A Beginner's Guide to LaTeX for Mathematics

Your Name

January 8, 2024

1 Introduction

LaTeX is widely used for academic writing, particularly in mathematics and sciences. This guide provides an introduction to basic LaTeX features useful for mathematics students.

2 Inline vs Displayed Mathematics

Inline mathematics is included within a line of text, using dollar signs (\$). For example, the code $a^2 + b^2 = c^2$ renders as $a^2 + b^2 = c^2$ within a text.

Displayed mathematics appears on its own line. Use \[and \] for unnumbered equations, or the equation environment for numbered equations.

3 Basic Mathematical Operations

3.1 Fractions, Sums, and Integrals

- Fraction: $frac{a}{b}$ renders as $\frac{a}{b}$.
- Summation: $\sum_{i=1}^{n} i^2$ renders as $\sum_{i=1}^{n} i^2$.
- Integral: $\inf_{a}^{b} x^2 dx$ renders as $\int_a^b x^2 dx$.

3.2 Trigonometric and Exponential Functions

- Sine: $\sin(\theta)$ renders as $\sin(\theta)$.
- Cosine: $\cos(\theta)$ renders as $\cos(\theta)$.
- Exponential: e^{x} or $\exp(x)$ renders as e^{x} or $\exp(x)$.

4 Displayed Mathematics Examples

4.1 Unnumbered Equations

 $\left[\frac{-\frac{-\sqrt{1+1}}{-\sqrt{1+1}} e^{-x^2} dx = \frac{\sqrt{1+1}}{2} \right]$

This code will render as:

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}$$

4.2 Numbered Equations

\begin{equation}
 \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
\end{equation}

This code will render as:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \tag{1}$$

5 A Complex Example

Euler's identity is a beautiful and profound equation in mathematics. Here's how to write it in LaTeX:

\begin{equation}
 e^{i\pi} + 1 = 0
\end{equation}

This will render as:

$$e^{i\pi} + 1 = 0 \tag{2}$$

6 Conclusion

This document is a basic introduction to LaTeX for mathematical expressions. LaTeX's capabilities extend far beyond these basics, enabling detailed typesetting for complex documents.