Inner Product Spaces

Branko Ćurgus

March 14, 2024 at 13:50

1 Inner Product Spaces

By i we denote the imaginary unit in \mathbb{C}. For a complex number α by $\operatorname{Re}(\alpha)$ we denote the real part of α and by $\operatorname{Im}(\alpha)$ we denote the imaginary part of α. We have $\alpha=\operatorname{Re}(\alpha)+\mathrm{i} \operatorname{Im}(\alpha)$. By $\bar{\alpha}$ we denote the conjugate of of α. We have $\bar{\alpha}=\operatorname{Re}(\alpha)-\mathrm{i} \operatorname{Im}(\alpha)$. By $|\alpha|$ we denote the modulus of α. We have

$$
|\alpha|=\sqrt{\alpha \bar{\alpha}}=\sqrt{(\operatorname{Re} \alpha)^{2}+(\operatorname{Im} \alpha)^{2}} .
$$

In this section \mathbb{F} stands for either \mathbb{R} or \mathbb{C}.
Definition 1.1. Let \mathscr{V} be a vector space over \mathbb{F}. If the following five conditions are satisfied

IPE. $\langle\cdot, \cdot\rangle: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ is a function,
IPL. $\forall u, v, w \in \mathscr{V} \quad \forall \alpha, \beta \in \mathbb{F} \quad\langle\alpha u+\beta v, w\rangle=\alpha\langle u, w\rangle+\beta\langle v, w\rangle$,
IPC. $\forall u, v \in \mathscr{V} \quad\langle v, u\rangle=\overline{\langle u, v\rangle}$,
IPN. $\forall v \in \mathscr{V}\langle v, v\rangle \geq 0$,
IPD. $\forall v \in \mathscr{V} \quad\langle v, v\rangle=0$ implies $v=0_{\mathscr{V}}$,
then the function $\langle\cdot, \cdot\rangle: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ is called a (positive definite) inner product on \mathscr{V}. The ordered pair $(\mathscr{V},\langle\cdot, \cdot\rangle)$ is called an inner product space over \mathbb{F}.

In the following proposition we establish basic algebra on an inner product space.

Proposition 1.2. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{F}. The following statements hold.
(a) $\forall v \in \mathscr{V}$ we have $\left\langle 0_{\mathscr{V}}, v\right\rangle=\left\langle v, 0_{\mathscr{V}}\right\rangle=0$.
pr-aip-i2
pr-aip-i3
(b) $\forall u, v, w \in \mathscr{V} \quad \forall \alpha, \beta \in \mathbb{F}$ we have $\langle u, \alpha v+\beta w\rangle=\bar{\alpha}\langle u, v\rangle+\bar{\beta}\langle u, w\rangle$.
(c) For all $m, n \in \mathbb{N}$ and all $\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n} \in \mathbb{F}$ and all u_{1}, \ldots, u_{m}, $v_{1}, \ldots, v_{n} \in \mathscr{V}$ we have

$$
\left\langle\sum_{j=1}^{m} \alpha_{j} u_{j}, \sum_{k=1}^{n} \beta_{k} v_{k}\right\rangle=\sum_{j=1}^{m} \sum_{k=1}^{n} \alpha_{j} \bar{\beta}_{k}\left\langle u_{j}, v_{k}\right\rangle
$$

Proof.

Definition 1.3. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{F}. Vectors $u, v \in \mathscr{V}$ are said to be orthogonal if $\langle u, v\rangle=0$. The notation for orthogonal vectors is $u \perp v$.

A set of vectors $\mathscr{A} \subset \mathscr{V}$ is said to form an orthogonal system in $(\mathscr{V},\langle\cdot, \cdot\rangle)$ if for all $u, v \in \mathscr{A}$ we have $\langle u, v\rangle=0$ whenever $u \neq v$ and for all $v \in \mathscr{A}$ we have $\langle v, v\rangle>0$. An orthogonal system \mathscr{A} is called an orthonormal system if for all $v \in \mathscr{A}$ we have $\langle v, v\rangle=1$.
th-PT Theorem 1.4 (Pythagorean Theorem). Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{F} and let $n \in \mathbb{N}$. If $\left\{v_{1}, \cdots, v_{n}\right\} \subset \mathscr{V}$ is an orthogonal system in $(\mathscr{V},\langle\cdot, \cdot\rangle)$, then

$$
\left\langle\sum_{j=1}^{n} v_{j}, \sum_{k=1}^{n} v_{k}\right\rangle=\sum_{j=1}^{n}\left\langle v_{j}, v_{j}\right\rangle
$$

Proof. Assume that $\left\{v_{1}, \cdots, v_{n}\right\} \subset \mathscr{V}$ is orthogonal system in $(\mathscr{V},\langle\cdot, \cdot\rangle)$. That is, assume that for all $j, k \in\{1, \ldots, n\}$ we have $\left\langle v_{j}, v_{k}\right\rangle=0$ whenever $j \neq k$ and $\left\langle v_{k}, v_{k}\right\rangle>0$. Then we have

$$
\begin{aligned}
\left\langle\sum_{j=1}^{n} v_{j}, \sum_{k=1}^{n} v_{k}\right\rangle & =\sum_{j=1}^{n}\left\langle v_{j}, \sum_{k=1}^{n} v_{k}\right\rangle \\
& =\sum_{j=1}^{n}\left\langle v_{j}, v_{j}+\sum_{\substack{k=1 \\
k \neq j}}^{n} v_{k}\right\rangle \\
& =\sum_{j=1}^{n}\left\langle\left\langle v_{j}, v_{j}\right\rangle+\left\langle v_{j}, \sum_{\substack{k=1 \\
k \neq j}}^{n} v_{k}\right\rangle\right) \\
& =\sum_{j=1}^{n}\left\langle v_{j}, v_{j}\right\rangle+\sum_{j=1}^{n}\left\langle v_{j}, \sum_{\substack{k=1 \\
k \neq j}}^{n} v_{k}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n}\left\langle v_{j}, v_{j}\right\rangle+\sum_{j=1}^{n}\left(\sum_{\substack{k=1 \\
k \neq j}}^{n}\left\langle v_{j}, v_{k}\right\rangle\right) \\
& =\sum_{j=1}^{n}\left\langle v_{j}, v_{j}\right\rangle
\end{aligned}
$$

The first equality follows from the additivity property in the first variable of the inner product (a special case of Proposition 1.2(c)). The second equality follows from the commutativity of addition in the vector space. The third equality follows from the additivity property in the second variable of the inner product (a special case of Proposition $1.2(\mathrm{~b})$). The fourth equality follows from the commutativity of addition in \mathbb{C}. The fifth equality follows from the additivity property in the second variable of the inner product (a special case of Proposition $1.2(\mathrm{c})$). The sixth equality follows from the assumption for all $j, k \in\{1, \ldots, n\}$ we have $\left\langle v_{j}, v_{k}\right\rangle=0$ whenever $j \neq k$.

Remark 1.5. One could have stated that the Pythagorean theorem follows from Proposition $1.2(\mathrm{c})$), but that would have obscured the details of the reasoning. I also wanted to emphasize that the only property of the inner product that is used in the proof is the additivity property of the inner product.

Theorem 1.6 (Cauchy-Bunyakovsky-Schwartz Inequality). Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{F}. Then

$$
\begin{equation*}
\forall u, v \in \mathscr{V} \quad|\langle u, v\rangle|^{2} \leq\langle u, u\rangle\langle v, v\rangle \tag{1}
\end{equation*}
$$

eq-CSBi
The equality occurs in (1) if and only if u and v are linearly dependent.
Proof. Proof 1. Let $u, v \in \mathscr{V}$ be arbitrary. Case 1. Assume $v=0_{\mathscr{V}}$. By Proposition $1.2(\mathrm{a})$ we have $\langle u, v\rangle=0$ and $\langle v, v\rangle=0$. Therefore the Cauchy-Bunyakovsky-Schwartz Inequality holds as an equality.

Case 2. Assume $v \neq 0_{\mathscr{V}}$. Then $\langle v, v\rangle>0$. Consider the vector

$$
u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v
$$

Then by Proposition $1.2(\mathrm{c})$, and using the fact that $\langle v, v\rangle>0$ we have

$$
\left\langle u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v, u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v\right\rangle
$$

$$
\begin{aligned}
& =\langle u, u\rangle-\frac{\overline{\langle u, v\rangle}}{\langle v, v\rangle}\langle u, v\rangle-\frac{\langle u, v\rangle}{\langle v, v\rangle}\langle v, u\rangle+\frac{\langle u, v\rangle \overline{\langle u, v\rangle}}{\langle v, v\rangle^{2}}\langle v, v\rangle \\
& =\langle u, u\rangle-\frac{|\langle u, v\rangle|^{2}}{\langle v, v\rangle}
\end{aligned}
$$

Since $\langle v, v\rangle>0$, the established equality is equivalent to

$$
\begin{equation*}
\langle v, v\rangle\left\langle u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v, u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v\right\rangle=\langle u, u\rangle\langle v, v\rangle-|\langle u, v\rangle|^{2} \tag{2}
\end{equation*}
$$

eq-CBS1

Since the left-hand side in (2) is nonnegative, we have that

$$
0 \leq\langle u, u\rangle\langle v, v\rangle-|\langle u, v\rangle|^{2}
$$

which is equivalent to the Cauchy-Bunyakovsky-Schwartz Inequality.
The case of equality. Assume that u and v are linearly dependent. If $v=0_{\mathscr{V}}$, then equality in the Cauchy-Bunyakovsky-Schwartz Inequality holds. If $v \neq 0_{\mathscr{V}}$, then there exists $\alpha \in \mathbb{F}$ such that $u=\alpha v$. Then

$$
|\langle u, v\rangle|^{2}=|\alpha|^{2}\langle v, v\rangle^{2} \quad \text { and } \quad\langle u, u\rangle\langle v, v\rangle=|\alpha|^{2}\langle v, v\rangle^{2}
$$

Thus the equality in the Cauchy-Bunyakovsky-Schwartz Inequality holds.
To prove the converse, assume that the equality holds in the Cauchy-Bunyakovsky-Schwartz Inequality. Then both sides of the equality in (2) equal to 0 . If $v=0_{\mathscr{V}}$, then u and v are linearly dependent. If $v \neq 0_{\mathscr{V}}$, then $\langle v, v\rangle>0$. Consequently, (2), by IPD in Definition 1.1, implies that

$$
u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v=0_{\mathscr{V}}
$$

This proves that u and v are linearly dependent. End of Proof 1.
Proof 2. Let $u, v \in \mathscr{V}$ be arbitrary. Case 2. Assume $v \neq 0_{\mathscr{V}}$. As is calculated in Figure 1, the vectors on the right hand side of the following decomposition of u,

$$
u=\frac{\langle u, v\rangle}{\langle v, v\rangle} v+\left(u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v\right)
$$

are orthogonal. With the notation

$$
w=u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v
$$

Figure 1: Orthogonal decomposition of u along v and $\perp v$.
fig:OrthDec2
an application of Pythagorean Theorem yields

$$
\begin{equation*}
\langle u, u\rangle=\left\langle\frac{\langle u, v\rangle}{\langle v, v\rangle} v, \frac{\langle u, v\rangle}{\langle v, v\rangle} v\right\rangle+\langle w, w\rangle . \tag{3}
\end{equation*}
$$

Using algebra of inner product, (3) is equivalent to:

$$
\begin{equation*}
\langle u, u\rangle=\frac{|\langle u, v\rangle|^{2}}{\langle v, v\rangle}+\langle w, w\rangle . \tag{4}
\end{equation*}
$$

Since $\langle w, w\rangle \geq 0$, we have that (4) implies

$$
\begin{equation*}
\langle u, u\rangle \geq \frac{|\langle u, v\rangle|^{2}}{\langle v, v\rangle} . \tag{5}
\end{equation*}
$$

Multiplying the last inequality by $\langle v, v\rangle>0$, we obtain the Cauchy-BunyakovskySchwartz Inequality:

$$
\begin{equation*}
\langle u, u\rangle\langle v, v\rangle \geq|\langle u, v\rangle|^{2} . \tag{6}
\end{equation*}
$$

eq-ptuv3

The case of equality. We prove only the second part. Assume that the equality holds in (6). Then the equality holds in (5). Comparing (5) and (4) we deduce that $\langle w, w\rangle=0$. Now, IPD in Definition 1.1 implies $w=0_{\mathscr{v}}$. By the definition of w this proves that u and v are linearly dependent.

Definition 1.7. Let \mathscr{V} be a vector space over \mathbb{F}, where \mathbb{F} is either \mathbb{R} or \mathbb{C}. If the following five conditions are satisfied:

NE. $\|\cdot\|: \mathscr{V} \rightarrow \mathbb{F}$ is a function,
NS. $\forall v \in \mathscr{V} \quad \forall \alpha \in \mathbb{F} \quad\|\alpha v\|=|\alpha|\|v\|$,
NT. $\forall u, v \in \mathscr{V} \quad\|u+v\| \leq\|u\|+\|v\|$,
NN. $\forall v \in \mathscr{V} \quad\|v\| \geq 0$,
ND. $\forall v \in \mathscr{V} \quad\|v\|=0$ implies $v=0_{\mathscr{V}}$,
then the function $\|\cdot\|: \mathscr{V} \rightarrow \mathbb{F}$ is called a norm on \mathscr{V}.
A normed space over a field \mathbb{F} is an ordered pair $(\mathscr{V},\|\cdot\|)$, where \mathscr{V} is a vector space over \mathbb{F} and $\|\cdot\|$ is a norm on \mathscr{V}.

In a normed space $(\mathscr{V},\|\cdot\|)$, the distance between any two vectors $u, v \in$ \mathscr{V} is defined as:

$$
\operatorname{dist}(u, v)=\|u-v\|
$$

An inner product gives rise to a norm.
Theorem 1.8. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{F}. The function $\|\cdot\|: \mathscr{V} \rightarrow \mathbb{F}$ defined by

$$
\begin{equation*}
\forall v \in \mathscr{V} \quad\|v\|=\sqrt{\langle v, v\rangle} \tag{7}
\end{equation*}
$$

eq-ipsns
is a norm on \mathscr{V}.
Proof. The formula in (7) defines a function on \mathscr{V} since it represents a composition of two functions. The first function is $v \mapsto\langle v, v\rangle$ defined on \mathscr{V} with the values in the set of nonnegative real numbers, see IPN in Definition 1.1. The second function is the real square root function.

To prove NS, let $v \in \mathscr{V}$ and $\alpha \in \mathbb{F}$ be arbitrary.
To prove NT, let $u, v \in \mathscr{V}$ be arbitrary.
The property NN follows from the definition of the real square root function.

To prove ND, let $v \in \mathscr{V}$ be arbitrary.

Remark 1.9. An alternative formulation of the Cauchy-Bunyakovsky-Schwartz Inequality involves the norm defined in Theorem 1.8. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{F}. Then

$$
\begin{equation*}
\forall u, v \in \mathscr{V} \quad|\langle u, v\rangle| \leq\|u\|\|v\| . \tag{8}
\end{equation*}
$$

eq-CSBin

The following theorem collects important properties of finite orthogonal systems of vectors.

th-os-ec

Theorem 1.10. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{F}. Let $n \in \mathbb{N}$ and let $\left\{u_{1}, \ldots, u_{n}\right\} \subset \mathscr{V}$ be an orthogonal system in $(\mathscr{V},\langle\cdot, \cdot\rangle)$, and set $\mathscr{U}=\operatorname{span}\left\{u_{1}, \ldots, u_{n}\right\}$. The following statements hold.
(a) For all $u \in \mathscr{U}$ we have

$$
u=\sum_{j=1}^{n} \alpha_{j} u_{j} \quad \Rightarrow \quad \forall j \in\{1, \ldots, n\} \quad \alpha_{j}=\frac{\left\langle u, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} .
$$

In particular, an orthogonal system is linearly independent.
(b) For every $v \in \mathscr{V}$ we have

$$
v-\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j} \quad \perp \quad \mathscr{U} .
$$

(c) For every $v \in \mathscr{V}$ Bessel's inequality holds

$$
\sum_{j=1}^{n} \frac{\left|\left\langle v, u_{j}\right\rangle\right|^{2}}{\left\langle u_{j}, u_{j}\right\rangle} \leq\langle v, v\rangle=\|v\|^{2} .
$$

The equality holds in Bessel's inequality if and only if $v \in \mathscr{U}$.
Proof. To prove (a), let $u=\sum_{j=1}^{n} \alpha_{j} u_{j}$, let $k \in\{1, \ldots, n\}$ be arbitrary, and calculate the inner product with u_{k} for both sides of the equality. Then, using the linearity of the inner product in the first variable and the fact that $\left\langle u_{j}, u_{k}\right\rangle=0$ whenever $j \neq k$ we obtain $\left\langle u, u_{k}\right\rangle=\sum_{j=1}^{n} \alpha_{j}\left\langle u_{j}, u_{k}\right\rangle=$ $\alpha_{k}\left\langle u_{k}, u_{k}\right\rangle$. Since $\left\langle u_{k}, u_{k}\right\rangle>0$, we have $\alpha_{k}=\frac{\left\langle u, u_{k}\right\rangle}{\left\langle u_{k}, u_{k}\right\rangle}$.

To prove (b) let $v \in \mathscr{V}$ be arbitrary. Let let $k \in\{1, \ldots, n\}$ be arbitrary, and calculate the inner product

$$
\begin{aligned}
\left\langle v-\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}, u_{k}\right\rangle & =\left\langle v, u_{k}\right\rangle-\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle}\left\langle u_{j}, u_{k}\right\rangle \\
& =\left\langle v, u_{k}\right\rangle-\left\langle v, u_{k}\right\rangle \\
& =0 .
\end{aligned}
$$

Since $k \in\{1, \ldots, n\}$ was arbitrary, replacing u_{k} with an arbitrary vector in \mathscr{U} also leads to the zero inner product.

To prove (c) we observe that the $n+1$ vectors on the right side in the equality

$$
v=\left(v-\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}\right)+\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}
$$

are mutually orthogonal and apply the Pythagorean Theorem to obtain

$$
\|v\|^{2}=\left\|v-\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}\right\|^{2}+\sum_{j=1}^{n} \frac{\left|\left\langle v, u_{j}\right\rangle\right|^{2}}{\left\langle u_{j}, u_{j}\right\rangle} .
$$

Bessel's inequality and the characterization of the equality follow from the preceding equality.

The formulas that appear in the preceding theorem are probably the most important formulas in inner product spaces. My nickname for the content in (a) is "easy coefficients" since (a) shows that finding the coefficients of a linear combination of an orthogonal system is given by clear formulas. The vector

$$
\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}
$$

in (b) is called the orthogonal projection of v onto \mathscr{U}. For more about the orthogonal projections see paragraphs after Corollary 1.17. My nickname for the content in (b) is "easy orthogonal projection" since (b) shows that finding the coefficients of the orthogonal projection onto a span of an orthogonal system is given by a clear formula. Bessel's inequality needs no nickname, it is one of the key tools in proving convergence of Fourier series.

Theorem 1.11 (The Gram-Schmidt orthogonalization). Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a vector space over \mathbb{F} with a inner product $\langle\cdot, \cdot\rangle$. Let $n \in \mathbb{N}$ and let v_{1}, \ldots, v_{n} be linearly independent vectors in \mathscr{V}. Let the vectors u_{1}, \ldots, u_{n} be defined recursively by

$$
\begin{aligned}
u_{1} & =v_{1}, \\
u_{k+1} & =v_{k+1}-\sum_{j=1}^{k} \frac{\left\langle v_{k+1}, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}, \quad k \in\{1, \ldots, n-1\} .
\end{aligned}
$$

Then the vectors u_{1}, \ldots, u_{n} form an orthogonal system for which the following set equalities hold

$$
\forall k \in\{1, \ldots, n\} \quad \operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\} .
$$

Proof. We will prove by Mathematical Induction the following statement: For all $k \in\{1, \ldots, n\}$ we have:
(a) $\left\langle u_{k}, u_{k}\right\rangle>0$ and $\left\langle u_{j}, u_{k}\right\rangle=0$ whenever $j \in\{1, \ldots, k-1\}$;
(b) vectors u_{1}, \ldots, u_{k} are linearly independent;
(c) $\operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$.

For $k=1$ statements (a), (b) and (c) are clearly true. Let $m \in$ $\{1, \ldots, n-1\}$ and assume that statements (a), (b) and (c) are true for all $k \in\{1, \ldots, m\}$.

Next we will prove that statements (a), (b) and (c) are true for $k=m+1$. Recall the definition of u_{m+1} :

$$
u_{m+1}=v_{m+1}-\sum_{j=1}^{m} \frac{\left\langle v_{m+1}, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j} .
$$

By the Inductive Hypothesis we have span $\left\{u_{1}, \ldots, u_{m}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$. Since $v_{1} \ldots, v_{m+1}$ are linearly independent, $v_{m+1} \notin \operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$. Therefore, $u_{m+1} \neq 0_{\mathscr{V}}$. That is, $\left\langle u_{m+1}, u_{m+1}\right\rangle>0$. Let $k \in\{1, \ldots, m\}$ be arbitrary. Then by the Inductive Hypothesis we have that $\left\langle u_{j}, u_{k}\right\rangle=0$ whenever $j \in\{1, \ldots, m\}$ and $j \neq k$. Therefore,

$$
\begin{aligned}
\left\langle u_{m+1}, u_{k}\right\rangle & =\left\langle v_{m+1}, u_{k}\right\rangle-\sum_{j=1}^{m} \frac{\left\langle v_{m+1}, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle}\left\langle u_{j}, u_{k}\right\rangle \\
& =\left\langle v_{m+1}, u_{k}\right\rangle-\left\langle v_{m+1}, u_{k}\right\rangle \\
& =0 .
\end{aligned}
$$

This proves claim (a). To prove claim (b) notice that by the Inductive Hypothesis u_{1}, \ldots, u_{m} are linearly independent and $u_{m+1} \notin \operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$ since $v_{m+1} \notin \operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$. To prove claim (c) notice that the definition of u_{m+1} implies $u_{m+1} \in \operatorname{span}\left\{v_{1}, \ldots, v_{m+1}\right\}$. Since by the inductive hypothesis $\operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$, we have $\operatorname{span}\left\{u_{1}, \ldots, u_{m+1}\right\} \subseteq$ $\operatorname{span}\left\{v_{1}, \ldots, v_{m+1}\right\}$. The converse inclusion follows from the fact that $v_{m+1} \in$ $\operatorname{span}\left\{u_{1}, \ldots, u_{m+1}\right\}$.

The claim of the theorem follows from the claim that has been proven.

The following two statements are immediate consequences of the GramSchmidt orthogonalization algorithm.

Corollary 1.12. If $(\mathscr{V},\langle\cdot, \cdot\rangle)$ is a finite-dimensional inner product vector space, then \mathscr{V} has an orthonormal basis.
c-onb-ut Corollary 1.13. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a finite-dimensional complex inner product space and $T \in \mathscr{L}(\mathscr{V})$ then there exists an orthonormal basis \mathscr{B} such that $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper-triangular.

Definition 1.14. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space and $\mathscr{A} \subset \mathscr{V}$. We define the orthogonal complement of \mathscr{A} to be $\mathscr{A}^{\perp}=\{v \in \mathscr{V}:\langle v, a\rangle=$ $0 \forall a \in \mathscr{A}\}$.

The following is a straightforward proposition.
Proposition 1.15. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space and $\mathscr{A} \subset \mathscr{V}$. Then \mathscr{A}^{\perp} is a subspace of \mathscr{V}.
th-fd-ds Theorem 1.16. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space and let \mathscr{U} be a finite-dimensional subspace of \mathscr{V}. Then $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$.
Proof. We first prove that $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$. Note that since \mathscr{U} is a subspace of \mathscr{V}, \mathscr{U} inherits the inner product from \mathscr{V}. Thus \mathscr{U} is a finite-dimensional inner product space. Thus there exists an orthonormal basis of $\mathscr{U}, \mathscr{B}=$ $\left\{u_{1}, u_{2}, \ldots u_{k}\right\}$.

Let $v \in \mathscr{V}$ be arbitrary. Then

$$
v=\left(\sum_{j=1}^{k}\left\langle v, u_{j}\right\rangle u_{j}\right)+\left(v-\sum_{j=1}^{k}\left\langle v, u_{j}\right\rangle u_{j}\right),
$$

where the first summand is in \mathscr{U}. By Theorem 1.10(b) the second summand is in \mathscr{U}^{\perp}. This proves that $\mathscr{V}=\mathscr{U}+\mathscr{U}^{\perp}$.

To prove that the sum is direct, let $w \in \mathscr{U}$ and $w \in \mathscr{U}^{\perp}$. Then $\langle w, w\rangle=$ 0 . Since $\langle\cdot, \cdot\rangle$ satisfies property IPD in Definition 1.1, $\langle w, w\rangle=0$ implies $w=0_{\mathscr{V}}$. The theorem is proved.

Corollary 1.17. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space and let \mathscr{U} be a finite-dimensional subspace of \mathscr{V}. Then $\left(\mathscr{U}^{\perp}\right)^{\perp}=\mathscr{U}$.

Recall that an arbitrary direct sum $\mathscr{V}=\mathscr{U} \oplus \mathscr{W}$ gives rise to a projection operator $P_{\mathscr{U} \| \mathscr{W}}$, the projection of \mathscr{V} onto \mathscr{U} parallel to \mathscr{W}.

If $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$, then the resulting projection of \mathscr{V} onto \mathscr{U} parallel to \mathscr{U}^{\perp} is called the orthogonal projection of \mathscr{V} onto \mathscr{U}; it is denoted simply by $P_{\mathscr{U}}$. By definition for every $v \in \mathscr{V}$,

$$
u=P_{\mathscr{U}} v \quad \Leftrightarrow \quad u \in \mathscr{U} \quad \text { and } \quad v-u \in \mathscr{U}^{\perp} .
$$

As for any projection we have $P_{\mathscr{U}} \in \mathscr{L}(\mathscr{V}), \operatorname{ran} P_{\mathscr{U}}=\mathscr{U}, \operatorname{nul} P_{\mathscr{U}}=\mathscr{U}^{\perp}$, and $\left(P_{\mathscr{U}}\right)^{2}=P_{\mathscr{U}}$.

Theorem 1.16 yields the following solution of the best approximation problem for finite-dimensional subspaces of an inner product space.
Corollary 1.18. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space and let \mathscr{U} be a finite-dimensional subspace of \mathscr{V}. For arbitrary $v \in \mathscr{V}$ the vector $P_{\mathscr{U}} v \in \mathscr{U}$ is the unique best approximation for v in \mathscr{U}. That is

$$
\begin{equation*}
\left\|v-P_{\mathscr{U}} v\right\|<\|v-u\| \quad \text { for all } \quad u \in \mathscr{U} \backslash\left\{P_{\mathscr{U}} v\right\} . \tag{9}
\end{equation*}
$$

Proof. Let $v \in \mathscr{V}$ and $u \in \mathscr{U} \backslash\left\{P_{\mathscr{U}} v\right\}$ be arbitrary. Recall the basic two fact which characterize the orthogonal projection $P_{\mathscr{U}} v$:

$$
P_{\mathscr{U}} v \in \mathscr{U} \quad \text { and } \quad v-P_{\mathscr{U}} v \in \mathscr{U}^{\perp} .
$$

In the next calculation we use the preceding two facts, the Pythagorean Theorem and the fact that $u \neq P_{\mathscr{U}} v$ as follows

$$
\begin{aligned}
\|v-u\|^{2} & =\left\|v-P_{\mathscr{U}} v+P_{\mathscr{U}} v-u\right\|^{2} \\
& =\left\|v-P_{\mathscr{U}} v\right\|^{2}+\left\|P_{\mathscr{U}} v-u\right\|^{2} \\
& >\left\|v-P_{\mathscr{U}} v\right\|^{2} .
\end{aligned}
$$

Taking the square root of both sides of the preceding inequality proves (9) in the corollary.

2 The definition of an adjoint operator

Let \mathscr{V} be a vector space over \mathbb{F}. The space $\mathscr{L}(\mathscr{V}, \mathbb{F})$ is called the dual space of \mathscr{V}; it is denoted by \mathscr{V}^{*}.

Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F}. A function $\Psi: \mathscr{V} \rightarrow \mathscr{W}$ is said to be anti-linear if for all $\alpha, \beta \in \mathbb{F}$ and all $u, v \in \mathscr{V}$ we have

$$
\Psi(\alpha u+\beta v)=\bar{\alpha} \Psi(u)+\bar{\beta} \Psi(v)
$$

th-Phi Theorem 2.1. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a finite-dimensional inner product space over \mathbb{F}. Define the function

$$
\Phi: \mathscr{V} \rightarrow \mathscr{V}^{*}
$$

as follows: for $w \in \mathscr{V}$ we set

$$
(\Phi(w))(v)=\langle v, w\rangle \quad \text { for all } \quad v \in \mathscr{V}
$$

Then Φ is an anti-linear bijection.

Proof. Clearly, for each $w \in \mathscr{V}, \Phi(w) \in \mathscr{V}^{*}$. The mapping Φ is anti-linear, since for $\alpha, \beta \in \mathbb{F}$ and $u, w \in \mathscr{V}$, for all $v \in \mathscr{V}$ we have

$$
\begin{aligned}
(\Phi(\alpha u+\beta w))(v) & =\langle v, \alpha u+\beta w\rangle \\
& =\bar{\alpha}\langle v, u\rangle+\bar{\beta}\langle v, w\rangle \\
& =\bar{\alpha}(\Phi(u))(v)+\bar{\beta}(\Phi(w))(v) \\
& =(\bar{\alpha} \Phi(u)+\bar{\beta} \Phi(w))(v) .
\end{aligned}
$$

Thus $\Phi(\alpha u+\beta w)=\bar{\alpha} \Phi(u)+\bar{\beta} \Phi(w)$. This proves anti-linearity.
To prove injectivity of Φ, let $u, w \in \mathscr{V}$ be such that $\Phi(u)=\Phi(w)$. Then $(\Phi(u))(v)=(\Phi(w))(v)$ for all $v \in \mathscr{V}$. By the definition of Φ this means $\langle v, u\rangle=\langle v, w\rangle$ for all $v \in \mathscr{V}$. Consequently, $\langle v, u-w\rangle=0$ for all $v \in \mathscr{V}$. In particular, with $v=u-w$ we have $\langle u-w, u-w\rangle=0$. Since $\langle\cdot, \cdot \cdot\rangle$ is a positive definite inner product, it follows that $u-w=0_{\mathscr{V}}$, that is $u=w$.

To prove that Φ is a surjection we use the assumption that \mathscr{V} is finitedimensional. Then there exists an orthonormal basis $\left(u_{1}, \ldots, u_{n}\right)$ of \mathscr{V}. Let $\varphi \in \mathscr{V}^{*}$ be arbitrary. Set

$$
w=\sum_{j=1}^{n} \overline{\varphi\left(u_{j}\right)} u_{j} .
$$

The proof that $\Phi(w)=\varphi$ follows. Let $v \in \mathscr{V}$ be arbitrary.

$$
\begin{aligned}
(\Phi(w))(v) & =\langle v, w\rangle \\
& =\left\langle v, \sum_{j=1}^{n} \overline{\varphi\left(u_{j}\right)} u_{j}\right\rangle \\
& =\sum_{j=1}^{n} \varphi\left(u_{j}\right)\left\langle v, u_{j}\right\rangle \\
& =\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle \varphi\left(u_{j}\right) \\
& =\varphi\left(\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle u_{j}\right) \\
& =\varphi(v) .
\end{aligned}
$$

Since the equality $(\Phi(w))(v)=\varphi(v)$ holds for all $v \in \mathscr{V}$, we have proved $\Phi(w)=\varphi$. The theorem is proved.
pr-alb Proposition 2.2. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F} and let \mathscr{V} be finitedimensional. If $\Psi: \mathscr{V} \rightarrow \mathscr{W}$ is an anti-linear bijection, then \mathscr{W} is finitedimensional and $\operatorname{dim} \mathscr{V}=\operatorname{dim} \mathscr{W}$.

Proof. Let $n=\operatorname{dim} \mathscr{V}$ and let $\left(u_{1}, \ldots, u_{n}\right)$ be a basis for \mathscr{V}. We will prove that $\left(\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)\right)$ is a basis for \mathscr{W}. First we prove that $\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)$ are linearly independent. For this goal, let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ be such that

$$
\alpha_{1} \Psi\left(u_{1}\right)+\cdots+\alpha_{n} \Psi\left(u_{n}\right)=0_{\mathscr{W}} .
$$

Since $\Psi: \mathscr{V} \rightarrow \mathscr{W}$ is anti-linear, the last equality is equivalent to

$$
\Psi\left(\overline{\alpha_{1}} u_{1}+\cdots+\overline{\alpha_{n}} u_{n}\right)=0_{\mathscr{W}} .
$$

Since anti-linearity of Ψ implies $\Psi\left(0_{\mathscr{V}}\right)=0_{\mathscr{W}}$, and since Ψ is a bijection, we deduce

$$
\overline{\alpha_{1}} u_{1}+\cdots+\overline{\alpha_{n}} u_{n}=0_{\mathscr{V}}
$$

Since u_{1}, \ldots, u_{n} are linearly independent, the last equality implies that for all $k \in\{1, \ldots, n\}$ we have $\overline{\alpha_{k}}=0_{\mathbb{F}}$. Therefore for all $k \in\{1, \ldots, n\}$ we have $\alpha_{k}=\overline{\overline{\alpha_{k}}}=\overline{0_{\mathbb{F}}}=0_{\mathbb{F}}$. This proves linear independence.

Now we prove that $\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)$ span \mathscr{W}. Let $w \in \mathscr{W}$ be arbitrary. Since $\Psi: \mathscr{V} \rightarrow \mathscr{W}$ is a surjection there exists $v \in \mathscr{V}$ such that $\Psi(v)=w$. Since the vectors u_{1}, \ldots, u_{n} span \mathscr{V}, there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ such that

$$
v=\alpha_{1} u_{1}+\cdot+\alpha_{n} u_{n} .
$$

Applying Ψ to both sides of the preceding equality and using that Ψ is anti-linear, we obtain

$$
w=\Psi(v)=\Psi\left(\alpha_{1} u_{1}+\cdot+\alpha_{n} u_{n}\right)=\overline{\alpha_{1}} \Psi\left(u_{1}\right)+\cdots+\overline{\alpha_{n}} \Psi\left(u_{n}\right) .
$$

Thus, w is a linear combination of $\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)$. Since $w \in \mathscr{W}$ was arbitrary, the vectors $\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)$ span \mathscr{W}. This proves that the vectors $\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)$ form a basis for \mathscr{W}. Thus $\operatorname{dim} \mathscr{V}=\operatorname{dim} \mathscr{W}$.

Corollary 2.3. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a finite-dimensional inner product space over \mathbb{F}. Then $\operatorname{dim} \mathscr{V}=\operatorname{dim} \mathscr{V}^{*}$.

Proof. Since $\Phi: \mathscr{V} \rightarrow \mathscr{V}^{*}$ from Theorem 2.1 is an anti-linear bijection, Proposition 2.2 implies that $\operatorname{dim} \mathscr{V}=\operatorname{dim} \mathscr{V}^{*}$.

The function Φ from Theorem 2.1 is a convenient tool for defining the adjoint of a linear operator. In the following definition, we will deal with two inner product spaces $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$. We will use subscripts to emphasize different inner products and different functions Φ :

$$
\Phi_{\mathscr{V}}: \mathscr{V} \rightarrow \mathscr{V}^{*}, \quad \Phi_{\mathscr{W}}: \mathscr{W} \rightarrow \mathscr{W}^{*} .
$$

Recall that for every $x, v \in \mathscr{V}$ we have

$$
\left(\Phi_{\mathscr{V}}(v)\right)(x)=\langle x, v\rangle_{\mathscr{V}},
$$

and for every $y, w \in \mathscr{W}$ we have

$$
\left(\Phi_{\mathscr{W}}(w)\right)(y)=\langle y, w\rangle_{\mathscr{W}} .
$$

Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be two finite-dimensional inner product spaces over \mathbb{F}. Let $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$. We define the adjoint $T^{*}: \mathscr{W} \rightarrow \mathscr{V}$ of T by

$$
\begin{equation*}
T^{*} w=\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right), \quad w \in \mathscr{W} . \tag{10}
\end{equation*}
$$

eq-def-T*
Since $\Phi_{\mathscr{W}}$ and $\Phi_{\mathscr{V}}^{-1}$ are anti-linear, T^{*} is linear. For arbitrary $\alpha_{1}, \alpha_{1} \in \mathbb{F}$ and $w_{1}, w_{2} \in \mathscr{W}$ we have

$$
\begin{aligned}
T^{*}\left(\alpha_{1} w_{1}+\alpha_{2} w_{2}\right) & =\Phi_{\mathscr{\mathscr { V }}}^{-1}\left(\Phi_{\mathscr{W}}\left(\alpha_{1} w_{1}+\alpha_{2} w_{2}\right) \circ T\right) \\
& =\Phi_{\mathscr{\mathscr { V }}}^{-1}\left(\left(\bar{\alpha}_{1} \Phi_{\mathscr{W}}\left(w_{1}\right)+\bar{\alpha}_{2} \Phi_{\mathscr{W}}\left(w_{2}\right)\right) \circ T\right) \\
& =\Phi_{\mathscr{V}}^{-1}\left(\bar{\alpha}_{1} \Phi_{\mathscr{W}}\left(w_{1}\right) \circ T+\bar{\alpha}_{2} \Phi_{\mathscr{W}}\left(w_{2}\right) \circ T\right) \\
& =\alpha_{1} \Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}\left(w_{1}\right) \circ T\right)+\alpha_{2} \Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}\left(w_{2}\right) \circ T\right) \\
& =\alpha_{1} T^{*} w_{1}+\alpha_{2} T^{*} w_{2} .
\end{aligned}
$$

Thus, $T^{*} \in \mathscr{L}(\mathscr{W}, \mathscr{V})$.
Next we will deduce the most important property of T^{*}. By the definition of $T^{*}: \mathscr{W} \rightarrow \mathscr{V}$, for a fixed arbitrary $w \in \mathscr{W}$ we have

$$
T^{*} w=\Phi_{\mathscr{Y}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right) .
$$

This is equivalent to

$$
\Phi_{\mathscr{V}}\left(T^{*} w\right)=\Phi_{\mathscr{W}}(w) \circ T,
$$

which is, by the definition of $\Phi_{\mathscr{V}}$, equivalent to

$$
\left(\Phi_{\mathscr{W}}(w) \circ T\right)(v)=\left\langle v, T^{*} w\right\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V}
$$

which, in turn, is equivalent to

$$
\left(\Phi_{\mathscr{W}}(w)\right)(T v)=\left\langle v, T^{*} w\right\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V} .
$$

From the definition of $\Phi_{\mathscr{W}}$ the last statement is equivalent to

$$
\langle T v, w\rangle_{\mathscr{W}}=\left\langle v, T^{*} w\right\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V} .
$$

The reasoning above proves the following proposition.
p-ch-adj Proposition 2.4. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be finite-dimensional inner product spaces over \mathbb{F}. Let $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ and $S \in \mathscr{L}(\mathscr{W}, \mathscr{V})$. Then $S=T^{*}$ if and only if

$$
\begin{equation*}
\langle T v, w\rangle_{\mathscr{W}}=\langle v, S w\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V}, w \in \mathscr{W} . \tag{11}
\end{equation*}
$$

eq-def-T*e

3 Properties of the adjoint operator

Theorem 3.1. Let $\left(\mathscr{U},\langle\cdot, \cdot\rangle_{\mathscr{U}}\right)$, $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be finitedimensional inner product spaces \mathbb{F}. Let $S \in \mathscr{L}(\mathscr{U}, \mathscr{V})$ and $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$. Then $(T S)^{*}=S^{*} T^{*}$.

Proof. By definition for every $u \in \mathscr{U}, v \in \mathscr{V}$ and $w \in \mathscr{W}$ we have

$$
\begin{aligned}
S^{*} v & =\Phi_{\mathscr{U}}^{-1}\left(\Phi_{\mathscr{V}}(v) \circ S\right) \\
T^{*} w & =\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right) \\
(T S)^{*} w & =\Phi_{\mathscr{U}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ(T S)\right)
\end{aligned}
$$

With this, for arbitrary $w \in \mathscr{W}$ we calculate

$$
\begin{aligned}
S^{*} T^{*} w & =S^{*}\left(T^{*} w\right) \\
& =\Phi_{\mathscr{U}}^{-1}\left(\Phi_{\mathscr{V}}\left(\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right)\right) \circ S\right) \\
& =\Phi_{\mathscr{U}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T \circ S\right) \\
& =(T S)^{*} w .
\end{aligned}
$$

Thus $(T S)^{*}=S^{*} T^{*}$.
A function $f: X \rightarrow X$ is said to be an involution if it is its own inverse, that is, if $f(f(x))=x$ for all $x \in X$.

Theorem 3.2. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be finite-dimensional inner product spaces over \mathbb{F}. Then the adjoint mapping

$$
{ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow \mathscr{L}(\mathscr{W}, \mathscr{V})
$$

is an anti-linear bijection. Its inverse is the adjoint mapping from $\mathscr{L}(\mathscr{W}, \mathscr{V})$ to $\mathscr{L}(\mathscr{V}, \mathscr{W})$. In particular the adjoint mapping in $\mathscr{L}(\mathscr{V}, \mathscr{V})$ is an anti-linear involution.

Proof. To prove that ${ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow \mathscr{L}(\mathscr{W}, \mathscr{V})$ is anti-linear let $\alpha, \beta \in \mathbb{F}$ be arbitrary and let $S, T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ be arbitrary. By the definition of ${ }^{*}$ for arbitrary $w \in \mathscr{W}$ we have

$$
\begin{aligned}
(\alpha S+\beta T)^{*} w & =\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ(\alpha S+\beta T)\right) \\
& =\Phi_{\mathscr{V}}^{-1}\left(\alpha \Phi_{\mathscr{W}}(w) \circ S+\beta \Phi_{\mathscr{W}}(w) \circ T\right) \\
& =\bar{\alpha} \Phi_{\mathscr{Y}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ S\right)+\bar{\beta} \Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right) \\
& =\bar{\alpha} S^{*} w+\bar{\beta} T^{*} w \\
& =\left(\bar{\alpha} S^{*}+\bar{\beta} T^{*}\right) w .
\end{aligned}
$$

Hence $(\alpha S+\beta T)^{*}=\bar{\alpha} S^{*}+\bar{\beta} T^{*}$.
To prove that the adjoint mapping ${ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow \mathscr{L}(\mathscr{W}, \mathscr{V})$ is a bijection we will use the adjoint mapping ${ }^{*}: \mathscr{L}(\mathscr{W}, \mathscr{V}) \rightarrow \mathscr{L}(\mathscr{V}, \mathscr{W})$. In fact we will prove that * is the inverse of ${ }^{*}$. To this end we will prove that for all $S \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ we have that $\left(S^{*}\right)^{\star}=S$ and that for all $T \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ we have that $\left(T^{\star}\right)^{*}=T$.

Here are the proofs. By the definition of the mapping ${ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow$ $\mathscr{L}(\mathscr{W}, \mathscr{V})$ for an arbitrary $S \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ we have

$$
\forall v \in \mathscr{V} \quad \forall w \in \mathscr{W} \quad\left\langle S^{*} w, v\right\rangle_{\mathscr{V}}=\langle w, S v\rangle_{\mathscr{W}} .
$$

By Proposition 2.4 this identity yields $\left(S^{*}\right)^{\star}=S$. By the definition of the mapping ${ }^{*}: \mathscr{L}(\mathscr{W}, \mathscr{V}) \rightarrow \mathscr{L}(\mathscr{V}, \mathscr{W})$ for an arbitrary $T \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ we have

$$
\forall w \in \mathscr{W} \quad \forall v \in \mathscr{V} \quad\left\langle T^{*} v, w\right\rangle_{\mathscr{W}}=\langle v, T w\rangle_{\mathscr{V}} .
$$

By Proposition 2.4 this identity yields $\left(T^{\star}\right)^{*}=T$.
th-pr-adj Theorem 3.3. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be finite-dimensional inner product spaces over \mathbb{F}. The following statements hold.
(i) $\operatorname{nul}\left(T^{*}\right)=(\operatorname{ran} T)^{\perp}$.
(ii) $\operatorname{ran}\left(T^{*}\right)=(\operatorname{nul} T)^{\perp}$.
(iii) $\operatorname{nul}(T)=\left(\operatorname{ran} T^{*}\right)^{\perp}$.
(iv) $\operatorname{ran}(T)=\left(\operatorname{nul} T^{*}\right)^{\perp}$.
th-adj-mat Theorem 3.4. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be finite-dimensional inner product spaces over \mathbb{F}. Let \mathscr{B} and \mathscr{C} be orthonormal bases of $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$, respectively, and let $T \in\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$. Then $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}\left(T^{*}\right)$ is the conjugate transpose of the matrix $\mathrm{M}_{\mathscr{C}}^{\mathscr{B}}(T)$.

Proof. Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{m}\right\}$ and $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ be orthonormal bases from the theorem. Let $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$. Then the term in the j-th column and the i-th row of the $n \times m$ matrix $\mathbf{M}_{\mathscr{C}}^{\mathscr{B}}(T)$ is $\left\langle T v_{j}, w_{i}\right\rangle$, while the term in the i-th column and the j-th row of the $m \times n$ matrix $\mathbf{M}_{\mathscr{B}}^{\mathscr{C}}\left(T^{*}\right)$ is

$$
\left\langle T^{*} w_{i}, v_{j}\right\rangle=\left\langle w_{i}, T v_{j}\right\rangle=\overline{\left\langle T v_{j}, w_{i}\right\rangle} .
$$

This proves the claim.
le-Uinv
Lemma 3.5. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be an inner product on \mathscr{V}. Let \mathscr{U} be a subspace of \mathscr{V} and let $T \in \mathscr{L}(\mathscr{V})$. The subspace \mathscr{U} is invariant under T if and only if the subspace \mathscr{U}^{\perp} is invariant under T^{*}.

Proof. By the definition of adjoint we have

$$
\begin{equation*}
\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle \tag{12}
\end{equation*}
$$

eq-ad-1
for all $u, v \in \mathscr{V}$. Assume $T \mathscr{U} \subseteq \mathscr{U}$. From (12) we get

$$
0=\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle \quad \forall u \in \mathscr{U} \quad \text { and } \quad \forall v \in \mathscr{U}^{\perp} .
$$

Therefore, $T^{*} v \in \mathscr{U}^{\perp}$ for all $v \in \mathscr{U}^{\perp}$. This proves "only if" part.
The proof of the "if" part is similar.

4 Self-adjoint and normal operators

Definition 4.1. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{F}. An operator $T \in \mathscr{L}(\mathscr{V})$ is said to be self-adjoint if $T=T^{*}$. An operator $T \in \mathscr{L}(\mathscr{V})$ is said to be normal if $T T^{*}=T^{*} T$.

Proposition 4.2. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{F}. All eigenvalues of a self-adjoint $T \in \mathscr{L}(\mathscr{V})$ are real.

Proof. Let $\lambda \in \mathbb{F}$ be an eigenvalue of T and let $T v=\lambda v$ with a nonzero $v \in \mathscr{V}$. Then

$$
\lambda\langle v, v\rangle=\langle T v, v\rangle=\langle v, T v\rangle=\langle v, \lambda v\rangle=\bar{\lambda}\langle v, v\rangle .
$$

Since $\langle v, v\rangle>0$ the preceding equalities yield $\lambda=\bar{\lambda}$.
In the rest of this section we will consider only the scalar field \mathbb{C}.

Proposition 4.3 (this is 7.13 in the textbook). Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C}. Let $T \in \mathscr{L}(\mathscr{V})$. Then $T=0$ if and only if $\langle T v, v\rangle=0$ for all $v \in \mathscr{V}$.

Proof. Set, $[u, v]=\langle T u, v\rangle$ for all $u, v \in \mathscr{V}$. Then $[\cdot, \cdot]$ is a sesquilinear form on \mathscr{V}. Since $\langle\cdot, \cdot\rangle$ is a positive definite inner product, $T=0$ if and only if for all $u, v \in \mathscr{V}$ we have $\langle T u, v\rangle=0$, which in turn is equivalent to for all $u, v \in \mathscr{V}$ we have $[u, v]=0$. By Corollary $10.4[u, v]=0$ for all $u, v \in \mathscr{V}$ is equivalent to $[u, u]=0$ for all $u \in \mathscr{V}$, that is to $\langle T u, u\rangle=0$ for all $u \in \mathscr{V}$.

Proposition 4.4 (this is 7.14 in the textbook). Let \mathscr{V} be a vector space over \mathbb{C} and let $\langle\cdot, \cdot\rangle$ be an inner product on \mathscr{V}. An operator $T \in \mathscr{L}(\mathscr{V})$ is self-adjoint if and only if $\langle T v, v\rangle \in \mathbb{R}$ for all $v \in \mathscr{V}$.

Proof.
Theorem 4.5 (this is 7.20 in the textbook). Let \mathscr{V} be a vector space over \mathbb{C} and let $\langle\cdot, \cdot\rangle$ be an inner product on \mathscr{V}. An operator $T \in \mathscr{L}(\mathscr{V})$ is normal if and only if $\|T v\|=\left\|T^{*} v\right\|$ for all $v \in \mathscr{V}$.
co-noT-sym-Sp
Corollary 4.6 (this is 7.21 in the textbook). Let \mathscr{V} be a vector space over \mathbb{C}, let $\langle\cdot, \cdot\rangle$ be an inner product on \mathscr{V} and let $T \in \mathscr{L}(\mathscr{V})$ be normal. Then for every $\lambda \in \mathbb{C}$ we have

$$
\operatorname{nul}\left(T^{*}-\bar{\lambda} I\right)=\operatorname{nul}(T-\lambda I) .
$$

In particular for all $\lambda \in \mathbb{C}$ we have that λ is an eigenvalue of T if and only if $\bar{\lambda}$ is an eigenvalue of T^{*}.

5 The Spectral Theorem

> In the rest of the notes we will consider only the scalar field \mathbb{C}.

Theorem 5.1. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C}. Let $T \in$ $\mathscr{L}(\mathscr{V})$. Then \mathscr{V} has an orthonormal basis which consists of eigenvectors of T if and only if T is normal. In other words, T is normal if and only if there exists an orthonormal basis \mathscr{B} of \mathscr{V} such that $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is a diagonal matrix.

Proof. Let $n=\operatorname{dim}(\mathscr{V})$. Assume that T is normal. By Corollary 1.13 there exists an orthonormal basis $\mathscr{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ of \mathscr{V} such that $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper-triangular. That is,

$$
\mathbf{M}_{\mathscr{B}}^{\mathscr{B}}(T)=\left[\begin{array}{cccc}
\left\langle T u_{1}, u_{1}\right\rangle & \left\langle T u_{2}, u_{1}\right\rangle & \cdots & \left\langle T u_{n}, u_{1}\right\rangle \tag{13}\\
0 & \left\langle T u_{2}, u_{2}\right\rangle & \cdots & \left\langle T u_{n}, u_{2}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \left\langle T u_{n}, u_{n}\right\rangle
\end{array}\right]
$$

> eq-MBBut
or, equivalently,

$$
\begin{equation*}
T u_{k}=\sum_{j=1}^{k}\left\langle T u_{k}, u_{j}\right\rangle u_{j} \quad \text { for all } \quad k \in\{1, \ldots, n\} . \tag{14}
\end{equation*}
$$

By Theorem 3.4 we have

$$
\mathbf{M}_{\mathscr{B}}^{\mathscr{B}}\left(T^{*}\right)=\left[\begin{array}{cccc}
\overline{\overline{\left\langle T u_{1}, u_{1}\right\rangle}} & 0 & \cdots & 0 \\
\left\langle T u_{2}, u_{1}\right\rangle & \overline{\left\langle T u_{2}, u_{2}\right\rangle} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\left\langle T u_{n}, u_{1}\right\rangle}{} & \frac{\left\langle T u_{n}, u_{2}\right\rangle}{\cdots} & \overline{\left\langle T u_{n}, u_{n}\right\rangle}
\end{array}\right] .
$$

Consequently,

$$
\begin{equation*}
T^{*} u_{k}=\sum_{j=k}^{n} \overline{\left\langle T u_{j}, u_{k}\right\rangle} u_{j} \quad \text { for all } \quad k \in\{1, \ldots, n\} \tag{15}
\end{equation*}
$$

eq-T*uk

Since T is normal, Theorem 4.5 implies

$$
\left\|T u_{k}\right\|^{2}=\left\|T^{*} u_{k}\right\|^{2} \quad \text { for all } \quad k \in\{1, \ldots, n\}
$$

Together with (14) and (15) the last identities become

$$
\sum_{j=1}^{k}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}=\sum_{j=k}^{n}\left|\overline{\left\langle T u_{j}, u_{k}\right\rangle}\right|^{2} \quad \text { for all } \quad k \in\{1, \ldots, n\}
$$

or, equivalently,

$$
\begin{equation*}
\sum_{j=1}^{k}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}=\sum_{j=k}^{n}\left|\left\langle T u_{j}, u_{k}\right\rangle\right|^{2} \quad \text { for all } \quad k \in\{1, \ldots, n\} \tag{16}
\end{equation*}
$$

The equality in (16) corresponding to $k=1$ reads

$$
\left|\left\langle T u_{1}, u_{1}\right\rangle\right|^{2}=\left|\left\langle T u_{1}, u_{1}\right\rangle\right|^{2}+\sum_{j=2}^{n}\left|\left\langle T u_{j}, u_{1}\right\rangle\right|^{2},
$$

which implies

$$
\begin{equation*}
\left\langle T u_{j}, u_{1}\right\rangle=0 \quad \text { for all } j \in\{2, \ldots, n\} \tag{17}
\end{equation*}
$$

In other words we have proved that the off-diagonal entries in the first row of the upper triangular matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ in (13) are all zero.

Substituting the value $\left\langle T u_{2}, u_{1}\right\rangle=0$ (from (17)) in the equality in (16) corresponding to $k=2$ reads we get

$$
\left|\left\langle T u_{2}, u_{2}\right\rangle\right|^{2}=\left|\left\langle T u_{2}, u_{2}\right\rangle\right|^{2}+\sum_{j=3}^{n}\left|\left\langle T u_{j}, u_{2}\right\rangle\right|^{2},
$$

which implies

$$
\begin{equation*}
\left\langle T u_{j}, u_{2}\right\rangle=0 \quad \text { for all } \quad j \in\{3, \ldots, n\} \tag{18}
\end{equation*}
$$

In other words we have proved that the off-diagonal entries in the second row of the upper triangular matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ in (13) are all zero.

Repeating this reasoning $n-2$ more times would prove that all the offdiagonal entries of the upper triangular matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ in (13) are zero. That is, $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is a diagonal matrix.

To prove the converse, assume that there exists an orthonormal basis $\mathscr{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ of \mathscr{V} which consists of eigenvectors of T. That is, for some $\lambda_{j} \in \mathbb{C}$,

$$
T u_{j}=\lambda_{j} u_{j} \quad \text { for all } j \in\{1, \ldots, n\},
$$

Then, for arbitrary $v \in \mathscr{V}$ we have

$$
\begin{equation*}
T v=T\left(\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle u_{j}\right)=\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle T u_{j}=\sum_{j=1}^{n} \lambda_{j}\left\langle v, u_{j}\right\rangle u_{j} . \tag{19}
\end{equation*}
$$

Therefore, for arbitrary $k \in\{1, \ldots, n\}$ we have

$$
\begin{equation*}
\left\langle T v, u_{k}\right\rangle=\lambda_{k}\left\langle v, u_{k}\right\rangle . \tag{20}
\end{equation*}
$$

Now we calculate

$$
\begin{aligned}
T^{*} T v & =\sum_{j=1}^{n}\left\langle T^{*} T v, u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n}\left\langle T v, T u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n}\left\langle T v, T u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n} \bar{\lambda}_{j}\left\langle T v, u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n} \lambda_{j} \bar{\lambda}_{j}\left\langle v, u_{j}\right\rangle u_{j} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
T T^{*} v & =T\left(\sum_{j=1}^{n}\left\langle T^{*} v, u_{j}\right\rangle u_{j}\right) \\
& =\sum_{j=1}^{n}\left\langle v, T u_{j}\right\rangle T u_{j} \\
& =\sum_{j=1}^{n}\left\langle v, \lambda_{j} u_{j}\right\rangle \lambda_{j} u_{j} \\
& =\sum_{j=1}^{n} \lambda_{j} \bar{\lambda}_{j}\left\langle v, u_{j}\right\rangle u_{j} .
\end{aligned}
$$

Thus, we proved $T^{*} T v=T T^{*} v$, that is, T is normal.
A different proof of the "only if" part of the spectral theorem for normal operators follows. In this proof we use $\delta_{i j}$ to represent the values of the Kronecker delta function:

$$
\delta: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}
$$

such that for all $i, j \in \mathbb{N}$ we have $\delta_{i j}=1$ if and only if $i=j$.

Proof. Set $n=\operatorname{dim} \mathscr{V}$. We first prove "only if" part. Assume that T is normal. Set

$$
\mathbb{K}=\left\{k \in\{1, \ldots, n\}: \begin{array}{l}
\exists w_{1}, \ldots, w_{k} \in \mathscr{V} \text { and } \exists \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C} \\
\text { such that }\left\langle w_{i}, w_{j}\right\rangle=\delta_{i j} \text { and } T w_{j}=\lambda_{j} w_{j} \\
\text { for all } i, j \in\{1, \ldots, k\}
\end{array}\right\}
$$

Clearly $1 \in \mathbb{K}$. Since \mathbb{K} is finite, $m=\max \mathbb{K}$ exists. Clearly, $m \leq n$.
Next we will prove that $k \in \mathbb{K}$ and $k<n$ implies that $k+1 \in \mathbb{K}$. Assume $k \in \mathbb{K}$ and $k<n$. Let $w_{1}, \ldots, w_{k} \in \mathscr{V}$ and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$ be such that $\left\langle w_{i}, w_{j}\right\rangle=\delta_{i j}$ and $T w_{j}=\lambda_{j} w_{j}$ for all $i, j \in\{1, \ldots, k\}$. Set

$$
\mathscr{W}=\operatorname{span}\left\{w_{1}, \ldots, w_{k}\right\} .
$$

Since w_{1}, \ldots, w_{k} are eigenvectors of T we have $T \mathscr{W} \subseteq \mathscr{W}$. By Lemma 3.5, $T^{*}\left(\mathscr{W}^{\perp}\right) \subseteq \mathscr{W}^{\perp}$. Thus, $\left.T^{*}\right|_{\mathscr{W} \perp} \in \mathscr{L}\left(\mathscr{W}^{\perp}\right)$. Since $\operatorname{dim} \mathscr{W}=k<n$ we have $\operatorname{dim}\left(\mathscr{W}^{\perp}\right)=n-k \geq 1$. Since \mathscr{W}^{\perp} is a complex vector space the operator $\left.T^{*}\right|_{\mathscr{W} \perp}$ has an eigenvalue μ with the corresponding unit eigenvector u. Clearly, $u \in \mathscr{W}^{\perp}$ and $T^{*} u=\mu u$. Since T^{*} is normal, Corollary 4.6 yields that $T u=\bar{\mu} u$. Since $u \in \mathscr{W}^{\perp}$ and $T u=\bar{\mu} u$, setting $w_{k+1}=u$ and $\lambda_{k+1}=\bar{\mu}$ we have

$$
\left\langle w_{i}, w_{j}\right\rangle=\delta_{i j} \quad \text { and } \quad T w_{j}=\lambda_{j} w_{j} \quad \text { for all } \quad i, j \in\{1, \ldots, k, k+1\} .
$$

Thus $k+1 \in \mathbb{K}$. Consequently, $k<m$. Thus, for $k \in \mathbb{K}$, we have proved the implication

$$
k<n \quad \Rightarrow \quad k<m .
$$

The contrapositive of this implication is: For $k \in \mathbb{K}$, we have

$$
k \geq m \quad \Rightarrow \quad k \geq n
$$

In particular, for $m \in \mathbb{K}$ we have $m=m$ implies $m \geq n$. Since $m \leq n$ is also true, this proves that $m=n$. That is, $n \in \mathbb{K}$. This implies that there exist $u_{1}, \ldots, u_{n} \in \mathscr{V}$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that $\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}$ and $T u_{j}=\lambda_{j} u_{j}$ for all $i, j \in\{1, \ldots, n\}$.

Since u_{1}, \ldots, u_{n} are orthonormal, they are linearly independent. Since $n=\operatorname{dim} \mathscr{V}$, it turns out that u_{1}, \ldots, u_{n} form a basis of \mathscr{V}. This completes the proof.

6 Invariance under a normal operator

Theorem 6.1. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C}. Let $T \in$ $\mathscr{L}(\mathscr{V})$ be normal and let \mathscr{U} be a subspace of \mathscr{V}. Then

$$
T \mathscr{U} \subseteq \mathscr{U} \quad \Leftrightarrow \quad T \mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp}
$$

Recall that we have previously proved that for any $T \in \mathscr{L}(\mathscr{V})$ we have

$$
T \mathscr{U} \subseteq \mathscr{U} \Leftrightarrow T^{*} \mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp} .
$$

So, the claim of the theorem gives an additional information about a normal operator.

Proof. Assume $T \mathscr{U} \subseteq \mathscr{U}$. We know $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$. Let u_{1}, \ldots, u_{m} be an orthonormal basis of \mathscr{U} and u_{m+1}, \ldots, u_{n} be an orthonormal basis of \mathscr{U}^{\perp}. Then u_{1}, \ldots, u_{n} is an orthonormal basis of \mathscr{V}. If $j \in\{1, \ldots, m\}$ then $u_{j} \in \mathscr{U}$, so $T u_{j} \in \mathscr{U}$. Hence

$$
T u_{j}=\sum_{k=1}^{m}\left\langle T u_{j}, u_{k}\right\rangle u_{k}
$$

Also, clearly,

$$
T^{*} u_{j}=\sum_{k=1}^{n}\left\langle T^{*} u_{j}, u_{k}\right\rangle u_{k}
$$

Since T is normal, by Theorem 4.5 we have $\left\|T u_{j}\right\|^{2}=\left\|T^{*} u_{j}\right\|^{2}$ for all $j \in$ $\{1, \ldots, m\}$. Starting with this, we calculate

$$
\begin{aligned}
\sum_{j=1}^{m}\left\|T u_{j}\right\|^{2} & =\sum_{j=1}^{m}\left\|T^{*} u_{j}\right\|^{2} \\
\hline \text { Pythag. thm. } & =\sum_{j=1}^{m} \sum_{k=1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
\text { group terms } & =\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
\text { def. of } T^{*} & =\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle u_{j}, T u_{k}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
||\alpha|=|\bar{\alpha}| & =\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { order of sum. } & =\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
\text { Pythag. thm. } & =\sum_{k=1}^{m}\left\|T u_{k}\right\|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} .
\end{aligned}
$$

From the above equality we deduce that $\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}=0$. As each term is nonnegative, we conclude that $\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}=\left|\left\langle u_{j}, T u_{k}\right\rangle\right|^{2}=0$, that is,

$$
\begin{equation*}
\left\langle u_{j}, T u_{k}\right\rangle=0 \quad \text { for all } j \in\{1, \ldots, m\}, k \in\{m+1, \ldots, n\} . \tag{21}
\end{equation*}
$$

eq-T*-bv
Let now $w \in \mathscr{U}^{\perp}$ be arbitrary. Then

$$
\begin{aligned}
T w & =\sum_{j=1}^{n}\left\langle T w, u_{j}\right\rangle u_{j} \\
\text { use } w=\sum_{k=m+1}^{n}\left\langle w, u_{k}\right\rangle u_{k} & =\sum_{j=1}^{n}\left\langle\sum_{k=m+1}^{n}\left\langle w, u_{k}\right\rangle T u_{k}, u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n} \sum_{k=m+1}^{n}\left\langle w, u_{k}\right\rangle\left\langle T u_{k}, u_{j}\right\rangle u_{j} \\
\text { by }(21) & =\sum_{j=m+1}^{n} \sum_{k=m+1}^{n}\left\langle w, u_{k}\right\rangle\left\langle T u_{k}, u_{j}\right\rangle u_{j}
\end{aligned}
$$

Hence $T w \in \mathscr{U}^{\perp}$, that is $T \mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp}$.
A different proof follows. The proof below uses the property of polynomials that for arbitrary distinct $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{C}$ and arbitrary $\beta_{1}, \ldots, \beta_{m} \in$ \mathbb{C} there exists a polynomial $p(z) \in \mathbb{C}[z]_{<m}$ such that $p\left(\alpha_{j}\right)=\beta_{j}, j \in$ $\{1, \ldots, m\}$.

Proof. Assume T is normal. By Theorem 5.1 there exists an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subseteq \mathbb{C}$ such that

$$
T u_{j}=\lambda_{j} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} .
$$

Consequently,

$$
T^{*} u_{j}=\bar{\lambda}_{j} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} .
$$

Let v be arbitrary in \mathscr{V}. Applying T and T^{*} to the expansion of v in the basis vectors $\left\{u_{1}, \ldots, u_{n}\right\}$ we obtain

$$
T v=\sum_{j=1}^{n} \lambda_{j}\left\langle v, u_{j}\right\rangle u_{j}
$$

and

$$
T^{*} v=\sum_{j=1}^{n} \overline{\lambda_{j}}\left\langle v, u_{j}\right\rangle u_{j} .
$$

Let $\#\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}=m$. That is, assume that T has m distinct eigenvalues. Let $p(z)=a_{0}+a_{1} z+\cdots+a_{m} z^{m} \in \mathbb{C}[z]$ be the unique polynomial such that

$$
p\left(\lambda_{j}\right)=\bar{\lambda}_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} .
$$

Clearly, for all $j \in\{1, \ldots, n\}$ we have

$$
p(T) u_{j}=p\left(\lambda_{j}\right) u_{j}=\bar{\lambda}_{j} u_{j}=T^{*} u_{j} .
$$

Therefore $p(T)=T^{*}$.
Now assume $T \mathscr{U} \subseteq \mathscr{U}$. Then $T^{k} \mathscr{U} \subseteq \mathscr{U}$ for all $k \in \mathbb{N}$ and also $\alpha T \mathscr{U} \subseteq$ \mathscr{U} for all $\alpha \in \mathbb{C}$. Hence $p(T) \mathscr{U}=T^{*} \mathscr{U} \subseteq \mathscr{U}$. The theorem follows from Lemma 3.5.

Lastly, we review the proof in the book. This proof is in essence very similar to the first proof. It brings up a matrix representation of T, which might help us visualize what is going on in the first proof.

Proof. Assume $T \mathscr{U} \subseteq \mathscr{U}$. By Lemma 3.5 $T^{*}\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.
Now $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$. Let $n=\operatorname{dim}(\mathscr{V})$. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be an orthonormal basis of \mathscr{U} and let $\left\{u_{m+1}, \ldots, u_{n}\right\}$ be an orthonormal basis of \mathscr{U}^{\perp}. Then $\mathscr{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis of \mathscr{V}. Since $T u_{j} \in \mathscr{U}$ for all $j \in\{1, \ldots, m\}$ we have

$$
\begin{array}{r}
u_{1} \tag{22}\\
\vdots \\
u_{m} \\
\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)=u_{m+1} \\
\vdots \\
u_{n}
\end{array}\left[\begin{array}{ccc|cc}
\left\langle T u_{1}, u_{1}\right\rangle & \cdots & \left\langle T u_{m}, u_{1}\right\rangle & \\
\vdots & \ddots & \vdots & B & \\
\left\langle T u_{1}, u_{m}\right\rangle & \cdots & \left\langle T u_{m}, u_{m}\right\rangle & & \\
& & 0 & & C
\end{array}\right]
$$

Here we prepended the basis vectors on the left hand side of the matrix and we appended the images of the basis vectors under T below the matrix to emphasize that an appended vector $T u_{k}$ is expended as a linear combination of the basis vectors which are prepended with the coefficients given in the k-th column of the matrix.

For $k \in\{1, \ldots, m\}$ we have $T u_{k}=\sum_{j=1}^{m}\left\langle T u_{k}, u_{j}\right\rangle u_{j}$. By the Pythagorean Theorem

$$
\left\|T u_{k}\right\|^{2}=\sum_{j=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2} \quad \text { and } \quad\left\|T^{*} u_{k}\right\|^{2}=\sum_{j=1}^{n}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2} .
$$

Since T is normal, $\left\|T u_{k}\right\|^{2}=\left\|T^{*} u_{k}\right\|^{2}$ for all $k \in\{1, \ldots, m\}$, and therefore $\sum_{k=1}^{m}\left\|T u_{k}\right\|^{2}=\sum_{k=1}^{m}\left\|T^{*} u_{k}\right\|^{2}$. Consequently,

$$
\begin{aligned}
\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2} & =\sum_{k=1}^{m} \sum_{j=1}^{n}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2} \\
& =\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2}+\sum_{k=1}^{m} \sum_{j=m+1}^{n}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2} \\
& =\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle u_{k}, T u_{j}\right\rangle\right|^{2}+\sum_{k=1}^{m} \sum_{j=m+1}^{n}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2}
\end{aligned}
$$

We have

$$
\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}=\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle u_{k}, T u_{j}\right\rangle\right|^{2}
$$

since these sums consist of identical terms. Hence, the last two displayed equalities yield

$$
\sum_{k=1}^{m} \sum_{j=m+1}^{n}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2}=0
$$

As the last double sum consists of the nonnegative terms we deduce that for all $k \in\{1, \ldots, m\}$ and for all $j \in\{m+1, \ldots, n\}$ we have

$$
0=\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2}=\left|\left\langle u_{k}, T u_{j}\right\rangle\right|^{2}=\left|\left\langle T u_{j}, u_{k}\right\rangle\right|^{2}
$$

Hence also $\left\langle T u_{j}, u_{k}\right\rangle=0$ for all $k \in\{1, \ldots, m\}$ and for all $j \in\{m+1, \ldots, n\}$. This proves that $B=0$ in (22). Therefore, $T u_{j}$ is orthogonal to \mathscr{U} for all $j \in\{m+1, \ldots, n\}$, which implies $T\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.

Theorem 6.1 and Lemma 3.5 yield the following corollary.

Corollary 6.2. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C}. Let $T \in$ $\mathscr{L}(\mathscr{V})$ be normal and let \mathscr{U} be a subspace of \mathscr{V}. The following statements are equivalent:
(a) $T \mathscr{U} \subseteq \mathscr{U}$.
(b) $T\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.
(c) $T^{*} \mathscr{U} \subseteq \mathscr{U}$.
(d) $T^{*}\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.

If any of the for above statements are true, then the following statements are true
(e) $\left(\left.T\right|_{\mathscr{U}}\right)^{*}=\left.T^{*}\right|_{\mathscr{U}}$.
(f) $\left(\left.T\right|_{\mathscr{U}^{\perp}}\right)^{*}=\left.T^{*}\right|_{\mathscr{U}^{\perp}}$.
(g) $\left.T\right|_{\mathscr{U}}$ is a normal operator on \mathscr{U}.
(h) $\left.T\right|_{\mathscr{U} \perp}$ is a normal operator on \mathscr{U}^{\perp}.

7 Polar Decomposition

There are two distinct subsets of \mathbb{C}. Those are the set of nonnegative real numbers, denoted by $\mathbb{R}_{\geq 0}$, and the set of complex numbers of modulus 1 , denoted by \mathbb{T}. An important tool in complex analysis is the polar representation of a complex number: for every $\alpha \in \mathbb{C}$ there exists $r \in \mathbb{R}_{\geq 0}$ and $u \in \mathbb{T}$ such that $\alpha=r u$.

In this section we will prove that an analogous statement holds for operators in $\mathscr{L}(\mathscr{V})$, where $(\mathscr{V},\langle\cdot, \cdot\rangle)$ is an inner product space over \mathbb{C}. The initial step in proving this analogous result involves identifying operators in $\mathscr{L}(\mathscr{V})$ that correspond to nonnegative real numbers and identifying operators in $\mathscr{L}(\mathscr{V})$ that correspond to complex numbers with modulus 1 . That is done in the following two definitions.

Definition 7.1. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C}. An operator $Q \in \mathscr{L}(\mathscr{V})$ is said to be nonnegative if $\langle Q v, v\rangle \geq 0$ for all $v \in \mathscr{V}$.

Note that Axler uses the term "positive" instead of nonnegative. We think that nonnegative is more appropriate, since $0_{\mathscr{L}(\mathscr{V})}$ is a nonnegative operator. There is nothing positive about any zero, we think.

Proposition 7.2. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C} and let $T \in \mathscr{L}(\mathscr{V})$. Then T is nonnegative if and only if T is normal and all its eigenvalues are nonnegative.

Theorem 7.3. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C}. Let $Q \in$ $\mathscr{L}(\mathscr{V})$ be a nonnegative operator, let u_{1}, \ldots, u_{n} be an orthonormal basis of \mathscr{V}, and let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}_{\geq 0}$ be such that

$$
\begin{equation*}
Q u_{j}=\lambda_{j} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} . \tag{23}
\end{equation*}
$$

> eq-sqrt-nno-1

The following statements are equivalent.
i-sqrt-nno-a
i-sqrt-nno-b
i-sqrt-nno-c
(a) $S \in \mathscr{L}(\mathscr{V})$ is a nonnegative operator and $S^{2}=Q$.
(b) For every $\lambda \in \mathbb{R}_{\geq 0}$ we have

$$
\operatorname{nul}(Q-\lambda I)=\operatorname{nul}(S-\sqrt{\lambda} I) .
$$

(c) For every $v \in \mathscr{V}$ we have

$$
S v=\sum_{j=1}^{n} \sqrt{\lambda_{j}}\left\langle v, u_{j}\right\rangle u_{j} .
$$

Proof. (a) \Rightarrow (b). We first prove that nul $Q=\operatorname{nul} S$. Since $Q=S^{2}$ we have $\operatorname{nul} S \subseteq \operatorname{nul} Q$. Let $v \in \operatorname{nul} Q$, that is, let $Q v=S^{2} v=0$. Then $\left\langle S^{2} v, v\right\rangle=0$. Since S is nonnegative it is self-adjoint. Therefore, $\left\langle S^{2} v, v\right\rangle=\langle S v, S v\rangle=$ $\|S v\|^{2}$. Hence, $\|S v\|=0$, and thus $S v=0$. This proves that nul $Q \subseteq \operatorname{nul} S$ and (b) is proved for $\lambda=0$.

Let $\lambda>0$. Then the operator $S+\sqrt{\lambda} I$ is invertible. To prove this, let $v \in \mathscr{V} \backslash\left\{0_{\mathscr{V}}\right\}$ be arbitrary. Then $\|v\|>0$ and therefore

$$
\langle(S+\sqrt{\lambda} I) v, v\rangle=\langle S v, v\rangle+\sqrt{\lambda}\langle v, v\rangle \geq \sqrt{\lambda}\|v\|^{2}>0 .
$$

Thus, $v \neq 0$ implies $(S+\sqrt{\lambda} I) v \neq 0$. This proves the injectivity of $S+\sqrt{\lambda} I$.
To prove $\operatorname{nul}(Q-\lambda I)=\operatorname{nul}(S-\sqrt{\lambda} I)$, let $v \in \mathscr{V}$ be arbitrary and notice that $(Q-\lambda I) v=0$ if and only if $\left(S^{2}-\sqrt{\lambda}^{2} I\right) v=0$, which, in turn, is equivalent to

$$
(S+\sqrt{\lambda} I)(S-\sqrt{\lambda} I) v=0 .
$$

Since $S+\sqrt{\lambda} I$ is injective, the last equality is equivalent to $(S-\sqrt{\lambda} I) v=0$. This completes the proof of (b).
(b) \Rightarrow (c). Let u_{1}, \ldots, u_{n} be an orthonormal basis of \mathscr{V} and let $\lambda_{1}, \ldots, \lambda_{n} \in$ $\mathbb{R}_{\geq 0}$ be such that (23) holds. For arbitrary $j \in\{1, \ldots, n\}$ (23) yields $u_{j} \in \operatorname{nul}\left(Q-\lambda_{j} I\right)$. By (b), $u_{j} \in \operatorname{nul}\left(S-\sqrt{\lambda_{j}} I\right)$. Thus

$$
\begin{equation*}
S u_{j}=\sqrt{\lambda_{j}} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} . \tag{24}
\end{equation*}
$$

Let $v=\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle u_{j}$ be arbitrary vector in \mathscr{V}. Then, the linearity of S and (24) imply the claim in (c).

The implication $(\mathrm{c}) \Rightarrow(\mathrm{a})$ is straightforward.
The implication (a) \Rightarrow (c) of Theorem 7.3 yields that for a given nonnegative Q a nonnegative S such that $Q=S^{2}$ is uniquely determined. The common notation for this unique S is \sqrt{Q}.

Definition 7.4. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C}. An operator $U \in \mathscr{L}(\mathscr{V})$ is said to be unitary if $U^{*} U=I$.

Proposition 7.5. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C} and let $T \in \mathscr{L}(\mathscr{V})$. The following statements are equivalent.
(a) T is unitary.
(b) For all $u, v \in \mathscr{V}$ we have $\langle T u, T v\rangle=\langle u, v\rangle$.
(c) For all $v \in \mathscr{V}$ we have $\|T v\|=\|v\|$.
(d) T is normal and all its eigenvalues have modulus 1 .

Theorem 7.6 (Polar Decomposition in $\mathscr{L}(\mathscr{V}))$. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C}. For every $T \in \mathscr{L}(\mathscr{V})$ there exist a unitary operator U in $\mathscr{L}(\mathscr{V})$ and a unique nonnegative $Q \in \mathscr{L}(\mathscr{V})$ such that $T=U Q ; U$ is unique if and only if T is invertible.
Proof. First, notice that the operator $T^{*} T$ is nonnegative: for every $v \in \mathscr{V}$ we have

$$
\left\langle T^{*} T v, v\right\rangle=\langle T v, T v\rangle=\|T v\|^{2} \geq 0
$$

To prove the uniqueness of Q assume that $T=U Q$ with U unitary and Q nonnegative. Then $Q^{*}=Q, U^{*}=U^{-1}$ and therefore, $T^{*} T=Q^{*} U^{*} U Q=$ $Q U^{-1} U Q=Q^{2}$. Since Q is nonnegative we have $Q=\sqrt{T^{*} T}$.

Set $Q=\sqrt{T^{*} T}$. By Theorem 7.3(b) we have nul $Q=\operatorname{nul}\left(T^{*} T\right)$. Moreover, we have $\operatorname{nul}\left(T^{*} T\right)=\operatorname{nul} T$. The inclusion $\operatorname{nul} T \subseteq \operatorname{nul}\left(T^{*} T\right)$ is trivial. For the converse inclusion notice that $v \in \operatorname{nul}\left(T^{*} T\right)$ implies $T^{*} T v=0$, which yields $\left\langle T^{*} T v, v\right\rangle=0$ and thus $\langle T v, T v\rangle=0$. Consequently, $\|T v\|=0$, that is $T v=0$, yielding $v \in \operatorname{nul} T$. So,

$$
\begin{equation*}
\operatorname{nul} Q=\operatorname{nul}\left(T^{*} T\right)=\operatorname{nul} T \tag{25}
\end{equation*}
$$

eq-nQ=nT
is proved.
First assume that T is invertible. By (25) and the Nullity-Rank Theorem, Q is invertible as well. Therefore $T=U Q$ is equivalent to $U=T Q^{-1}$ in this case. Since Q is unique, this proves the uniqueness of U. Set $U=T Q^{-1}$. Since Q is self-adjoint, Q^{-1} is also self-adjoint. Therefore $U^{*}=Q^{-1} T^{*}$, yielding $U^{*} U=Q^{-1} T^{*} T Q^{-1}=Q^{-1} Q^{2} Q^{-1}=I$. That is, U is unitary.

Now assume that T is not invertible. Since by (25) we have nul $Q=$ nul T, the Nullity-Rank Theorem implies that $\operatorname{dim}(\operatorname{ran} Q)=\operatorname{dim}(\operatorname{ran} T)$. Notice that nul $Q=(\operatorname{ran} Q)^{\perp}$ since Q is self-adjoint. Since T is not invertible, $\operatorname{dim}(\operatorname{ran} Q)=\operatorname{dim}(\operatorname{ran} T)<\operatorname{dim} \mathscr{V}$, implying that

$$
\begin{equation*}
\operatorname{dim}(\operatorname{nul} Q)=\operatorname{dim}\left((\operatorname{ran} Q)^{\perp}\right)=\operatorname{dim}\left((\operatorname{ran} T)^{\perp}\right)>0 . \tag{26}
\end{equation*}
$$

$e q-d r Q p=d r T p$
We have two orthogonal decompositions of \mathscr{V} :

$$
\mathscr{V}=(\operatorname{ran} Q) \oplus(\operatorname{nul} Q)=(\operatorname{ran} T) \oplus\left((\operatorname{ran} T)^{\perp}\right)
$$

These two orthogonal decompositions are compatibile in the sense that the corresponding components have same dimensions, that is

$$
\operatorname{dim}(\operatorname{ran} Q)=\operatorname{dim}(\operatorname{ran} T) \quad \text { and } \quad \operatorname{dim}(\operatorname{nul} Q)=\operatorname{dim}\left((\operatorname{ran} T)^{\perp}\right)
$$

We will define $U: \mathscr{V} \rightarrow \mathscr{V}$ in two steps based on these two orthogonal decompositions. First we define the action of U on $\operatorname{ran} Q$, that is we define the operator $U_{r}: \operatorname{ran} Q \rightarrow \operatorname{ran} T$, then we define an operator $U_{n}: \operatorname{nul} Q \rightarrow$ $(\operatorname{ran} T)^{\perp}$.

We define $U_{r}: \operatorname{ran} Q \rightarrow \operatorname{ran} T$ in the following way: Let $u \in \operatorname{ran} Q$ be arbitrary and let $x \in \mathscr{V}$ be such that $u=Q x$. Then we set

$$
U_{r} u=T x .
$$

First we need to show that U_{r} is well defined. Let $x_{1}, x_{2} \in \mathscr{V}$ be such that $u=Q x_{1}=Q x_{2}$. Then, $x_{1}-x_{2} \in \operatorname{nul} Q$. Since nul $Q=\operatorname{nul} T$, we thus have $x_{1}-x_{2} \in \operatorname{nul} T$. Consequently, $T x_{1}=T x_{2}$, that is U_{r} is well defined.

Next we prove that U_{r} is angle-preserving. Let $u_{1}, u_{2} \in \operatorname{ran} Q$ be arbitrary and let $x_{1}, x_{1} \in \mathscr{V}$ be such that $u_{1}=Q x_{1}$ and $u_{2}=Q x_{2}$ and calculate

$$
\begin{aligned}
\left\langle U_{r} u_{1}, U_{r} u_{2}\right\rangle & =\left\langle U_{r}\left(Q x_{1}\right), U_{r}\left(Q x_{2}\right)\right\rangle \\
\text { by definition of } U_{r} & =\left\langle T x_{1}, T x_{2}\right\rangle \\
\text { by definition of adjoint } & =\left\langle T^{*} T x_{1}, x_{2}\right\rangle \\
\text { by definition of } Q & =\left\langle Q^{2} x_{1}, x_{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\hline \text { since } Q \text { is self-adjoint } & =\left\langle Q x_{1}, Q x_{2}\right\rangle \\
\text { by definition of } x_{1}, x_{2} & =\left\langle u_{1}, u_{2}\right\rangle
\end{aligned}
$$

Thus $U_{r}: \operatorname{ran} Q \rightarrow \operatorname{ran} T$ is angle-preserving.
Next we define an angle-preserving operator

$$
U_{n}: \operatorname{nul} Q \rightarrow(\operatorname{ran} T)^{\perp}
$$

By (26), we can set

$$
m=\operatorname{dim}(\operatorname{nul} Q)=\operatorname{dim}\left((\operatorname{ran} T)^{\perp}\right)>0
$$

Let e_{1}, \ldots, e_{m} be an orthonormal basis on $\operatorname{nul} Q$ and let f_{1}, \ldots, f_{m} be an orthonormal basis on $(\operatorname{ran} T)^{\perp}$. For arbitrary $w \in \operatorname{nul} Q$ define

$$
U_{n} w=U_{n}\left(\sum_{j=1}^{m}\left\langle w, e_{j}\right\rangle e_{j}\right):=\sum_{j=1}^{m}\left\langle w, e_{j}\right\rangle f_{j}
$$

Then, for $w_{1}, w_{2} \in \operatorname{nul} Q$ we have

$$
\begin{aligned}
\left\langle U_{n} w_{1}, U_{n} w_{2}\right\rangle & =\left\langle\sum_{i=1}^{m}\left\langle w_{1}, e_{i}\right\rangle f_{i}, \sum_{j=1}^{m}\left\langle w_{2}, e_{j}\right\rangle f_{j}\right\rangle \\
& =\sum_{j=1}^{m}\left\langle w_{1}, e_{j}\right\rangle \overline{\left\langle w_{2}, e_{j}\right\rangle} \\
& =\left\langle w_{1}, w_{2}\right\rangle
\end{aligned}
$$

Hence U_{n} is angle-preserving on $(\operatorname{ran} Q)^{\perp}$.
Since the orthomormal bases in the definition of U_{n} were arbitrary and since $m>0$, the operator U_{n} is not unique.

Finally we define $U: \mathscr{V} \rightarrow \mathscr{V}$ as a direct sum of U_{r} and U_{n}. Recall that

$$
\mathscr{V}=(\operatorname{ran} Q) \oplus(\operatorname{nul} Q)
$$

Let $v \in \mathscr{V}$ be arbitrary. Then there exist unique $u \in(\operatorname{ran} Q)$ and $w \in(\operatorname{nul} Q)$ such that $v=u+w$. Set

$$
U v=U_{r} u+U_{n} w
$$

We claim that U is angle-preserving. Let $v_{1}, v_{2} \in \mathscr{V}$ be arbitrary and let $v_{i}=u_{i}+w_{i}$ with $u_{i} \in(\operatorname{ran} Q)$ and $w_{i} \in(\operatorname{nul} Q)$ with $i \in\{1,2\}$. Notice that

$$
\begin{equation*}
\left\langle v_{1}, v_{2}\right\rangle=\left\langle u_{1}+w_{1}, u_{2}+w_{2}\right\rangle=\left\langle u_{1}, u_{2}\right\rangle+\left\langle w_{1}, w_{2}\right\rangle \tag{27}
\end{equation*}
$$

since u_{1}, u_{2} are orthogonal to w_{1}, w_{2}. Similarly

$$
\begin{equation*}
\left\langle U_{r} u_{1}+U_{n} w_{1}, U_{r} u_{2}+U_{n} w_{2}\right\rangle=\left\langle U_{r} u_{1}, U_{r} u_{2}\right\rangle+\left\langle U_{n} w_{1}, U_{n} w_{2}\right\rangle, \tag{28}
\end{equation*}
$$

since $U_{r} u_{1}, U_{r} u_{2} \in(\operatorname{ran} T)$ and $U_{n} w_{1}, U_{n} w_{2} \in(\operatorname{ran} T)^{\perp}$. Now we calculate, starting with the definition of U,

$$
\begin{aligned}
\left\langle U v_{1}, U v_{2}\right\rangle & =\left\langle U_{r} u_{1}+U_{n} w_{1}, U_{r} u_{2}+U_{n} w_{2}\right\rangle \\
\text { by }(28) & =\left\langle U_{r} u_{1}, U_{r} u_{2}\right\rangle+\left\langle U_{n} w_{1}, U_{n} w_{2}\right\rangle \\
U_{r} \text { and } U_{n} \text { are angle-preserving } & =\left\langle u_{1}, u_{2}\right\rangle+\left\langle w_{1}, w_{2}\right\rangle \\
\text { by }(27) & =\left\langle v_{1}, v_{2}\right\rangle .
\end{aligned}
$$

Hence U is angle-preserving and by Proposition 7.5 we have that U is unitary.

Finally we show that $T=U Q$. Let $v \in \mathscr{V}$ be arbitrary. Then $Q v \in$ $\operatorname{ran} Q$. By definitions of U and U_{r} we have

$$
U Q v=U_{r} Q v=T v .
$$

Thus $T=U Q$, where U is unitary and Q is nonnegative.

8 Singular Value Decomposition

The following theorem is long. It deals with an arbitrary nonzero operator between finite-dimensional inner product spaces over \mathbb{C}. Its main parts are (I) and (IV). Part (I) establishes the existence of a Singular Value Decomposition, while in Part (IV), we prove the existence and uniqueness of the Moore-Penrose inverse for such an operator.
th-svd Theorem 8.1. Let $m, n \in \mathbb{N}$. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be finitedimensional inner product spaces over \mathbb{C} such that $m=\operatorname{dim} \mathscr{V}$ and $n=$ $\operatorname{dim} \mathscr{W}$. Let $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ be a nonzero operator. Then there exist $r \in \mathbb{N}$ such that $r \leq \min \{m, n\}$, positive scalars $\sigma_{1}, \ldots, \sigma_{r}$ and orthonormal bases $\mathscr{B}=\left\{v_{1}, \ldots, v_{m}\right\}$ of \mathscr{V} and $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ of \mathscr{W} such that the following statements hold:
(I) For every $v \in \mathscr{V}$ we have

$$
\begin{equation*}
T v=\sum_{j=1}^{r} \sigma_{j}\left\langle v, v_{j}\right\rangle_{\mathscr{V}} w_{j} . \tag{29}
\end{equation*}
$$

eq-svd
(II) The top left block corner of the $n \times m$ matrix $\mathrm{M}_{\mathscr{C}}^{\mathscr{B}}(T)$, which is of size $r \times r$, is a diagonal matrix with positive diagonal entries $\sigma_{1}, \ldots, \sigma_{r}$. All other entries of $\mathrm{M}_{\mathscr{C}}^{\mathscr{B}}(T)$ are equal to 0 . That is,

$$
M_{\mathscr{C}}^{\mathscr{B}}(T)=\underbrace{\left[\begin{array}{ccc|ccc}
\sigma_{1} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \sigma_{r} & 0 & \cdots & 0 \\
\underbrace{0}_{0} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \underbrace{0}_{m-r} \cdots \cdots & 0
\end{array}\right] \begin{array}{l}
n \times m \text { matrix } \\
\text { with a diagonal } \\
r \times r \text { top left block } \\
\text { and with all other } \\
\text { entries equal to } 0 .
\end{array}}_{r}
$$

Or, in block-matrix notation

$$
M_{\mathscr{C}}^{\mathscr{B}}(T)=\left[\begin{array}{c|c}
\Sigma_{r} & 0 \\
\hline 0 & 0
\end{array}\right], \quad(n \times m \quad \text { matrix })
$$

where Σ_{r} is an $r \times r$ diagonal matrix with positive entries $\sigma_{1}, \ldots, \sigma_{r}$ on the diagonal and the zero matrices of the appropriate sizes.
(III) For every $w \in \mathscr{W}$ we have

$$
\begin{equation*}
T^{*} w=\sum_{j=1}^{r} \sigma_{j}\left\langle w, w_{j}\right\rangle_{\mathscr{W}} v_{j} \tag{30}
\end{equation*}
$$

Equivalently,

$$
M_{\mathscr{B}}^{\mathscr{C}}\left(T^{*}\right)=\left[\begin{array}{c|c}
\Sigma_{r} & 0 \\
\hline 0 & 0
\end{array}\right], \quad\left(\begin{array}{ll}
m \times n & \text { matrix })
\end{array}\right.
$$

(IV) Let $S \in \mathscr{L}(\mathscr{W}, \mathscr{V})$. The following three statements are equivalent.
(i) S satisfies the following four equations

$$
\begin{equation*}
T S T=T, \quad S T S=S, \quad(T S)^{*}=T S, \quad(S T)^{*}=S T \tag{31}
\end{equation*}
$$

eq-MPiS
(ii) For every $w \in \mathscr{W}$ we have

$$
\begin{equation*}
S w=\sum_{j=1}^{r} \frac{1}{\sigma_{j}}\left\langle w, w_{j}\right\rangle_{\mathscr{W}} v_{j} \tag{32}
\end{equation*}
$$

eq-svdMPi
(iii)

$$
M_{\mathscr{B}}^{\mathscr{C}}(S)=\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & 0
\end{array}\right] . \quad\left(\begin{array}{ll}
m \times n & \text { matrix })
\end{array}\right.
$$

Proof. (I) Let $T^{*} \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ be the adjoint of T. Since for all $v \in \mathscr{V}$ we have

$$
\left\langle T^{*} T v, v\right\rangle_{\mathscr{V}}=\langle T v, T v\rangle_{\mathscr{W}} \geq 0,
$$

the operator $T^{*} T \in \mathscr{L}(\mathscr{V})$ is nonnegative, and, as such, self-adjoint with the nonnegative eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. We assume that the eigenvalues are ordered in nonincreasing order $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Since $T \neq 0_{\mathscr{L}(\mathscr{V})}$ we have $\lambda_{1}>0$. Set

$$
\begin{equation*}
r=\max \left\{k \in\{1, \ldots, n\}: \lambda_{k}>0\right\} . \tag{33}
\end{equation*}
$$

eq-rankr

Thus, for all $k \in\{1, \ldots, n\}$, if $k \leq r$, then $\lambda_{k}>0$, and, if $k>r$, then $\lambda_{k}=0$. Set

$$
\begin{equation*}
\sigma_{k}=\sqrt{\lambda_{k}}, \quad k \in\{1, \ldots, r\} . \tag{34}
\end{equation*}
$$

eq-svs

Since $T^{*} T$ is a self-adjoint operator on \mathscr{V}, there exists an orthonormal basis $\mathscr{B}=\left(v_{1}, \ldots, v_{m}\right)$ of \mathscr{V} such that

$$
\begin{equation*}
\forall k \in\{1, \ldots, n\} \quad T^{*} T v_{k}=\lambda_{k} v_{k} . \tag{35}
\end{equation*}
$$

Recall that

$$
\operatorname{nul}(T)=\operatorname{nul}\left(T^{*} T\right) \quad \text { and } \quad \operatorname{ran}\left(T^{*}\right)=\operatorname{ran}\left(T^{*} T\right)
$$

It follows from the definition of r in (33) and (35) that

$$
\operatorname{nul}(T)=\operatorname{nul}\left(T^{*} T\right)=\operatorname{span}\left\{v_{k}: k \in\{1, \ldots, n\} \wedge k>r\right\} .
$$

Since $T^{*} T$ is self-adjoint and since \mathscr{B} is an orthonormal basis of \mathscr{V}, (33) and (35) imply

$$
\operatorname{ran}\left(T^{*}\right)=\operatorname{ran}\left(T^{*} T\right)=\left(\operatorname{nul}\left(T^{*} T\right)\right)^{\perp}=\operatorname{span}\left\{v_{k}: k \in\{1, \ldots, n\} \wedge k \leq r\right\} .
$$

Therefore

$$
r=\operatorname{dim} \operatorname{ran}\left(T^{*}\right) .
$$

Notice that for all $k \in\{1, \ldots, r\}$ we have

$$
0<\lambda_{k}=\left(\sigma_{k}\right)^{2}=\lambda_{k}\left\langle v_{k}, v_{k}\right\rangle_{\mathscr{V}}=\left\langle T^{*} T v_{k}, v_{k}\right\rangle_{\mathscr{V}}=\left\langle T v_{k}, T v_{k}\right\rangle_{\mathscr{W}}=\left\|T v_{k}\right\|_{\mathscr{W}}^{2},
$$

and define r unit vectors in $\operatorname{ran}(T) \subseteq \mathscr{W}$ as follows

$$
w_{k}=\frac{1}{\sigma_{k}} T v_{k}, \quad k \in\{1, \ldots, r\} .
$$

The following calculation shows that the vectors w_{1}, \ldots, w_{r} are mutually orthogonal. Let $j, k \in\{1, \ldots, r\}$ be arbitrary and such that $j \neq k$. Then

$$
\left\langle w_{j}, w_{k}\right\rangle_{\mathscr{W}}=\frac{1}{\sigma_{j} \sigma_{k}}\left\langle T v_{j}, T v_{k}\right\rangle_{\mathscr{W}}=\frac{1}{\sigma_{j} \sigma_{k}}\left\langle T^{*} T v_{j}, v_{k}\right\rangle_{\mathscr{V}}=\frac{\lambda_{j}}{\sigma_{j} \sigma_{k}}\left\langle v_{j}, v_{k}\right\rangle_{\mathscr{V}}=0,
$$

since \mathscr{B} is an orhonormal basis for \mathscr{V}. Consequently, w_{1}, \ldots, w_{r} are linearly independent in \mathscr{W}. Hence, $r \leq \min \{m, n\}$.

Since

$$
r+\operatorname{dim} \operatorname{nul}(T)=m=\operatorname{dim} \mathscr{V}
$$

and, by the Nullity-Rank Theorem,

$$
\operatorname{dim} \operatorname{nul}(T)+\operatorname{dim} \operatorname{ran}(T)=m=\operatorname{dim} \mathscr{V}
$$

we deduce that $r=\operatorname{dim} \operatorname{ran}(T)$. Hence $\left\{w_{1}, \ldots, w_{r}\right\}$ is an orthonormal basis for $\operatorname{ran}(T)$. If $\operatorname{ran}(T)$ is a proper subspace of \mathscr{W}, since $(\operatorname{ran}(T))^{\perp}=\operatorname{nul}\left(T^{*}\right)$, choosing w_{r+1}, \ldots, w_{n} to be an orthonormal basis for nul $\left(T^{*}\right)$ we obtain an orthonormal basis $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ for \mathscr{W}. Let $v \in \mathscr{V}$ be arbitrary and calculate

$$
\begin{aligned}
T v & =T\left(\sum_{k=1}^{m}\left\langle v, v_{k}\right\rangle_{\mathscr{V}} v_{k}\right) \\
\text { linearity of } T & =\sum_{k=1}^{m}\left\langle v, v_{k}\right\rangle_{\mathscr{V}} T v_{k} \\
\text { definition of } r & =\sum_{k=1}^{r}\left\langle v, v_{k}\right\rangle_{\mathscr{V}} T v_{k} \\
\text { definition of } w_{k} & =\sum_{k=1}^{r}\left\langle v, v_{k}\right\rangle_{\mathscr{V}} \sigma_{k} w_{k} \\
& =\sum_{k=1}^{r} \sigma_{k}\left\langle v, v_{k}\right\rangle_{\mathscr{V}} w_{k}
\end{aligned}
$$

(III) Define $S \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ by: For every $w \in \mathscr{W}$ set

$$
S w=\sum_{j=1}^{r} \sigma_{j}\left\langle w, w_{j}\right\rangle_{\mathscr{W}} v_{j} .
$$

For an arbitrary $v \in \mathscr{V}$ and an arbitrary $w \in \mathscr{W}$ calculate

$$
\begin{aligned}
\langle v, S w\rangle_{\mathscr{V}} & =\left\langle v, \sum_{j=1}^{r} \sigma_{j}\left\langle w, w_{j}\right\rangle_{\mathscr{W}} v_{j}\right\rangle_{\mathscr{V}} \\
& =\sum_{j=1}^{r} \sigma_{j} \overline{\left\langle w, w_{j}\right\rangle_{\mathscr{W}}}\left\langle v, v_{j}\right\rangle_{\mathscr{V}} \\
& =\sum_{j=1}^{r} \sigma_{j}\left\langle v, v_{j}\right\rangle_{\mathscr{V}}\left\langle w_{j}, w\right\rangle_{\mathscr{W}} \\
& =\left\langle\sum_{j=1}^{r} \sigma_{j}\left\langle v, v_{j}\right\rangle_{\mathscr{V}} w_{j}, w\right\rangle_{\mathscr{W}} \\
& =\langle T v, w\rangle_{\mathscr{W}} .
\end{aligned}
$$

Since $v \in \mathscr{V}$ and $w \in \mathscr{W}$ were arbitrary, the preceding calculation proves that $S=T^{*}$. (citation)
(IV) The equivalence (ii) \Leftrightarrow (iii) follows from the definition of the matrices Σ_{r} and $M_{\mathscr{B}}^{\mathscr{C}}(S)$.

To prove (ii) $\Rightarrow(\mathrm{i})$, assume (ii). (This is proof of the existence of the Moore-Penrose inverse.) Then, (30) and (32) imply that $\operatorname{ran}(S)=\operatorname{ran}\left(T^{*}\right)$ and $\operatorname{nul}(S)=\operatorname{nul}\left(T^{*}\right)$. Further, (29) and (32) yield

$$
T S=P_{\mathrm{ran}(T)}=P_{\operatorname{nul}(S)^{\perp}} \quad \text { and } \quad S T=P_{\mathrm{ran}(S)}=P_{\mathrm{nul}(T)^{\perp}}
$$

Since an orthogonal projection is a self-adjoint operator, both $T S$ and $S T$ are self-adjoint. Since $P_{\operatorname{ran}(T)} T=T$ and $P_{\operatorname{ran}(S)} S=S$, we deduce that $T S T=T$ and $S T S=S$. Thus (ii) $\Rightarrow(\mathrm{i})$.

To prove (i) \Rightarrow (iii), assume (i). (This is proof of the uniqueness of the Moore-Penrose inverse.) Let

$$
M_{\mathscr{B}}^{\mathscr{C}}(S)=\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right], \quad(m \times n \text { matrix })
$$

where A is an $r \times r$ matrix, B is $r \times(n-r)$ matrix, C is $(m-r) \times r$ matrix, and D is $(m-r) \times(n-r)$ matrix. We proved in (II)

$$
M_{\mathscr{C}}^{\mathscr{B}}(T)=\left[\begin{array}{c|c}
\Sigma_{r} & 0 \\
\hline 0 & 0
\end{array}\right], \quad(n \times m \text { matrix })
$$

with Σ_{r} being an $r \times r$ diagonal matrix with positive entries on the diagonal and the zeros of appropriate sizes. Then

$$
M_{\mathscr{C}}^{\mathscr{C}}(T S)=\left[\begin{array}{c|c}
\Sigma_{r} A & \Sigma_{r} B \\
\hline 0 & 0
\end{array}\right], \quad(n \times n \text { matrix })
$$

and

$$
M_{\mathscr{B}}^{\mathscr{B}}(S T)=\left[\begin{array}{l|l}
A \Sigma_{r} & 0 \\
\hline C \Sigma_{r} & 0
\end{array}\right] . \quad(m \times m \text { matrix })
$$

Since $T S$ and $S T$ are self-adjoint, we deduce that $\Sigma_{r} B=0$ and $C \Sigma_{r}=0$. Consequently, $B=0$ and $C=0$ as Σ_{r} is invertible. Since $T S T=T$, the operator $T S$ acts as an identity on $\operatorname{ran}(T)$. Therefore $\Sigma_{r} A=I_{r}$. Hence $A=\Sigma_{r}^{-1}$. Hence,

$$
M_{\mathscr{B}}^{\mathscr{C}}(S)=\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & D
\end{array}\right] .
$$

Now the equality $S=S T S$ yields

$$
\begin{aligned}
{\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & D
\end{array}\right] } & =M_{\mathscr{B}}^{\mathscr{C}}(S) \\
& =M_{\mathscr{B}}^{\mathscr{C}}(S T S) \\
& =M_{\mathscr{B}}^{\mathscr{C}}(S) M_{\mathscr{C}}^{\mathscr{B}}(T) M_{\mathscr{B}}^{\mathscr{C}}(S) \\
& =\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & D
\end{array}\right]\left[\begin{array}{c|c}
\Sigma_{r} & 0 \\
\hline 0 & 0
\end{array}\right]\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & D
\end{array}\right] \\
& =\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & D
\end{array}\right]\left[\begin{array}{c|c}
I_{r} & 0 \\
\hline 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & 0
\end{array}\right] .
\end{aligned}
$$

Hence, $D=0$, and consequently,

$$
M_{\mathscr{B}}^{\mathscr{C}}(S)=\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & 0
\end{array}\right] .
$$

This proves (i) \Rightarrow (iii). Since we proved

$$
(\mathrm{i}) \Rightarrow(\mathrm{iii}) \Rightarrow(\mathrm{ii}) \Rightarrow(\mathrm{i})
$$

proof of (IV) is complete.

The values $\sigma_{1}, \ldots, \sigma_{r}$ from Theorem 8.1, which are in fact the squareroots of the positive eigenvalues of $T^{*} T$, are called singular values of T. Equality (29) or the matrix in (II) is called a singular value decomposition of T.

For $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$, the unique operator $T^{+} \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ that satisfies the equalities

$$
\begin{equation*}
T T^{+} T=T, \quad T^{+} T T^{+}=T^{+}, \quad\left(T T^{+}\right)^{*}=T T^{+}, \quad\left(T^{+} T\right)^{*}=T^{+} T \tag{36}
\end{equation*}
$$

eq-MPi
is called the Moore-Penrose inverse of T,

9 Problems

Exercise 9.1. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space and let \mathscr{U} be a subspace of \mathscr{V}. Prove that $\left(\left(\mathscr{U}^{\perp}\right)^{\perp}\right)^{\perp}=\mathscr{U}^{\perp}$.

10 Appendix: Polarization Identity for Sesquilinear Forms

Definition 10.1. Let \mathscr{V} be a vector space over a scalar field \mathbb{F}. A function

$$
[\cdot, \cdot]: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}
$$

is a sesquilinear form on \mathscr{V} if the following two conditions are satisfied.
(a) (linearity in the first variable)

$$
\forall \alpha, \beta \in \mathbb{F} \quad \forall u, v, w \in \mathscr{V} \quad[\alpha u+\beta v, w]=\alpha[u, w]+\beta[v, w]
$$

(b) (anti-linearity in the second variable)

$$
\forall \alpha, \beta \in \mathbb{F} \quad \forall u, v, w \in \mathscr{V} \quad[u, \alpha v+\beta w]=\bar{\alpha}[u, v]+\bar{\beta}[u, w]
$$

Example 10.2. Let $M \in \mathbb{C}^{n \times n}$ be arbitrary. Then

$$
[\mathbf{x}, \mathbf{y}]=(M \mathbf{x}) \cdot \mathbf{y}, \quad \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}
$$

is a sesquilinear form on the complex vector space \mathbb{C}^{n}. Here \cdot denotes the usual dot product in \mathbb{C}.
th-poli Theorem 10.3 (Polarization identity). Let \mathscr{V} be a vector space over a scalar field \mathbb{F} and let $[\cdot, \cdot]: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ be a sesquilinear form on \mathscr{V}. If $\mathrm{i} \in \mathbb{F}$, then

$$
\begin{equation*}
[u, v]=\frac{1}{4} \sum_{k=0}^{3} \mathrm{i}^{k}\left[u+\mathrm{i}^{k} v, u+\mathrm{i}^{k} v\right] \tag{37}
\end{equation*}
$$

eq-pi
for all $u, v \in \mathscr{V}$.
Proof. For the proof we expend the sum on the right hand side, ignoring the fraction $1 / 4$, using the linearity in the first variable and anti-linearity in the second variable. The resulting expression will have the following four values of the sesquilinear form: $[u, u],[u, v],[v, u],[v, v]$. For each of these values and for each $k \in\{0,1,2,3\}$ we present the corresponding coefficients in a table with the values of the form in the header and values for each k in each row:

	$[u, u]$	$[u, v]$	$[v, u]$	$[v, v]$
$k=0$	1	1	1	1
$k=1$	i	1	-1	i
$k=2$	-1	1	1	-1
$k=3$	-i	1	-1	-i
sum	0	4	0	0

co-slf-0 Corollary 10.4. Let \mathscr{V} be a vector space over a scalar field \mathbb{F} and let $[\cdot, \cdot]$: $\mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ be a sesquilinear form on \mathscr{V}. If $\mathrm{i} \in \mathbb{F}$ and $[v, v]=0$ for all $v \in \mathscr{V}$, then $[u, v]=0$ for all $u, v \in \mathscr{V}$.

