversely, if you know a function you know its graph. Simply stated the definition below says that a function from a set A to a set B is a subset f of the Cartesian product $A \times B$ such that for each $x \in A$ there exists unique $y \in B$ such that $(x, y) \in F$.

A function from A into B is a subset f of the Cartesian product $A \times B$ such that
(a) $\forall x \in A \quad \exists y \in B \quad(x, y) \in f$,
(b) $\forall x \in A \forall y \in B \forall z \in B \quad(x, y) \in f \wedge(x, z) \in f \Rightarrow y=z$.

If f is a function, the relationship $(x, y) \in f$ is commonly written as $y=f(x)$. The symbol $f: A \rightarrow B$ denotes a function from A to B.

The set A is the domain of $f: A \rightarrow B$. The set B is the codomain of $f: A \rightarrow B$. The set

$$
\{y \in B: \exists x \in A \quad y=f(x)\}
$$

is called the range of $f: A \rightarrow B$. It is denoted by $\operatorname{ran} f$.
A function $f: A \rightarrow B$ is a surjection if for every $y \in B$ there exists $x \in A$ such that $y=f(x)$.

A function $f: A \rightarrow B$ is an injection if for every $x_{1}, x_{2} \in A$ the following implication holds: $x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

A function $f: A \rightarrow B$ is a bijection if it is both: a surjection and an injection.

Next we give a formal definition of a composition of two functions. However, before giving a definition we need to prove a proposition.

Proposition 1.1. Let $f: A \rightarrow B$ and $g: C \rightarrow D$ be functions. If $\operatorname{ran} f \subseteq C$, then

$$
\begin{equation*}
\{(x, z) \in A \times D: \exists y \in B \quad(x, y) \in f \wedge(y, z) \in g\} \tag{1.1}
\end{equation*}
$$

is a function from A to D.

Proof. A proof is a nice exercise.
The function defined by (1.1) is called the composition of functions f and g. It is denoted by $f \circ g$.

The function

$$
\{(x, x) \in A \times A: x \in A\}
$$

is called the identity function on A. It is denoted by id_{A}. In the standard notation id_{A} is the function $\operatorname{id}_{A}: A \rightarrow A$ such that $\operatorname{id}_{A}(x)=x$ for all $x \in A$.

A function $f: A \rightarrow B$ is invertible if there exist functions $g: B \rightarrow A$ and $h: B \rightarrow A$ such that $f \circ g=\operatorname{id}_{B}$ and $h \circ f=\operatorname{id}_{A}$.

Theorem 1.2. Let $f: A \rightarrow B$ be a function. The following statements are equivalent.
(a) The function f is invertible.
(b) The function f is a bijection.
(c) There exists a unique function $g: B \rightarrow A$ such that $f \circ g=\mathrm{id}_{B}$ and $g \circ f=\operatorname{id}_{A}$.

If f is invertible, then the unique g whose existence is proved in Theorem $1.2(\mathrm{c})$ is called the inverse of f; it is denoted by f^{-1}.

Let $f: A \rightarrow B$ be a function. It is common to extend the notation $f(x)$ for $x \in A$ to subsets of A. For $X \subseteq A$ we introduce the notation

$$
f(X)=\{y \in B: \exists x \in X y=f(x)\} .
$$

With this notation, the range of f is simply the set $f(A)$. It is also common to extend this notation to describe "inverse" image of a subset in B. For $Y \subseteq B$ we introduce the notation

$$
f^{-1}(Y)=\{x \in A: f(x) \in Y\}
$$

Notice that this notation is used for arbitrary function f. It does not imply that f is invertible. Here f^{-1} is just a notational device.

Below are few exercises about functions from my Math 312 notes.
Exercise 1.3. Let A, B and C be nonempty sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be injections. Prove that $g \circ f: A \rightarrow C$ is an injection.

Exercise 1.4. Let A, B and C be nonempty sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be surjections. Prove that $g \circ f: A \rightarrow C$ is a surjection.

Exercise 1.5. Let A, B and C be nonempty sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Prove that $g \circ f: A \rightarrow C$ is a bijection. Prove that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Exercise 1.6. Let A, B and C be nonempty sets. Let $f: A \rightarrow B, g: B \rightarrow$ C. Prove that if $g \circ f$ is an injection, then f is an injection.

Exercise 1.7. Let A, B and C be nonempty sets and let $f: A \rightarrow B$, $g: B \rightarrow C$. Prove that if $g \circ f$ is a surjection, then g is a surjection.

Exercise 1.8. Let A, B and C be nonempty sets and let $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: C \rightarrow A$ be three functions. Prove that if any two of the functions $h \circ g \circ f, g \circ f \circ h, f \circ h \circ g$ are injections and the third is a surjection, or if any two of them are surjections and the third is an injection, then f, g, and h are bijections.

2. Linear operators

In this section \mathscr{U}, \mathscr{V} and \mathscr{W} are vector spaces over a scalar field \mathbb{F}.
2.1. The definition and the vector space of all linear operators. A function $T: \mathscr{V} \rightarrow \mathscr{W}$ is said to be a linear operator if it satisfies the following conditions:

$$
\begin{array}{rlrl}
\forall u \in \mathscr{V} \quad \forall v \in \mathscr{V} & T(u+v) & =T(u)+f(v), \\
\forall \alpha \in \mathbb{F} \quad \forall v \in \mathscr{V} & T(\alpha v) & =\alpha T(v) . \tag{2.2}
\end{array}
$$

The property (2.1) is called additivity, while the property (2.2) is called homogeneity. Together additivity and homogeneity are called linearity.

Denote by $\mathscr{L}(\mathscr{V}, \mathscr{W})$ the set of all linear operators from \mathscr{V} to \mathscr{W}. Define the addition and scaling in $\mathscr{L}(\mathscr{V}, \mathscr{W})$. For $S, T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ and $\alpha \in \mathbb{F}$ we define

$$
\begin{align*}
(S+T)(v) & =S(v)+T(v), & & \forall v \in \mathscr{V}, \tag{2.3}\\
(\alpha T)(v) & =\alpha T(v), & & \forall v \in \mathscr{V} . \tag{2.4}
\end{align*}
$$

Notice that two plus signs which appear in (2.3) have different meanings. The plus sign on the left-hand side stands for the addition of linear operators that is just being defined, while the plus sign on the right-hand side stands for the addition in \mathscr{W}. Notice the analogous difference in empty spaces between α and T in (2.4). Define the zero mapping in $\mathscr{L}(\mathscr{V}, \mathscr{W})$ to be

$$
0_{\mathscr{L}(\mathscr{V}, \mathscr{W})}(v)=0_{\mathscr{W}}, \quad \forall v \in \mathscr{V} .
$$

For $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ we define its opposite operator by

$$
(-T)(v)=-T(v), \quad \forall v \in \mathscr{V}
$$

Proposition 2.1. The set $\mathscr{L}(\mathscr{V}, \mathscr{W})$ with the operations defined in (2.3), and (2.4) is a vector space over \mathbb{F}.

For $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ and $v \in \mathscr{V}$ it is customary to write $T v$ instead of $T(v)$.
Example 2.2. Assume that a vector space \mathscr{V} is a direct sum of its subspaces \mathscr{U} and \mathscr{W}, that is $\mathscr{V}=\mathscr{U} \oplus \mathscr{W}$. Define the function $P: \mathscr{V} \rightarrow \mathscr{V}$ by

$$
P v=w \quad \Leftrightarrow \quad v=u+w, \quad u \in \mathscr{U}, \quad w \in \mathscr{W} .
$$

Then P is a linear operator. It is called the projection of \mathscr{V} onto \mathscr{W} parallel to \mathscr{U}; it is denoted by $P_{\mathscr{W} \| \mathscr{U}}$.

The definition of the linearity of a function between vector spaces is expressed in the standard functional notation. The next proposition states that a function between vector spaces is linear if and only if its graph is a subspace of the direct product of the domain and the codomain of that function.

Proposition 2.3. Let \mathscr{V} and \mathscr{W} be vector spaces over a scalar field \mathbb{F}. Let $f: \mathscr{V} \rightarrow \mathscr{W}$ be a function and denote by F the graph of f; that is let

$$
\mathscr{F}=\{(v, w) \in \mathscr{V} \times \mathscr{W}: v \in \mathscr{V} \text { and } w=f(v)\} \subseteq \mathscr{V} \times \mathscr{W}
$$

The function f is linear if and only if the set \mathscr{F} is a subspace of the vector space $\mathscr{V} \times \mathscr{W}$.

Proposition 2.4. Let \mathscr{V} and \mathscr{W} be vector spaces over a scalar field \mathbb{F}. Let $T \in \mathscr{L}(\mathscr{V}, c W)$, let \mathscr{G} be a subspace of \mathscr{V} and let \mathscr{H} be a subspace of \mathscr{W}. Then

$$
T(\mathscr{G})=\{w \in \mathscr{W}: \exists v \in \mathscr{G} \text { such that } w=T v\}
$$

is a subspace of \mathscr{W} and

$$
T^{-1}(\mathscr{H})=\{v \in \mathscr{V}: T v \in \mathscr{H}\}
$$

is a subspace of \mathscr{V}.
2.2. Composition, inverse, isomorphism. In the next two propositions we prove that the linearity is preserved under composition of linear operators and under taking the inverse of a linear operator.

Proposition 2.5. Let $S: \mathscr{U} \rightarrow \mathscr{V}$ and $T: \mathscr{V} \rightarrow \mathscr{W}$ be linear operators. The composition $T \circ S: \mathscr{U} \rightarrow \mathscr{W}$ is a linear operator.

Proof. Prove this as an exercise.
When composing linear operators it is customary to write simply $T S$ instead of $T \circ S$.

The identity function on \mathscr{V} is denoted by $I_{\mathscr{V}}$. It is defined by $I_{\mathscr{V}}(v)=v$ for all $v \in \mathscr{V}$. It is clearly a linear operator.

Proposition 2.6. Let $T: \mathscr{V} \rightarrow \mathscr{W}$ be a linear operator which is invertible. Then the inverse $T^{-1}: \mathscr{W} \rightarrow \mathscr{V}$ of T is a linear operator.

Proof. Since T is invertible, by Theorem 1.2 there exists a function $S: \mathscr{W} \rightarrow$ \mathscr{V} such that $S T=I_{\mathscr{V}}$ and $T S=I_{\mathscr{W}}$. Since T is linear and $T S=I_{\mathscr{W}}$ we have

$$
T(\alpha S x+\beta S y)=\alpha T(S x)+\beta T(S y)=\alpha(T S) x+\beta(T S) y=\alpha x+\beta y
$$

for all $\alpha, \beta \in \mathbb{F}$ and all $x, y \in \mathscr{W}$. Applying S to both sides of

$$
T(\alpha S x+\beta S y)=\alpha x+\beta y
$$

we get

$$
(S T)(\alpha S x+\beta S y)=S(\alpha x+\beta y) \quad \forall \alpha, \beta \in \mathbb{F} \quad \forall x, x \in \mathscr{W} .
$$

Since $S T=I_{\mathscr{V}}$, we get

$$
\alpha S x+\beta S y=S(\alpha x+\beta y) \quad \forall \alpha, \beta \in \mathbb{F} \quad \forall x, y \in \mathscr{W}
$$

thus proving the linearity of S. Since by definition $S=T^{-1}$ the proposition is proved.

A linear operator $T: \mathscr{V} \rightarrow \mathscr{W}$ which is a bijection is called an isomorphism between vector spaces \mathscr{V} and \mathscr{W}.

By Theorem 1.2 and Proposition 2.6 each isomorphism is invertible and its inverse is also an isomorphism.

In the next theorem we introduce the most important isomorphism between a finite-dimensional space \mathscr{V} and a space \mathbb{F}^{n} where $n=\operatorname{dim} \mathscr{V}$.

Theorem 2.7. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F}, let $n=$ $\operatorname{dim} \mathscr{V}$ and let $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for \mathscr{V}. The subset $C_{\mathscr{B}}$ of $\mathscr{V} \times\left(\mathbb{F}^{n}\right)$ defined by

$$
C_{\mathscr{B}}:=\left\{(v, \mathbf{a}) \in \mathscr{V} \times\left(\mathbb{F}^{n}\right): \mathbf{a}=\left[\alpha_{1}, \ldots, \alpha_{n}\right]^{\top} \text { and } v=\alpha_{1} b_{1}+\cdots+\alpha_{n} b_{n}\right\}
$$

is an isomorphism between \mathscr{V} and \mathbb{F}^{n}.
Proof. To prove that $C_{\mathscr{B}}$ is a bijection we need to prove the following four statements:

Fun 1: $\forall v \in \mathscr{V} \exists \mathbf{a} \in \mathbb{F}^{n}$ such that $(v, \mathbf{a}) \in C_{\mathscr{B}}$
Fun 2: $(v, \mathbf{a}),\left(v, \mathbf{a}^{\prime}\right) \in C_{\mathscr{B}}$ implies $\mathbf{a}=\mathbf{a}^{\prime}$
Inj: $(v, \mathbf{a}),\left(v^{\prime}, \mathbf{a}\right) \in C_{\mathscr{B}}$ implies $v=v^{\prime}$
Sur: $\forall \mathbf{a} \in \mathbb{F}^{n} \exists v \in \mathscr{V}$ such that $(v, \mathbf{a}) \in C_{\mathscr{B}}$.
A blueprint of the proof is as follows:
(1) $\mathscr{V}=\operatorname{span} \mathscr{B}$ implies Fun 1;
(2) \mathscr{B} is linearly independent implies Fun 2;
(3) AE and SE imply Inj;
(This implication is a consequence of the Fun 2 property of the addition function and the scaling function.)
(4) AE and SE imply Sur.
(This implication is a consequence of the Fun 1 property of the addition function and the scaling function.)
To prove that the bijection $C_{\mathscr{B}}$ is linear we need to prove that $C_{\mathscr{B}}$ is a subspace of $\mathscr{V} \times \mathscr{W}$.

In the last part of the proof of Proposition ?? we showed that the formula for the inverse $\left(C_{\mathscr{B}}\right)^{-1}: \mathbb{F}^{n} \rightarrow \mathscr{V}$ of $C_{\mathscr{B}}$ is given by

$$
\left(C_{\mathscr{B}}\right)^{-1}\left[\begin{array}{c}
\alpha_{1} \tag{2.5}\\
\vdots \\
\alpha_{n}
\end{array}\right]=\sum_{j=1}^{n} \alpha_{j} v_{j}, \quad\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right] \in \mathbb{F}^{n} .
$$

Notice that (2.5) defines a function from \mathbb{F}^{n} to \mathscr{V} even if \mathscr{B} is not a basis of \mathscr{V}.

Example 2.8. Inspired by the definition of $C_{\mathscr{B}}$ and (2.5) we define a general operator of this kind. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F}. Let \mathscr{V} be finite dimensional, $n=\operatorname{dim} \mathscr{V}$ and let \mathscr{B} be a basis for \mathscr{V}. Let $\mathscr{C}=\left(w_{1}, \ldots, w_{n}\right)$ be any n-tuple of vectors in \mathscr{W}. The entries of an n-tuple can be repeated, they can all be equal, for example to $0_{\mathscr{V}}$. We define the linear operator $L_{\mathscr{C}}^{\mathscr{B}}: \mathscr{V} \rightarrow \mathscr{W}$ by

$$
L_{\mathscr{B}}^{\mathscr{B}}(v)=\sum_{j=1}^{n} \alpha_{j} w_{j} \quad \text { where } \quad\left[\begin{array}{c}
\alpha_{1} \tag{2.6}\\
\vdots \\
\alpha_{n}
\end{array}\right]=C_{\mathscr{B}}(v) .
$$

In fact, $L_{\mathscr{C}}^{\mathscr{B}}: \mathscr{V} \rightarrow \mathscr{W}$ is a composition of $C_{\mathscr{B}}: \mathscr{V} \rightarrow \mathbb{F}^{n}$ and the operator $\mathbb{F}^{n} \rightarrow \mathscr{W}$ defined by

$$
\left[\begin{array}{c}
\xi_{1} \tag{2.7}\\
\vdots \\
\xi_{n}
\end{array}\right] \mapsto \sum_{j=1}^{n} \xi_{j} w_{j} \quad \text { for arbitrary } \quad\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right] \in \mathbb{F}^{n}
$$

It is easy to verify that (2.7) defines a linear operator.
Denote by \mathscr{E} the standard basis of \mathbb{F}^{n}, that is the basis which consists of the columns of the identity matrix. Then $C_{\mathscr{B}}=L_{\mathscr{E}}^{\mathscr{B}}$ and $\left(C_{\mathscr{B}}\right)^{-1}=L_{\mathscr{B}}^{\mathscr{E}}$.
Exercise 2.9. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F}. Let \mathscr{V} be finite dimensional, $n=\operatorname{dim} \mathscr{V}$ and let \mathscr{B} be a basis for \mathscr{V}. Let $\mathscr{C}=\left(w_{1}, \ldots, w_{n}\right)$ be a list of vectors in \mathscr{W} with n entries.
(a) Characterize the injectivity of $L_{\mathscr{C}}^{\mathscr{B}}: \mathscr{V} \rightarrow \mathscr{W}$.
(b) Characterize the surjectivity of $L_{\mathscr{C}}^{\mathscr{B}}: \mathscr{V} \rightarrow \mathscr{W}$.
(c) Characterize the bijectivity of $L_{\mathscr{C}}^{\mathscr{B}}: \mathscr{V} \rightarrow \mathscr{W}$.
(d) If $L_{\mathscr{C}}^{\mathscr{B}}: \mathscr{V} \rightarrow \mathscr{W}$ is an isomorphism, find a simple formula for $\left(L_{\mathscr{C}}^{\mathscr{B}}\right)^{-1}$.
2.3. The nullity-rank theorem. Let $T: \mathscr{V} \rightarrow \mathscr{W}$ is be a linear operator. The linearity of T implies that the set

$$
\operatorname{nul} T=\left\{v \in \mathscr{V}: T v=0_{\mathscr{W}}\right\}
$$

is a subspace of \mathscr{V}. This subspace is called the null space of T. Similarly, the linearity of T implies that the range of T is a subspace of \mathscr{W}. Recall that

$$
\operatorname{ran} T=\{w \in \mathscr{W}: \exists v \in \mathscr{V} \quad w=T v\} .
$$

Proposition 2.10. A linear operator $T: \mathscr{V} \rightarrow \mathscr{W}$ is an injection if and only if nul $T=\left\{0_{\mathscr{V}}\right\}$.

Proof. We first prove the "if" part of the proposition. Assume that nul $T=$ $\left\{0_{\mathscr{V}}\right\}$. Let $u, v \in \mathscr{V}$ be arbitrary and assume that $T u=T v$. Since T is linear, $T u=T v$ implies $T(u-v)=0_{\mathscr{W}}$. Consequently $u-v \in \operatorname{nul} T=\left\{0_{\mathscr{V}}\right\}$. Hence, $u-v=0_{\mathscr{V}}$, that is $u=v$. This proves that T is an injection.

To prove the "only if" part assume that $T: \mathscr{V} \rightarrow \mathscr{W}$ is an injection. Let $v \in \operatorname{nul} T$ be arbitrary. Then $T v=0_{\mathscr{W}}=T 0_{\mathscr{V}}$. Since T is injective,
$T v=T 0_{\mathscr{V}}$ implies $v=0_{\mathscr{V}}$. Thus we have proved that nul $T \subseteq\left\{0_{\mathscr{V}}\right\}$. Since the converse inclusion is trivial, we have nul $T=\left\{0_{\mathscr{V}}\right\}$.

Theorem 2.11 (Nullity-Rank Theorem). Let \mathscr{V} and \mathscr{W} be vector spaces over a scalar field \mathbb{F} and let $T: \mathscr{V} \rightarrow \mathscr{W}$ be a linear operator. If \mathscr{V} is finite dimensional, then nul T and $\operatorname{ran} T$ are finite dimensional and

$$
\begin{equation*}
\operatorname{dim}(\operatorname{nul} T)+\operatorname{dim}(\operatorname{ran} T)=\operatorname{dim} \mathscr{V} \tag{2.8}
\end{equation*}
$$

Proof. Assume that \mathscr{V} is finite dimensional. We proved earlier that for an arbitrary subspace \mathscr{U} of \mathscr{V} there exists a subspace \mathscr{X} of \mathscr{V} such that

$$
\mathscr{U} \oplus \mathscr{X}=\mathscr{V} \quad \text { and } \quad \operatorname{dim} \mathscr{U}+\operatorname{dim} \mathscr{X}=\operatorname{dim} \mathscr{V} .
$$

Thus, there exists a subspace \mathscr{X} of \mathscr{V} such that

$$
\begin{equation*}
(\operatorname{nul} T) \oplus \mathscr{X}=\mathscr{V} \quad \text { and } \quad \operatorname{dim}(\operatorname{nul} T)+\operatorname{dim} \mathscr{X}=\operatorname{dim} \mathscr{V} . \tag{2.9}
\end{equation*}
$$

Since $\operatorname{dim}(\operatorname{nul} T)+\operatorname{dim} \mathscr{X}=\operatorname{dim} \mathscr{V}$, to prove the theorem we only need to prove that $\operatorname{dim} \mathscr{X}=\operatorname{dim}(\operatorname{ran} T)$. To this end, let $m=\operatorname{dim} \mathscr{X}$ and let x_{1}, \ldots, x_{m} be a basis for \mathscr{X}. We will prove that vectors $T x_{1}, \ldots, T x_{m}$ form a basis for $\operatorname{ran} T$. We first prove

$$
\begin{equation*}
\operatorname{span}\left\{T x_{1}, \ldots, T x_{m}\right\}=\operatorname{ran} T \tag{2.10}
\end{equation*}
$$

Clearly $\left\{T x_{1}, \ldots, T x_{m}\right\} \subseteq \operatorname{ran} T$. Consequently, since $\operatorname{ran} T$ is a subspace of \mathscr{W}, we have $\operatorname{span}\left\{T x_{1}, \ldots, T x_{m}\right\} \subseteq \operatorname{ran} T$. To prove the converse inclusion, let $w \in \operatorname{ran} T$ be arbitrary. Then, there exists $v \in \mathscr{V}$ such that $T v=w$. Since $\mathscr{V}=(\operatorname{nul} T)+\mathscr{X}$, there exist $u \in \operatorname{nul} T$ and $x \in \mathscr{X}$ such that $v=u+x$. Then $T v=T(u+x)=T u+T x=T x$. As $x \in \mathscr{X}$, there exist $\xi_{1}, \ldots, \xi_{m} \in \mathbb{F}$ such that $x=\sum_{j=1}^{m} \xi_{j} x_{j}$. Now we use linearity of T to deduce

$$
w=T v=T x=\sum_{j=1}^{m} \xi_{j} T x_{j}
$$

This proves that $w \in \operatorname{span}\left\{T x_{1}, \ldots, T x_{m}\right\}$. Since w was arbitrary in $\operatorname{ran} T$ this completes a proof of (2.10).

Next we prove that the vectors $T x_{1}, \ldots, T x_{m}$ are linearly independent. Let $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ be arbitrary and assume that

$$
\begin{equation*}
\alpha_{1} T x_{1}+\cdots+\alpha_{m} T x_{m}=0_{\mathscr{W}} . \tag{2.11}
\end{equation*}
$$

Since T is linear (2.11) implies that

$$
\begin{equation*}
\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m} \in \operatorname{nul} T . \tag{2.12}
\end{equation*}
$$

Recall that $x_{1}, \ldots, x_{m} \in c X$ and \mathscr{X} is a subspace of \mathscr{V}, so

$$
\begin{equation*}
\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m} \in \mathscr{X} . \tag{2.13}
\end{equation*}
$$

Now (2.12), (2.13) and the fact that $(\operatorname{nul} T) \cap \mathscr{X}=\left\{0_{\mathscr{V}}\right\}$ imply

$$
\begin{equation*}
\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}=0_{\mathscr{V}} . \tag{2.14}
\end{equation*}
$$

Since x_{1}, \ldots, x_{m} are linearly independent (2.14) yields $\alpha_{1}=\cdots=\alpha_{m}=0$. This completes a proof of the linear independence of $T x_{1}, \ldots, T x_{m}$.

Thus $\left\{T x_{1}, \ldots, T x_{m}\right\}$ is a basis for $\operatorname{ran} T$. Consequently $\operatorname{dim}(\operatorname{ran} T)=m$. Since $m=\operatorname{dim} \mathscr{X},(2.9)$ implies (2.8). This completes the proof.

A direct proof of the Nullity-Rank Theorem is as follows:
Proof. Since nul T is a subspace of \mathscr{V} it is finite dimensional. Set $k=$ $\operatorname{dim}(\operatorname{nul} T)$ and let $\mathscr{C}=\left\{u_{1}, \ldots, u_{k}\right\}$ be a basis for nul T.

Since \mathscr{V} is finite dimensional there exists a finite set $\mathscr{F} \subset \mathscr{V}$ such that $\operatorname{span}(\mathscr{F})=\mathscr{V}$. Then the set $T \mathscr{F}$ is a finite subset of \mathscr{W} and $\operatorname{ran} T=$ $\operatorname{span}(T \mathscr{F})$. Thus ran T is finite dimensional. Let $\operatorname{dim}(\operatorname{ran} T)=m$ and let $\mathscr{E}=\left\{w_{1}, \ldots, w_{m}\right\}$ be a basis of $\operatorname{ran} T$.

Since clearly for every $j \in\{1, \ldots, m\}, w_{j} \in \operatorname{ran} T$, we have that for every $j \in\{1, \ldots, m\}$ there exists $v_{j} \in \mathscr{V}$ such that $T v_{j}=w_{j}$. Set $\mathscr{D}=$ $\left\{v_{1}, \ldots, v_{m}\right\}$.

Further set $\mathscr{B}=\mathscr{C} \cup \mathscr{D}$.
We will prove the following three facts:
(I) $\mathscr{C} \cap \mathscr{D}=\emptyset$,
(II) $\operatorname{span} \mathscr{B}=\mathscr{V}$,
(III) \mathscr{B} is a linearly independent set.

To prove (I), notice that the vectors in \mathscr{E} are nonzero, since \mathscr{E} is linearly independent. Therefore, for every $v \in \mathscr{D}$ we have that $T v \neq 0_{\mathscr{W}}$. Since for every $u \in \mathscr{C}$ we have $T u=0_{\mathscr{W}}$ we conclude that $u \in \mathscr{C}$ implies $u \notin \mathscr{D}$. This proves (I).

To prove (II), first notice that by the definition of $\mathscr{B} \subset \mathscr{V}$. Since \mathscr{V} is a vector space, we have span $\mathscr{B} \subseteq \mathscr{V}$.

To prove the converse inclusion, let $v \in \mathscr{V}$ be arbitrary. Then $T v \in \operatorname{ran} T$. Since \mathscr{E} spans ran T, there exist $\beta_{1}, \ldots, \beta_{m} \in \mathbb{F}$ such that

$$
T v=\sum_{j=1}^{m} \beta_{j} w_{j}
$$

Set

$$
v^{\prime}=\sum_{j=1}^{m} \beta_{j} v_{j}
$$

Then, by linearity of T we have

$$
T v^{\prime}=\sum_{j=1}^{m} \beta_{j} T v_{j}=\sum_{j=1}^{m} \beta_{j} w_{j}=T v
$$

The last equality yields and the linearity of T yield $T\left(v-v^{\prime}\right)=0_{\mathscr{W}}$. Consequently, $v-v^{\prime} \in \operatorname{nul} T$. Since \mathscr{C} spans nul T, there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}$ such that

$$
v-v^{\prime}=\sum_{j=1}^{k} \alpha_{i} u_{i}
$$

Consequently,

$$
v=v^{\prime}+\sum_{j=1}^{k} \alpha_{i} u_{i}=\sum_{j=1}^{k} \alpha_{i} u_{i}+\sum_{j=1}^{m} \beta_{j} v_{j} .
$$

This proves that for arbitrary $v \in \mathscr{V}$ we have $v \in \operatorname{span} \mathscr{B}$. Thus $\mathscr{V} \subseteq \operatorname{span} \mathscr{B}$ and (II) is proved.

To prove (III) let $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}$ and $\beta_{1}, \ldots, \beta_{m} \in \mathbb{F}$ be arbitrary and assume that

$$
\begin{equation*}
\sum_{j=1}^{k} \alpha_{i} u_{i}+\sum_{j=1}^{m} \beta_{j} v_{j}=0_{\mathscr{V}} \tag{2.15}
\end{equation*}
$$

Applying T to both sides of the last equality, and using the fact that $u_{i} \in$ nul T and the definition of v_{j} we get

$$
\sum_{j=1}^{m} \beta_{j} w_{j}=0_{\mathscr{W}}
$$

Since \mathscr{E} is a linearly independent set the last equality implies that $\beta_{j}=0$ for all $j \in\{1, \ldots, m\}$. Now substitute these equalities in (2.15) to get

$$
\sum_{j=1}^{k} \alpha_{i} u_{i}=0_{\mathscr{V}}
$$

Since \mathscr{C} is a linearly independent set the last equality implies that $\alpha_{i}=0$ for all $i \in\{1, \ldots, k\}$. This proves the linear independence of \mathscr{B}.

It follows from (II) and (III) that \mathscr{B} is a basis for \mathscr{V}. By (I) we have that $|\mathscr{B}|=|\mathscr{C}|+|\mathscr{D}|=k+m$. This completes the proof of the theorem.

The nonnegative integer $\operatorname{dim}(\operatorname{nul} T)$ is called the nullity of T; the nonnegative integer $\operatorname{dim}(\operatorname{ran} T)$ is called the rank of T.

The nullity-rank theorem in English reads: If a linear operator is defined on a finite dimensional vector space, then its nullity and its rank are finite and they add up to the dimension of the domain.

Proposition 2.12. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F}. Assume that \mathscr{V} is finite dimensional. The following statements are equivalent
(a) There exists a surjection $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$.
(b) \mathscr{W} is finite dimensional and $\operatorname{dim} \mathscr{V} \geq \operatorname{dim} \mathscr{W}$.

Proposition 2.13. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F}. Assume that \mathscr{V} is finite dimensional. The following statements are equivalent
(a) There exists an injection $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$.
(b) Either \mathscr{W} is infinite dimensional or $\operatorname{dim} \mathscr{V} \leq \operatorname{dim} \mathscr{W}$.

Proposition 2.14. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F}. Assume that \mathscr{V} is finite dimensional. The following statements are equivalent
(a) There exists an isomorphism $T: \mathscr{V} \rightarrow \mathscr{W}$.
(b) \mathscr{W} is finite dimensional and $\operatorname{dim} \mathscr{W}=\operatorname{dim} \mathscr{V}$.
2.4. Isomorphism between $\mathscr{L}(\mathscr{V}, \mathscr{W})$ and $\mathbb{F}^{n \times m}$. Let \mathscr{V} and \mathscr{W} be finite dimensional vector spaces over $\mathbb{F}, m=\operatorname{dim} \mathscr{V}, n=\operatorname{dim} \mathscr{W}$, let $\mathscr{B}=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for \mathscr{V} and let $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ be a basis for \mathscr{W}. The mapping $C_{\mathscr{B}}$ provides an isomorphism between \mathscr{V} and \mathbb{F}^{m} and $C_{\mathscr{C}}$ provides an isomorphism between \mathscr{W} and \mathbb{F}^{n}.

Recall that the simplest way to define a linear operator from \mathbb{F}^{m} to \mathbb{F}^{n} is to use an $n \times m$ matrix B. It is convenient to consider an $n \times m$ matrix to be an m-tuple of its columns, which are vectors in \mathbb{F}^{n}. For example, let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m} \in \mathbb{F}^{n}$ be columns of an $n \times m$ matrix B. Then we write

$$
B=\left[\begin{array}{lll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{m}
\end{array}\right] .
$$

This notation is convenient since it allows us to write a multiplication of a vector $\mathbf{x} \in \mathbb{F}^{m}$ by a matrix B as

$$
B \mathbf{x}=\sum_{j=1}^{m} \xi_{j} \mathbf{b}_{j} \quad \text { where } \quad \mathbf{x}=\left[\begin{array}{c}
\xi_{1} \tag{2.16}\\
\vdots \\
\xi_{n}
\end{array}\right]
$$

Notice the similarity of the definition in (2.16) to the definition (2.6) of the operator $L_{\mathscr{C}}^{\mathscr{B}}$ in Example 2.8. Taking \mathscr{B} to be the standard basis of \mathbb{F}^{m} and taking \mathscr{C} to me the m-tuple given by B, we have $L_{\mathscr{C}}^{\mathscr{B}}(\mathbf{x})=B \mathbf{x}$.

Let $T: \mathscr{V} \rightarrow \mathscr{W}$ be a linear operator. Our next goal is to connect T in a natural way to a certain $n \times m$ matrix B. That "natural way" is suggested by following diagram:

We seek an $n \times m$ matrix B such that the action of T between \mathscr{V} and \mathscr{W} is in some sense replicated by the action of B between \mathbb{F}^{m} and \mathbb{F}^{n}. Precisely, we seek B such that

$$
\begin{equation*}
C_{\mathscr{C}}(T v)=B\left(C_{\mathscr{B}}(v)\right) \quad \forall v \in \mathscr{V} \tag{2.17}
\end{equation*}
$$

In English: multiplying the vector of coordinates of v by B we get exactly the coordinates of $T v$.

Using the basis vectors $v_{1}, \ldots, v_{n} \in \mathscr{B}$ in (2.17) we see that the matrix

$$
\begin{equation*}
B=\left[C_{\mathscr{C}}\left(T v_{1}\right) \cdots C_{\mathscr{C}}\left(T v_{m}\right)\right] \tag{2.18}
\end{equation*}
$$

has the desired property (2.17).
For an arbitrary $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ the formula (2.18) associates the matrix $B \in \mathbb{F}^{n \times m}$ with T. In other words (2.18) defines a function from $\mathscr{L}(\mathscr{V}, \mathscr{W})$ to $\mathbb{F}^{n \times m}$.

Theorem 2.15. Let \mathscr{V} and \mathscr{W} be finite dimensional vector spaces over \mathbb{F}, $m=\operatorname{dim} \mathscr{V}, n=\operatorname{dim} \mathscr{W}$, let $\mathscr{B}=\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis for \mathscr{V} and let $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ be a basis for \mathscr{W}. The function

$$
M_{\mathscr{C}}^{\mathscr{B}}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow \mathbb{F}^{n \times m}
$$

defined by

$$
\begin{equation*}
M_{\mathscr{C}}^{\mathscr{B}}(T)=\left[C_{\mathscr{C}}\left(T v_{1}\right) \cdots C_{\mathscr{C}}\left(T v_{m}\right)\right], \quad T \in \mathscr{L}(\mathscr{V}, \mathscr{W}) \tag{2.19}
\end{equation*}
$$

is an isomorphism.
Proof. It is easy to verify that $M_{\mathscr{C}}^{\mathscr{B}}$ is a linear operator.
Since the definition of $M_{\mathscr{C}}^{\mathscr{B}}(T)$ coincides with (2.18), equality (2.17) yields

$$
\begin{equation*}
C_{\mathscr{C}}(T v)=\left(M_{\mathscr{C}}^{\mathscr{B}}(T)\right) C_{\mathscr{B}}(v) . \tag{2.20}
\end{equation*}
$$

The most direct way to prove that $M_{\mathscr{C}}^{\mathscr{B}}$ is an isomorphism is to construct its inverse. The inverse is suggested by the diagram (2.21).

Define

$$
N_{\mathscr{C}}^{\mathscr{B}}: \mathbb{F}^{n \times m} \rightarrow \mathscr{L}(\mathscr{V}, \mathscr{W})
$$

by

$$
\begin{equation*}
\left(N_{\mathscr{C}}^{\mathscr{B}}(B)\right)(v)=\left(C_{\mathscr{C}}\right)^{-1}\left(B\left(C_{\mathscr{B}}(v)\right)\right), \quad B \in \mathbb{F}^{n \times m} \tag{2.22}
\end{equation*}
$$

Next we prove that

$$
N_{\mathscr{C}}^{\mathscr{B}} \circ M_{\mathscr{C}}^{\mathscr{B}}=I_{\mathscr{L}(\mathscr{V}, \mathscr{W})} \quad \text { and } \quad M_{\mathscr{C}}^{\mathscr{B}} \circ N_{\mathscr{C}}^{\mathscr{B}}=I_{\mathbb{F}^{n \times m}} .
$$

First for arbitrary $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ and arbitrary $v \in \mathscr{V}$ we calculate

$$
\begin{aligned}
\left(\left(N_{\mathscr{C}}^{\mathscr{B}} \circ M_{\mathscr{C}}^{\mathscr{B}}\right)(T)\right)(v) & =\left(C_{\mathscr{C}}\right)^{-1}\left(\left(M_{\mathscr{C}}^{\mathscr{B}}(T)\right)\left(C_{\mathscr{B}}(v)\right)\right) & & \text { by }(2.22) \\
& =\left(C_{\mathscr{C}}\right)^{-1}\left(C_{\mathscr{C}}(T v)\right) & & \text { by }(2.20) \\
& =T v . & &
\end{aligned}
$$

Thus $\left(N_{\mathscr{C}}^{\mathscr{B}} \circ M_{\mathscr{C}}^{\mathscr{B}}\right)(T)=T$ and thus, since $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ was arbitrary, $N_{\mathscr{C}}^{\mathscr{B}} \circ M_{\mathscr{C}}^{\mathscr{B}}=I_{\mathscr{L}(\mathscr{V}, \mathscr{W})}^{\mathscr{C}}$.

Let now $B \in \mathbb{F}^{n \times m}$ be arbitrary and calculate

$$
\begin{align*}
& \left(M_{\mathscr{C}}^{\mathscr{B}} \circ N_{\mathscr{C}}^{\mathscr{B}}\right)(B)=M_{\mathscr{C}}^{\mathscr{B}}\left(N_{\mathscr{C}}^{\mathscr{B}}(B)\right) \\
& =\left[C_{\mathscr{C}}\left(\left(N_{\mathscr{C}}^{\mathscr{B}}(B)\right)\left(v_{1}\right)\right) \cdots C_{\mathscr{C}}\left(\left(N_{\mathscr{C}}^{\mathscr{B}}(B)\right)\left(v_{m}\right)\right)\right] \text { by }(2.19) \\
& =\left[\begin{array}{lll}
B\left(C_{\mathscr{B}}\left(v_{1}\right)\right) & \cdots & B\left(C_{\mathscr{B}}\left(v_{m}\right)\right)
\end{array}\right] \tag{2.22}
\end{align*}
$$

$$
\begin{aligned}
& =B\left[C_{\mathscr{B}}\left(v_{1}\right) \cdots C_{\mathscr{B}}\left(v_{m}\right)\right] \\
& =B I_{m} \\
& =B
\end{aligned}
$$

Thus $\left(M_{\mathscr{C}}^{\mathscr{B}} \circ N_{\mathscr{C}}^{\mathscr{B}}\right)(B)=B$ for all $B \in \mathbb{F}^{n \times m}$, proving that $M_{\mathscr{C}}^{\mathscr{B}} \circ N_{\mathscr{C}}^{\mathscr{B}}=I_{\mathbb{F}^{n \times m}}$.
This completes the proof that $M_{\mathscr{C}}^{\mathscr{B}}$ is a bijection. Since it is linear, $M_{\mathscr{C}}^{\mathscr{B}}$ is an isomorphism.

Theorem 2.16. Let \mathscr{U}, \mathscr{V} and \mathscr{W} be finite dimensional vector spaces over $\mathbb{F}, k=\operatorname{dim} \mathscr{U}, m=\operatorname{dim} \mathscr{V}, n=\operatorname{dim} \mathscr{W}$, let \mathscr{A} be a basis for \mathscr{U}, let \mathscr{B} be a basis for \mathscr{V}, and let \mathscr{C} be a basis for \mathscr{W}. Let $S \in \mathscr{L}(\mathscr{U}, \mathscr{V})$ and $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$. Let $M_{\mathscr{B}}^{\mathscr{A}}(S) \in \mathbb{F}^{m \times k}, M_{\mathscr{C}}^{\mathscr{B}}(T) \in \mathbb{F}^{n \times m}$ and $M_{\mathscr{C}}^{\mathscr{L}}(T S) \in \mathbb{F}^{n \times k}$ be as defined in Theorem 2.15. Then

$$
M_{\mathscr{C}}^{\mathscr{A}}(T S)=M_{\mathscr{C}}^{\mathscr{B}}(T) M_{\mathscr{B}}^{\mathscr{A}}(S) .
$$

Proof. Let $\mathscr{A}=\left\{u, \ldots, u_{k}\right\}$ and calculate

$$
\begin{align*}
M_{\mathscr{C}}^{\mathscr{A}}(T S) & =\left[\begin{array}{lll}
C_{\mathscr{C}}\left(T S u_{1}\right) & \cdots & C_{\mathscr{C}}\left(T S u_{k}\right)
\end{array}\right] & & \text { by (2.19) } \\
& =\left[\begin{array}{llll}
M_{\mathscr{B}}^{\mathscr{B}}(T)\left(C_{\mathscr{B}}\left(S u_{1}\right)\right) & \cdots & \left.M_{\mathscr{C}}^{\mathscr{B}}(T)\left(C_{\mathscr{B}}\left(S u_{k}\right)\right)\right]
\end{array}\right. & & \text { by }(2.20) \\
& =M_{\mathscr{C}}^{\mathscr{B}}(T)\left[C_{\mathscr{B}}\left(S u_{1}\right) \cdots C_{\mathscr{B}}\left(S u_{k}\right)\right] & & \text { matrix mult. } \\
& =M_{\mathscr{C}}^{\mathscr{B}}(T) M_{\mathscr{B}}^{\mathscr{A}}(S) . & & \text { by }(2.19) \tag{2.19}
\end{align*}
$$

The following diagram illustrates the content of Theorem 2.16.

3. Problems

Problem 3.1. Let \mathscr{V} and \mathscr{W} be vector spaces over a scalar field \mathbb{F}. Let \mathscr{S} be a subspace of the direct product vector space $\mathscr{V} \times \mathscr{W}$, let \mathscr{G} be a subspace
of \mathscr{V} and let \mathscr{H} be a subspace of \mathscr{W}. Then

$$
\mathscr{S}(\mathscr{G})=\{w \in \mathscr{W}: \exists v \in \mathscr{G} \text { such that }(v, w) \in \mathscr{S}\}
$$

is a subspace of \mathscr{W} and

$$
\mathscr{S}^{-1}(\mathscr{H})=\{v \in \mathscr{V}: \exists w \in \mathscr{H} \text { such that }(v, w) \in \mathscr{S}\}
$$

is a subspace of \mathscr{V}.
Problem 3.2. Let \mathscr{V} and \mathscr{W} be finite-dimensional vector spaces over a scalar field \mathbb{F}. Let \mathscr{S} be a subspace of the direct product vector space $\mathscr{V} \times \mathscr{W}$. The following four sets are subspaces

$$
\begin{aligned}
\operatorname{dom} \mathscr{S} & =\{v \in \mathscr{V}: \exists w \in \mathscr{W} \text { such that }(v, w) \in \mathscr{S}\} \\
\operatorname{ran} \mathscr{S} & =\{w \in \mathscr{W}: \exists v \in \mathscr{V} \text { such that }(v, w) \in \mathscr{S}\} \\
\operatorname{nul} \mathscr{S} & =\left\{v \in \mathscr{V}:\left(v, 0_{\mathscr{W}}\right) \in \mathscr{S}\right\} \\
\operatorname{mul} \mathscr{S} & =\left\{w \in \mathscr{W}:\left(0_{\mathscr{V}}, w\right) \in \mathscr{S}\right\} .
\end{aligned}
$$

and the following equality holds:

$$
\operatorname{dim} \operatorname{dom} \mathscr{S}+\operatorname{dim} \operatorname{mul} \mathscr{S}=\operatorname{dim} \operatorname{ran} \mathscr{S}+\operatorname{dim} \operatorname{nul} \mathscr{S} .
$$

Hint: The following equivalence holds. For all $v \in \mathscr{V}$ and all $w \in \mathscr{W}$ we have:

$$
(v, w) \in \mathscr{S} \quad \Leftrightarrow \quad(v+x, w+y) \in \mathscr{S} \quad \forall x \in \operatorname{nul} \mathscr{S} \text { and } \forall y \in \operatorname{mul} \mathscr{S} .
$$

Problem 3.3. Let \mathscr{V} and \mathscr{W} be finite-dimensional vector spaces over a scalar field \mathbb{F} and recall that $\mathscr{V} \times \mathscr{W}$ and $\mathscr{W} \times \mathscr{V}$ are the direct product vector spaces. Prove that the function

$$
R: \mathscr{V} \times \mathscr{W} \rightarrow \mathscr{W} \times \mathscr{V}
$$

defined by

$$
R(v, w)=(w, v) \quad \text { for all } \quad(v, w) \in \mathscr{V} \times \mathscr{W}
$$

is an isomorphism.
Problem 3.4. Let \mathscr{V} and \mathscr{W} be finite-dimensional vector spaces over a scalar field \mathbb{F} and recall that $\mathscr{V} \times \mathscr{W}$ and $\mathscr{W} \times \mathscr{V}$ are the direct product vector spaces. Let \mathscr{T} be a subset of $\mathscr{V} \times \mathscr{W}$. Then \mathscr{T} is an isomorphism between \mathscr{V} and \mathscr{W} if and only if the set

$$
\{(w, v) \in \mathscr{W} \times \mathscr{V}:(v, w) \in \mathscr{T}\}=R \mathscr{T}
$$

is an isomorphism between \mathscr{W} and \mathscr{V}. (Use Problem 3.3 and Propositions 2.3 and 2.4 to prove this equivalence.)

