
Theorem 1. Let V be a finite-dimensional vector space over a scalar field F with dim V = n ∈ N. Let
T ∈ L (V ) and assume that there exists a basis B =

(
v1, . . . , vn

)
of V for which the matrix MB

B (T ) is
upper-triangular with diagonal entries ajj where j ∈ {1, . . . , n}. Then T is not injective if and only if there
exists i ∈ {1, . . . , n} such that aii = 0.

Proof. Let

MB
B (T ) =



a11 a12 · · · a1j · · · a1n
0 a22 · · · a2j · · · a2n
...

...
. . .

...
...

0 0 · · · ajj · · · 0
...

...
...

. . .
...

0 0 · · · 0 · · · ann


,

or, in English, the entries of the matrix MB
B (T ) are akj ∈ F with k, j ∈ {1, . . . , n} and akj = 0 whenever

k > j. By the definition of the matrix MB
B (T ), this means that for every j ∈ {1, . . . , n} we have

Tvj =

j∑
k=1

akjvk. (1)

We first prove the “if” part of the claim. Assume that there exists i ∈ {1, . . . , n} such that aii = 0. Set

U = span{v1, . . . , vi}.

By (1), for every j ∈ {1, . . . , i} we have

Tvj =

j∑
k=1

akjvk =
i∑

k=1

akjvk ∈ U . (2)

It follows from the preceding i equalities that for every u ∈ U we have Tu ∈ U . Therefore, the restriction
of T to U , that is, the operator S defined by Su = Tu for all u ∈ U is an operator in L (U ).

Since aii = 0, the equalities in (2) read: for every j ∈ {1, . . . , i} we have

Svj = Tvj =

j∑
k=1

akjvk =

i−1∑
k=1

akjvk ∈ span{v1, . . . , vi−1}.

Consequently, for every u ∈ U we have

Su = Tu ∈ span{v1, . . . , vi−1}.

Hence, vi /∈ ran(S). That is, ran(S) ( U , or equivalently dim ran(S) < dim U . By the Nullity-Rank
theorem, dim nul(S) = dim U − dim ran(S) ≥ 1. Thus, nul(S) 6= {0V }. Let u ∈ U ⊆ V be such that
u 6= 0V and Su = 0V . Since Tu = Su = 0V , it has been proven that T is not an injection.

Next we prove the “only if” part of the claim. Assume that T is not injective. It is convenient to
introduce the following notation: for every j ∈ {1, . . . , n} set

Uj = span{v1, . . . , vj}.

Notice that Un = V and, if n > 1, for all j ∈ {2, . . . , n} we have Uj−1 ( Ujp. Since the vectors v1, . . . , vn
are linearly independent, for all j ∈ {1, . . . , n} we have

dim Uj = j. (3)
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The equalities in (1) imply that for every j ∈ {1, . . . , n} we have

TUj ⊆ Uj . (4)

Since T is not injective, we have nul(T ) 6= {0V }, that is dim nul(T ) ≥ 1. By the Nullity-Rank theorem,
dim ran(T ) = n − dim nul(T ) < n. Consequently, ran(T ) = TV ( V . Since Un = V , we also have
TUn ( Un.

Consider the set
K =

{
j ∈ {1, ..., n} : TUj ( Uj

}
.

Since TUn ( Un, we have n ∈ K. Hence, the set K is a nonempty set of positive integers. By the
Well-Ordering Axiom of Integers minK exists. Set m = minK.

Case 1. m = 1. In this case TU1 ( U1. Consequently, dim(TU1) < dim(U1). Since dim U1 = 1, we
deduce that dim(TU1) = 0. Thus TU1 = {0V }, so Tv1 = 0V . Hence CB(Tv1) = [0 · · · 0]> and so a11 = 0.

Case 2. m ∈ {2, . . . , n}. Then m − 1 ∈ {1, . . . , n}. By the definition of minimum, we have that
m− 1 6∈ K. Consequently,

TUm−1 ( Um−1 is not true.

By (4), we have TUm−1 ⊆ Um−1. The last inclusion is equivalent to

TUm−1 ( Um−1 ∨ TUm−1 = Um−1.

Since we proved that TUm−1 ( Um−1 is not true, we must have TUm−1 = Um−1. (This logical reasoning
(p ∨ q) ∧ (¬q)⇒ p is called “disjunctive syllogism.”)

Since m ∈ K we have
TUm ( Um.

Further, by definition of Um−1 and Um, we have Um−1 ( Um. Hence TUm−1 ⊂ TUm.
Now we collect all the information that we have about Um−1, TUm−1, Um, TUm:

Um−1 = TUm−1 ⊆ TUm ( Um.

Using (3), for the corresponding dimensions we deduce

m− 1 = dim(Um−1) ≤ dim(TUm) < dim(Um) = m.

Since dim(TUm) is a positive integer, the preceding relation among positive integers yields

m− 1 = dim(TUm).

Since
Um−1 ⊆ TUm and m− 1 = dim(Um−1) and m− 1 = dim(TUm),

we deduce
TUm = Um−1.

Since by the definition of Um we have vm ∈ Um, the preceding set equality yields

Tvm ∈ Um−1 = span{v1, . . . , vm−1}.

Thus, there exist α1, . . . , αm−1 ∈ F such that

Tvm = α1v1 + · · ·+ αm−1vm−1.

By (1), that is by the definition of MB
B (T ) we have,

Tvm =

m∑
k=1

akmvk.

Since the vectors v1, . . . , vm are linearly independent, the last two equalities imply that amm = 0.
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Theorem 2 (5.41 page 157 in the textbook). Let V be a finite-dimensional vector space over a scalar field
F with dim V = n ∈ N. Let T ∈ L (V ) and assume that there exists a basis B of V for which the matrix
MB

B (T ) is upper-triangular with diagonal entries ajj where j ∈ {1, . . . , n}. Then

σ(T ) =
{
ajj : j ∈ {1, ..., n}

}
.

Proof. We proved before that MB
B : L (V )→ Fn×n is an isomorphism of algebras. Therefore

MB
B (T − λI) = MB

B (T )− λMB
B (I) = MB

B (T )− λIn.

Here In denotes the identity matrix in Fn×n. As MB
B (T ) and MB

B (I) = In are upper triangular, MB
B (T−λI)

is upper triangular as well. Its diagonal entries are ajj − λ, where j ∈ {1, ..., n}.
To prove the set equality

σ(T ) =
{
ajj : j ∈ {1, ..., n}

}
.

in the theorem we need to prove two inclusions.
First we prove ⊆. Let λ ∈ σ(T ). Because λ is an eigenvalue, T − λI is not injective. Because T − λI

is not injective. By Theorem 1 one of the diagonal entries of the upper triangular matrix

MB
B (T − λI) = MB

B (T )− λIn

is zero. That is, there exists i ∈ {1, ..., n} such that aii − λ = 0. Thus λ = aii, and we proved

σ(T ) ⊆
{
ajj : j ∈ {1, ..., n}

}
.

Next we prove ⊇. Let j ∈ {1, ..., n} be arbitrary. Consider the matrix MB
B (T−ajjI). The j-th diagonal

entry of the matrix
MB

B (T − ajjI) = MB
B (T )− ajjIn

is equal to ajj − ajj = 0. By Theorem 1 the operator T − ajjI is not injective. This implies that ajj is an
eigenvalue of T . Thus ajj ∈ σ(T ). This completes the proof.
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