The next theorem can be stated in English simply as: Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Theorem. Let $\mathscr{V}$ be a vector space over $\mathbb{F}, T \in \mathscr{L}(\mathscr{V})$ and $n \in \mathbb{N}$. Assume
(a) $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}$ are such that $\lambda_{i} \neq \lambda_{j}$ for all $i, j \in\{1, \ldots, n\}$ such that $i \neq j$,
(b) $v_{1}, \ldots, v_{n} \in \mathscr{V}$ are such that $T v_{k}=\lambda_{k} v_{k}$ and $v_{k} \neq 0$ for all $k \in\{1, \ldots, n\}$.

Then $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent.
Proof. We will prove this by using the mathematical induction on $n$. For the base case, we will prove the claim for $n=1$. Let $\lambda_{1} \in \mathbb{F}$ and let $v_{1} \in \mathscr{V}$ be such that $v_{1} \neq 0$ and $T v_{1}=\lambda_{1} v_{1}$. Since $v_{1} \neq 0$, we conclude that $\left\{v_{1}\right\}$ is linearly independent.

Next we prove the inductive step. Let $m \in \mathbb{N}$ be arbitrary. The inductive hypothesis is the assumption that the following implication holds.

If the following two conditions are satisfied:
(i) $\mu_{1}, \ldots, \mu_{m} \in \mathbb{F}$ are such that $\mu_{i} \neq \mu_{j}$ for all $i, j \in\{1, \ldots, m\}$ such that $i \neq j$,
(ii) $w_{1}, \ldots, w_{m} \in \mathscr{V}$ are such that $T w_{k}=\mu_{k} w_{k}$ and $w_{k} \neq 0$ for all $k \in\{1, \ldots, m\}$,
then $\left\{w_{1}, \ldots, w_{m}\right\}$ is linearly independent.
We need to prove the following implication
If the following two conditions are satisfied:
(I) $\lambda_{1}, \ldots, \lambda_{m+1} \in \mathbb{F}$ are such that $\lambda_{i} \neq \lambda_{j}$ for all $i, j \in\{1, \ldots, m+1\}$ such that $i \neq j$,
(II) $v_{1}, \ldots, v_{m+1} \in \mathscr{V}$ are such that $T v_{k}=\lambda_{k} v_{k}$ and $v_{k} \neq 0$ for all $k \in\{1, \ldots, m+1\}$,
then $\left\{v_{1}, \ldots, v_{m+1}\right\}$ is linearly independent.
Assume (I) and (II) in the red box. We need to prove that $\left\{v_{1}, \ldots, v_{m+1}\right\}$ is linearly independent. Let $\alpha_{1}, \ldots, \alpha_{m+1} \in \mathbb{F}$ be such that

$$
\begin{equation*}
\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}+\alpha_{m+1} v_{m+1}=0 . \tag{1}
\end{equation*}
$$

Applying $T \in \mathscr{L}(\mathscr{V})$ to both sides of (1), using the linearity of $T$ and assumption (II) we get

$$
\begin{equation*}
\alpha_{1} \lambda_{1} v_{1}+\cdots+\alpha_{m} \lambda_{m} v_{m}+\alpha_{m+1} \lambda_{m+1} v_{m+1}=0 . \tag{2}
\end{equation*}
$$

Multiplying both sides of (1) by $\lambda_{m+1}$ we get

$$
\begin{equation*}
\alpha_{1} \lambda_{m+1} v_{1}+\cdots+\alpha_{m} \lambda_{m+1} v_{m}+\alpha_{m+1} \lambda_{m+1} v_{m+1}=0 . \tag{3}
\end{equation*}
$$

Subtracting (3) from (2) we get

$$
\alpha_{1}\left(\lambda_{1}-\lambda_{m+1}\right) v_{1}+\cdots+\alpha_{m}\left(\lambda_{m}-\lambda_{m+1}\right) v_{m}=0
$$

Since by assumption (I) we have $\lambda_{j}-\lambda_{m+1} \neq 0$ for all $j \in\{1, \ldots, m\}$, setting

$$
w_{j}=\left(\lambda_{j}-\lambda_{m+1}\right) v_{j}, \quad j \in\{1, \ldots, m\},
$$

and taking into account (II) we have

$$
\begin{equation*}
w_{j} \neq 0 \quad \text { and } \quad T w_{j}=\lambda_{j} w_{j} \quad \text { for all } \quad j \in\{1, \ldots, m\} . \tag{4}
\end{equation*}
$$

Thus, by (I) and (4), the scalars $\lambda_{1}, \ldots, \lambda_{m}$ and vectors $w_{1}, \ldots, w_{m}$ satisfy assumptions (i) and (ii) of the inductive hypothesis (the green box). Consequently, the vectors $w_{1}, \ldots, w_{m}$ are linearly independent. Since by (4) we have

$$
\alpha_{1} w_{1}+\cdots+\alpha_{m} w_{m}=0
$$

it follows that $\alpha_{1}=\cdots=\alpha_{m}=0$. Substituting these values in (1) we get $\alpha_{m+1} v_{m+1}=0$. Since by (II), $v_{m+1} \neq 0$ we conclude that $\alpha_{m+1}=0$. This completes the proof of the linear independence of $v_{1}, \ldots, v_{m+1}$.

