Theorem 1. Let \mathscr{V} be a finite-dimensional vector space over a scalar field \mathbb{F} with $\operatorname{dim} \mathscr{V}=n \in \mathbb{N}$. Let $T \in \mathscr{L}(\mathscr{V})$ and assume that there exists a basis $\mathscr{B}=\left(v_{1}, \ldots, v_{n}\right)$ of \mathscr{V} for which the matrix $M_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper-triangular with diagonal entries $a_{j j}$ where $j \in\{1, \ldots, n\}$. Then T is not injective if and only if there exists $i \in\{1, \ldots, n\}$ such that $a_{i i}=0$.

Proof. Let

$$
M_{\mathscr{B}}^{\mathscr{B}}(T)=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 j} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{j j} & \cdots & 0 \\
\vdots & \vdots & & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & a_{n n}
\end{array}\right]
$$

or, in English, the entries of the matrix $M_{\mathscr{B}}^{\mathscr{B}}(T)$ are $a_{k j} \in \mathbb{F}$ with $k, j \in\{1, \ldots, n\}$ and $a_{k j}=0$ whenever $k>j$. By the definition of the matrix $M_{\mathscr{B}}^{\mathscr{B}}(T)$, this means that for every $j \in\{1, \ldots, n\}$ we have

$$
\begin{equation*}
T v_{j}=\sum_{k=1}^{j} a_{k j} v_{k} \tag{1}
\end{equation*}
$$

We first prove the "if" part of the claim. Assume that there exists $i \in\{1, \ldots, n\}$ such that $a_{i i}=0$. Set

$$
\mathscr{U}=\operatorname{span}\left\{v_{1}, \ldots, v_{i}\right\}
$$

By (1), for every $j \in\{1, \ldots, i\}$ we have

$$
\begin{equation*}
T v_{j}=\sum_{k=1}^{j} a_{k j} v_{k}=\sum_{k=1}^{i} a_{k j} v_{k} \in \mathscr{U} \tag{2}
\end{equation*}
$$

It follows from the preceding i equalities that for every $u \in \mathscr{U}$ we have $T u \in \mathscr{U}$. Therefore, the restriction of T to \mathscr{U}, that is, the operator S defined by $S u=T u$ for all $u \in \mathscr{U}$ is an operator in $\mathscr{L}(\mathscr{U})$.

Since $a_{i i}=0$, the equalities in (2) read: for every $j \in\{1, \ldots, i\}$ we have

$$
S v_{j}=T v_{j}=\sum_{k=1}^{j} a_{k j} v_{k}=\sum_{k=1}^{i-1} a_{k j} v_{k} \in \operatorname{span}\left\{v_{1}, \ldots, v_{i-1}\right\}
$$

Consequently, for every $u \in \mathscr{U}$ we have

$$
S u=T u \in \operatorname{span}\left\{v_{1}, \ldots, v_{i-1}\right\}
$$

Hence, $v_{i} \notin \operatorname{ran}(S)$. That is, $\operatorname{ran}(S) \subsetneq \mathscr{U}$, or equivalently $\operatorname{dim} \operatorname{ran}(S)<\operatorname{dim} \mathscr{U}$. By the Nullity-Rank theorem, $\operatorname{dim} \operatorname{nul}(S)=\operatorname{dim} \mathscr{U}-\operatorname{dim} \operatorname{ran}(S) \geq 1$. Thus, $\operatorname{nul}(S) \neq\left\{0_{\mathscr{V}}\right\}$. Let $u \in \mathscr{U} \subseteq \mathscr{V}$ be such that $u \neq 0_{\mathscr{V}}$ and $S u=0_{\mathscr{V}}$. Since $T u=S u=0_{\mathscr{V}}$, it has been proven that T is not an injection.

Next we prove the "only if" part of the claim. Assume that T is not injective. It is convenient to introduce the following notation: for every $j \in\{1, \ldots, n\}$ set

$$
\mathscr{U}_{j}=\operatorname{span}\left\{v_{1}, \ldots, v_{j}\right\}
$$

Notice that $\mathscr{U}_{n}=\mathscr{V}$ and, if $n>1$, for all $j \in\{2, \ldots, n\}$ we have $\mathscr{U}_{j-1} \subsetneq \mathscr{U}_{j}$ p. Since the vectors v_{1}, \ldots, v_{n} are linearly independent, for all $j \in\{1, \ldots, n\}$ we have

$$
\begin{equation*}
\operatorname{dim} \mathscr{U}_{j}=j \tag{3}
\end{equation*}
$$

The equalities in (1) imply that for every $j \in\{1, \ldots, n\}$ we have

$$
\begin{equation*}
T \mathscr{U}_{j} \subseteq \mathscr{U}_{j} . \tag{4}
\end{equation*}
$$

Since T is not injective, we have $\operatorname{nul}(T) \neq\left\{0_{\mathscr{Y}}\right\}$, that is $\operatorname{dim} \operatorname{nul}(T) \geq 1$. By the Nullity-Rank theorem, $\operatorname{dim} \operatorname{ran}(T)=n-\operatorname{dim} \operatorname{nul}(T)<n$. Consequently, $\operatorname{ran}(T)=T \mathscr{V} \subsetneq \mathscr{V}$. Since $\mathscr{U}_{n}=\mathscr{V}$, we also have $T \mathscr{U}_{n} \subsetneq \mathscr{U}_{n}$.

Consider the set

$$
\mathbb{K}=\left\{j \in\{1, \ldots, n\}: T \mathscr{U}_{j} \subsetneq \mathscr{U}_{j}\right\} .
$$

Since $T \mathscr{U}_{n} \subsetneq \mathscr{U}_{n}$, we have $n \in \mathbb{K}$. Hence, the set \mathbb{K} is a nonempty set of positive integers. By the Well-Ordering Axiom of Integers $\min \mathbb{K}$ exists. Set $m=\min \mathbb{K}$.

Case 1. $m=1$. In this case $T \mathscr{U}_{1} \subsetneq \mathscr{U}_{1}$. Consequently, $\operatorname{dim}\left(T \mathscr{U}_{1}\right)<\operatorname{dim}\left(\mathscr{U}_{1}\right)$. Since $\operatorname{dim} \mathscr{U}_{1}=1$, we deduce that $\operatorname{dim}\left(T \mathscr{U}_{1}\right)=0$. Thus $T \mathscr{U}_{1}=\left\{0_{\mathscr{V}}\right\}$, so $T v_{1}=0_{\mathscr{V}}$. Hence $C_{\mathscr{B}}\left(T v_{1}\right)=[0 \cdots 0]^{\top}$ and so $a_{11}=0$.

Case 2. $m \in\{2, \ldots, n\}$. Then $m-1 \in\{1, \ldots, n\}$. By the definition of minimum, we have that $m-1 \notin \mathbb{K}$. Consequently,

$$
T \mathscr{U}_{m-1} \subsetneq \mathscr{U}_{m-1} \quad \text { is not true. }
$$

By (4), we have $T \mathscr{U}_{m-1} \subseteq \mathscr{U}_{m-1}$. The last inclusion is equivalent to

$$
T \mathscr{U}_{m-1} \subsetneq \mathscr{U}_{m-1} \quad \vee \quad T \mathscr{U}_{m-1}=\mathscr{U}_{m-1} .
$$

Since we proved that $T \mathscr{U}_{m-1} \subsetneq \mathscr{U}_{m-1}$ is not true, we must have $T \mathscr{U}_{m-1}=\mathscr{U}_{m-1}$. (This logical reasoning $(p \vee q) \wedge(\neg q) \Rightarrow p$ is called "disjunctive syllogism.")

Since $m \in \mathbb{K}$ we have

$$
T \mathscr{U}_{m} \subsetneq \mathscr{U}_{m} .
$$

Further, by definition of \mathscr{U}_{m-1} and \mathscr{U}_{m}, we have $\mathscr{U}_{m-1} \subsetneq \mathscr{U}_{m}$. Hence $T \mathscr{U}_{m-1} \subset T \mathscr{U}_{m}$.
Now we collect all the information that we have about $\mathscr{U}_{m-1}, T \mathscr{U}_{m-1}, \mathscr{U}_{m}, T \mathscr{U}_{m}$:

$$
\mathscr{U}_{m-1}=T \mathscr{U}_{m-1} \subseteq T \mathscr{U}_{m} \subsetneq \mathscr{U}_{m} .
$$

Using (3), for the corresponding dimensions we deduce

$$
m-1=\operatorname{dim}\left(\mathscr{U}_{m-1}\right) \leq \operatorname{dim}\left(T \mathscr{U}_{m}\right)<\operatorname{dim}\left(\mathscr{U}_{m}\right)=m .
$$

Since $\operatorname{dim}\left(T \mathscr{U}_{m}\right)$ is a positive integer, the preceding relation among positive integers yields

$$
m-1=\operatorname{dim}\left(T \mathscr{U}_{m}\right) .
$$

Since

$$
\mathscr{U}_{m-1} \subseteq T \mathscr{U}_{m} \quad \text { and } \quad m-1=\operatorname{dim}\left(\mathscr{U}_{m-1}\right) \quad \text { and } \quad m-1=\operatorname{dim}\left(T \mathscr{U}_{m}\right),
$$

we deduce

$$
T \mathscr{U}_{m}=\mathscr{U}_{m-1} .
$$

Since by the definition of \mathscr{U}_{m} we have $v_{m} \in \mathscr{U}_{m}$, the preceding set equality yields

$$
T v_{m} \in \mathscr{U}_{m-1}=\operatorname{span}\left\{v_{1}, \ldots, v_{m-1}\right\} .
$$

Thus, there exist $\alpha_{1}, \ldots, \alpha_{m-1} \in \mathbb{F}$ such that

$$
T v_{m}=\alpha_{1} v_{1}+\cdots+\alpha_{m-1} v_{m-1} .
$$

By (1), that is by the definition of $M_{\mathscr{B}}^{\mathscr{B}}(T)$ we have,

$$
T v_{m}=\sum_{k=1}^{m} a_{k m} v_{k} .
$$

Since the vectors v_{1}, \ldots, v_{m} are linearly independent, the last two equalities imply that $a_{m m}=0$.

Theorem 2 (5.41 page 157 in the textbook). Let \mathscr{V} be a finite-dimensional vector space over a scalar field \mathbb{F} with $\operatorname{dim} \mathscr{V}=n \in \mathbb{N}$. Let $T \in \mathscr{L}(\mathscr{V})$ and assume that there exists a basis \mathscr{B} of \mathscr{V} for which the matrix $M_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper-triangular with diagonal entries $a_{j j}$ where $j \in\{1, \ldots, n\}$. Then

$$
\sigma(T)=\left\{a_{j j}: j \in\{1, \ldots, n\}\right\} .
$$

Proof. We proved before that $M_{\mathscr{B}}^{\mathscr{B}}: \mathscr{L}(\mathscr{V}) \rightarrow \mathbb{F}^{n \times n}$ is an isomorphism of algebras. Therefore

$$
M_{\mathscr{B}}^{\mathscr{B}}(T-\lambda I)=M_{\mathscr{B}}^{\mathscr{B}}(T)-\lambda M_{\mathscr{B}}^{\mathscr{B}}(I)=M_{\mathscr{B}}^{\mathscr{B}}(T)-\lambda I_{n} .
$$

Here I_{n} denotes the identity matrix in $\mathbb{F}^{n \times n}$. As $M_{\mathscr{B}}^{\mathscr{B}}(T)$ and $M_{\mathscr{B}}^{\mathscr{B}}(I)=I_{n}$ are upper triangular, $M_{\mathscr{B}}^{\mathscr{B}}(T-\lambda I)$ is upper triangular as well. Its diagonal entries are $a_{j j}-\lambda$, where $j \in\{1, \ldots, n\}$.

To prove the set equality

$$
\sigma(T)=\left\{a_{j j}: j \in\{1, \ldots, n\}\right\} .
$$

in the theorem we need to prove two inclusions.
First we prove \subseteq. Let $\lambda \in \sigma(T)$. Because λ is an eigenvalue, $T-\lambda I$ is not injective. Because $T-\lambda I$ is not injective. By Theorem 1 one of the diagonal entries of the upper triangular matrix

$$
M_{\mathscr{B}}^{\mathscr{B}}(T-\lambda I)=M_{\mathscr{B}}^{\mathscr{B}}(T)-\lambda I_{n}
$$

is zero. That is, there exists $i \in\{1, \ldots, n\}$ such that $a_{i i}-\lambda=0$. Thus $\lambda=a_{i i}$, and we proved

$$
\sigma(T) \subseteq\left\{a_{j j}: j \in\{1, \ldots, n\}\right\}
$$

Next we prove \supseteq. Let $j \in\{1, \ldots, n\}$ be arbitrary. Consider the matrix $M_{\mathscr{B}}^{\mathscr{B}}\left(T-a_{j j} I\right)$. The j-th diagonal entry of the matrix

$$
M_{\mathscr{B}}^{\mathscr{B}}\left(T-a_{j j} I\right)=M_{\mathscr{B}}^{\mathscr{B}}(T)-a_{j j} I_{n}
$$

is equal to $a_{j j}-a_{j j}=0$. By Theorem 1 the operator $T-a_{j j} I$ is not injective. This implies that $a_{j j}$ is an eigenvalue of T. Thus $a_{j j} \in \sigma(T)$. This completes the proof.

