LINEAR OPERATORS

BRANKO ĆURGUS

Throughout this note \mathcal{V} is a vector space over a scalar field $\mathbb{F} . \mathbb{N}$ denotes the set of positive integers and $i, j, k, l, m, n, p \in \mathbb{N}$.

1. Linear operators

In this section \mathcal{U}, \mathcal{V} and \mathcal{W} are vector spaces over a scalar field \mathbb{F}.
1.1. The definition and the vector space of all linear operators. A function $T: \mathcal{V} \rightarrow \mathcal{W}$ is said to be a linear operator if it satisfies the following conditions:

$$
\begin{array}{rlrl}
\forall u \in \mathcal{V} & \forall v \in \mathcal{V} & T(u+v) & =T(u)+f(v), \\
\forall \alpha \in \mathbb{F} & \forall v \in \mathcal{V} & T(\alpha v) & =\alpha T(v) . \tag{1.2}
\end{array}
$$

The property (1.1) is called additivity, while the property (1.2) is called homogeneity. Together additivity and homogeneity are called linearity.

Denote by $\mathcal{L}(\mathcal{V}, \mathcal{W})$ the set of all linear operators from \mathcal{V} to \mathcal{W}. Define the addition and scaling in $\mathcal{L}(\mathcal{V}, \mathcal{W})$. For $S, T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ and $\alpha \in \mathbb{F}$ we define

$$
\begin{align*}
(S+T)(v) & =S(v)+T(v), & & \forall v \in \mathcal{V}, \tag{1.3}\\
(\alpha T)(v) & =\alpha T(v), & & \forall v \in \mathcal{V} . \tag{1.4}
\end{align*}
$$

eq-add
eq-hom

eq-po+
eq-po-s

Notice that two plus signs which appear in (1.3) have different meanings. The plus sign on the left-hand side stands for the addition of linear operators that is just being defined, while the plus sign on the right-hand side stands for the addition in \mathcal{W}. Notice the analogous difference in empty spaces between α and T in (1.4). Define the zero mapping in $\mathcal{L}(\mathcal{V}, \mathcal{W})$ to be

$$
0_{\mathcal{L}(\mathcal{V}, \mathcal{W})}(v)=0_{\mathcal{W}}, \quad \forall v \in \mathcal{V}
$$

For $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ we define its opposite operator by

$$
(-T)(v)=-T(v), \quad \forall v \in \mathcal{V}
$$

Proposition 1.1. The set $\mathcal{L}(\mathcal{V}, \mathcal{W})$ with the operations defined in (1.3), and (1.4) is a vector space over \mathbb{F}.

For $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ and $v \in \mathcal{V}$ it is customary to write $T v$ instead of $T(v)$.

[^0]
BRANKO ĆURGUS

Example 1.2. Assume that a vector space \mathcal{V} is a direct sum of its subspaces \mathcal{U} and \mathcal{W}, that is $\mathcal{V}=\mathcal{U} \oplus \mathcal{W}$. Define the function $P: \mathcal{V} \rightarrow \mathcal{V}$ by

$$
P v=w \quad \Leftrightarrow \quad v=u+w, \quad u \in \mathcal{U}, \quad w \in \mathcal{W}
$$

Then P is a linear operator. It is called the projection of \mathcal{V} onto \mathcal{W} parallel to \mathcal{U}; it is denoted by $P_{\mathcal{W} \| \mathcal{U}}$.

The definition of the linearity of a function between vector spaces is expressed in the standard functional notation. The next proposition states that a function between vector spaces is linear if and only if its graph is a subspace of the direct product of the domain and the codomain of that function.
pr-lfsub Proposition 1.3. Let \mathcal{V} and \mathcal{W} be vector spaces over a scalar field \mathbb{F}. Let $f: \mathcal{V} \rightarrow \mathcal{W}$ be a function and denote by F the graph of f; that is let

$$
\mathcal{F}=\{(v, w) \in \mathcal{V} \times \mathcal{W}: v \in \mathcal{V} \text { and } w=f(v)\} \subseteq \mathcal{V} \times \mathcal{W}
$$

The function f is linear if and only if the set \mathcal{F} is a subspace of the vector space $\mathcal{V} \times \mathcal{W}$.
pr-imsub Proposition 1.4. Let \mathcal{V} and \mathcal{W} be vector spaces over a scalar field \mathbb{F}. Let $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$, let \mathcal{G} be a subspace of \mathcal{V} and let \mathcal{H} be a subspace of \mathcal{W}. Then

$$
T(\mathcal{G})=\{w \in \mathcal{W}: \exists v \in \mathcal{G} \text { such that } w=T v\}
$$

is a subspace of \mathcal{W} and

$$
T^{-1}(\mathcal{H})=\{v \in \mathcal{V}: T v \in \mathcal{H}\}
$$

is a subspace of \mathcal{V}.
1.2. Composition, inverse, isomorphism. In the next two propositions we prove that the linearity is preserved under composition of linear operators and under taking the inverse of a linear operator.

Proposition 1.5. Let $S: \mathcal{U} \rightarrow \mathcal{V}$ and $T: \mathcal{V} \rightarrow \mathcal{W}$ be linear operators. The composition $T \circ S: \mathcal{U} \rightarrow \mathcal{W}$ is a linear operator.

Proof. Prove this as an exercise.
When composing linear operators it is customary to write simply $T S$ instead of $T \circ S$.

The identity function on \mathcal{V} is denoted by $I_{\mathcal{V}}$. It is defined by $I_{\mathcal{V}}(v)=v$ for all $v \in \mathcal{V}$. It is clearly a linear operator.
pr-inv-1 Proposition 1.6. Let $T: \mathcal{V} \rightarrow \mathcal{W}$ be a linear operator which is a bijection. Then the inverse $T^{-1}: \mathcal{W} \rightarrow \mathcal{V}$ of T is a linear operator.

Proof. Since T is a bijection, from what we learned about function, there exists a function $S: \mathcal{W} \rightarrow \mathcal{V}$ such that $S T=I_{\mathcal{V}}$ and $T S=I_{\mathcal{W}}$. Since T is linear and $T S=I_{\mathcal{W}}$ we have

$$
T(\alpha S x+\beta S y)=\alpha T(S x)+\beta T(S y)=\alpha(T S) x+\beta(T S) y=\alpha x+\beta y
$$

for all $\alpha, \beta \in \mathbb{F}$ and all $x, y \in \mathcal{W}$. Applying S to both sides of

$$
T(\alpha S x+\beta S y)=\alpha x+\beta y
$$

we get

$$
(S T)(\alpha S x+\beta S y)=S(\alpha x+\beta y) \quad \forall \alpha, \beta \in \mathbb{F} \quad \forall x, x \in \mathcal{W}
$$

Since $S T=I_{\mathcal{V}}$, we get

$$
\alpha S x+\beta S y=S(\alpha x+\beta y) \quad \forall \alpha, \beta \in \mathbb{F} \quad \forall x, y \in \mathcal{W},
$$

thus proving the linearity of S. Since by definition $S=T^{-1}$ the proposition is proved.

A linear operator $T: \mathcal{V} \rightarrow \mathcal{W}$ which is a bijection is called an isomorphism between vector spaces \mathcal{V} and \mathcal{W}.

By Proposition 1.6 each isomorphism is invertible and its inverse is also an isomorphism.

In the next theorem we introduce the most important isomorphism between a finite-dimensional space \mathcal{V} and a space \mathbb{F}^{n} where $n=\operatorname{dim} \mathcal{V}$.
th-cor Theorem 1.7. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F}, let $n=$ $\operatorname{dim} \mathcal{V}$ and let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for \mathcal{V}. The function $C_{\mathcal{B}}: \mathcal{V} \rightarrow \mathbb{F}^{n}$ defined by: for all $v \in \mathcal{V}$

$$
C_{\mathcal{B}}(v):=\mathbf{a} \quad \text { where } \quad \mathbf{a}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right] \in \mathbb{F}^{n} \quad \text { and } \quad v=\alpha_{1} b_{1}+\cdots+\alpha_{n} b_{n},
$$

is an isomorphism between \mathcal{V} and \mathbb{F}^{n}.
It is important to point out that the formula for the inverse $\left(C_{\mathcal{B}}\right)^{-1}: \mathbb{F}^{n} \rightarrow$ \mathcal{V} of $C_{\mathcal{B}}$ is given by

$$
\left(C_{\mathcal{B}}\right)^{-1}\left[\begin{array}{c}
\alpha_{1} \tag{1.5}\\
\vdots \\
\alpha_{n}
\end{array}\right]=\sum_{j=1}^{n} \alpha_{j} v_{j}, \quad \text { for all }\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right] \in \mathbb{F}^{n}
$$

eq-CB-i

Notice that (1.5) defines a function from \mathbb{F}^{n} to \mathcal{V} even if \mathcal{B} is not a basis of \mathcal{V}.
exa-LBC Example 1.8. Inspired by the definition of $C_{\mathcal{B}}$ and (1.5) we define a general operator of this kind. Let \mathcal{V} and \mathcal{W} be vector spaces over \mathbb{F}. Let \mathcal{V} be finite dimensional, $n=\operatorname{dim} \mathcal{V}$ and let \mathcal{B} be a basis for \mathcal{V}. Let $\mathcal{C}=\left(w_{1}, \ldots, w_{n}\right)$ be any n-tuple of vectors in \mathcal{W}. The entries of an n-tuple can be repeated, they can all be equal, for example to $0_{\mathcal{V}}$. We define the linear operator $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \rightarrow \mathcal{W}$ by

$$
L_{\mathcal{C}}^{\mathcal{B}}(v)=\sum_{j=1}^{n} \alpha_{j} w_{j} \quad \text { where } \quad\left[\begin{array}{c}
\alpha_{1} \tag{1.6}\\
\vdots \\
\alpha_{n}
\end{array}\right]=C_{\mathcal{B}}(v)
$$

In fact, $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \rightarrow \mathcal{W}$ is a composition of $C_{\mathcal{B}}: \mathcal{V} \rightarrow \mathbb{F}^{n}$ and the operator $\mathbb{F}^{n} \rightarrow \mathcal{W}$ defined by

$$
\left[\begin{array}{c}
\xi_{1} \tag{1.7}\\
\vdots \\
\xi_{n}
\end{array}\right] \mapsto \sum_{j=1}^{n} \xi_{j} w_{j} \quad \text { for all } \quad\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right] \in \mathbb{F}^{n}
$$

eq-rC

It is easy to verify that (1.7) defines a linear operator.
Denote by \mathcal{E} the standard basis of \mathbb{F}^{n}, that is the basis which consists of the columns of the identity matrix I_{n}. Then $C_{\mathcal{B}}=L_{\mathcal{E}}^{\mathcal{B}}$ and $\left(C_{\mathcal{B}}\right)^{-1}=L_{\mathcal{B}}^{\mathcal{E}}$.
Exercise 1.9. Let \mathcal{V} and \mathcal{W} be vector spaces over \mathbb{F}. Let \mathcal{V} be finite dimensional, $n=\operatorname{dim} \mathcal{V}$ and let \mathcal{B} be a basis for \mathcal{V}. Let $\mathcal{C}=\left(w_{1}, \ldots, w_{n}\right)$ be a list of vectors in \mathcal{W} with n entries.
(a) Characterize the injectivity of $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \rightarrow \mathcal{W}$.
(b) Characterize the surjectivity of $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \rightarrow \mathcal{W}$.
(c) Characterize the bijectivity of $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \rightarrow \mathcal{W}$.
(d) If $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \rightarrow \mathcal{W}$ is an isomorphism, find a simple formula for $\left(L_{\mathcal{C}}^{\mathcal{B}}\right)^{-1}$.
1.3. The nullity-rank theorem. Let $T: \mathcal{V} \rightarrow \mathcal{W}$ is be a linear operator. The linearity of T implies that the set

$$
\operatorname{nul} T=\left\{v \in \mathcal{V}: T v=0_{\mathcal{W}}\right\}
$$

is a subspace of \mathcal{V}. This subspace is called the null space of T. Similarly, the linearity of T implies that the range of T is a subspace of \mathcal{W}. Recall that

$$
\operatorname{ran} T=\{w \in \mathcal{W}: \exists v \in \mathcal{V} \quad w=T v\}
$$

Proposition 1.10. A linear operator $T: \mathcal{V} \rightarrow \mathcal{W}$ is an injection if and only if nul $T=\left\{0_{\mathcal{V}}\right\}$.
Proof. We first prove the "if" part of the proposition. Assume that nul $T=$ $\left\{0_{\mathcal{V}}\right\}$. Let $u, v \in \mathcal{V}$ be arbitrary and assume that $T u=T v$. Since T is linear, $T u=T v$ implies $T(u-v)=0_{\mathcal{W}}$. Consequently $u-v \in \operatorname{nul} T=\left\{0_{\mathcal{V}}\right\}$. Hence, $u-v=0_{\mathcal{V}}$, that is $u=v$. This proves that T is an injection.

To prove the "only if" part assume that $T: \mathcal{V} \rightarrow \mathcal{W}$ is an injection. Let $v \in \operatorname{nul} T$ be arbitrary. Then $T v=0_{\mathcal{W}}=T 0_{\mathcal{V}}$. Since T is injective, $T v=T 0_{\mathcal{V}}$ implies $v=0_{\mathcal{V}}$. Thus we have proved that nul $T \subseteq\left\{0_{\mathcal{V}}\right\}$. Since the converse inclusion is trivial, we have nul $T=\left\{0_{\mathcal{V}}\right\}$.
Theorem 1.11 (Nullity-Rank Theorem). Let \mathcal{V} and \mathcal{W} be vector spaces over a scalar field \mathbb{F} and let $T: \mathcal{V} \rightarrow \mathcal{W}$ be a linear operator. If \mathcal{V} is finite dimensional, then nul T and $\operatorname{ran} T$ are finite dimensional and

$$
\begin{equation*}
\operatorname{dim}(\operatorname{nul} T)+\operatorname{dim}(\operatorname{ran} T)=\operatorname{dim} \mathcal{V} \tag{1.8}
\end{equation*}
$$

eq-rnt
Proof. Assume that \mathcal{V} is finite dimensional. We proved earlier that for an arbitrary subspace \mathcal{U} of \mathcal{V} there exists a subspace \mathcal{X} of \mathcal{V} such that

$$
\mathcal{U} \oplus \mathcal{X}=\mathcal{V} \quad \text { and } \quad \operatorname{dim} \mathcal{U}+\operatorname{dim} \mathcal{X}=\operatorname{dim} \mathcal{V}
$$

Thus, there exists a subspace \mathcal{X} of \mathcal{V} such that

$$
\begin{equation*}
(\operatorname{nul} T) \oplus \mathcal{X}=\mathcal{V} \quad \text { and } \quad \operatorname{dim}(\operatorname{nul} T)+\operatorname{dim} \mathcal{X}=\operatorname{dim} \mathcal{V} \tag{1.9}
\end{equation*}
$$

Since $\operatorname{dim}(\operatorname{nul} T)+\operatorname{dim} \mathcal{X}=\operatorname{dim} \mathcal{V}$, to prove the theorem we only need to prove that $\operatorname{dim} \mathcal{X}=\operatorname{dim}(\operatorname{ran} T)$. To this end, we consider the restriction $\left.T\right|_{\mathcal{X}}: \mathcal{X} \rightarrow \operatorname{ran} T$ of T to the subspace \mathcal{X}. This operator is defined by

$$
\left.T\right|_{\mathcal{X}}(v)=T v \quad \forall v \in \mathcal{X}
$$

We will prove that $T \mid \mathcal{X}$ is an isomorphism. Let $\left\{x_{1}, \ldots, x_{m}\right\}$ be a basis for \mathcal{X}. To prove that $\left.T\right|_{\mathcal{X}}$ is a surjection, we will prove

$$
\begin{equation*}
\operatorname{span}\left\{T x_{1}, \ldots, T x_{m}\right\}=\operatorname{ran} T \tag{1.10}
\end{equation*}
$$

eq-st1-rnt
eq-span-rnt
Clearly $\left\{T x_{1}, \ldots, T x_{m}\right\} \subseteq \operatorname{ran} T$. Consequently, since $\operatorname{ran} T$ is a subspace of \mathcal{W}, we have $\operatorname{span}\left\{T x_{1}, \ldots, T x_{m}\right\} \subseteq \operatorname{ran} T$. To prove the converse inclusion, let $w \in \operatorname{ran} T$ be arbitrary. Then, there exists $v \in \mathcal{V}$ such that $T v=w$. Since $\mathcal{V}=(\operatorname{nul} T)+\mathcal{X}$, there exist $u \in \operatorname{nul} T$ and $x \in \mathcal{X}$ such that $v=u+x$. Then $T v=T(u+x)=T u+T x=T x$. As $x \in \mathcal{X}$, there exist $\xi_{1}, \ldots, \xi_{m} \in \mathbb{F}$ such that $x=\sum_{j=1}^{m} \xi_{j} x_{j}$. Now we use linearity of T to deduce

$$
w=T v=T x=\sum_{j=1}^{m} \xi_{j} T x_{j}
$$

This proves that $w \in \operatorname{span}\left\{T x_{1}, \ldots, T x_{m}\right\}$. Since w was arbitrary in $\operatorname{ran} T$ this completes a proof of (1.10).

Next we prove that the vectors $T x_{1}, \ldots, T x_{m}$ are linearly independent. Let $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ be arbitrary and assume that

$$
\begin{equation*}
\alpha_{1} T x_{1}+\cdots+\alpha_{m} T x_{m}=0_{\mathcal{W}} \tag{1.11}
\end{equation*}
$$

Since T is linear (1.11) implies that

$$
\begin{equation*}
\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m} \in \operatorname{nul} T \tag{1.12}
\end{equation*}
$$

Recall that $x_{1}, \ldots, x_{m} \in c X$ and \mathcal{X} is a subspace of \mathcal{V}, so

$$
\begin{equation*}
\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m} \in \mathcal{X} \tag{1.13}
\end{equation*}
$$

Now (1.12), (1.13) and the fact that (nul $T) \cap \mathcal{X}=\left\{0_{\mathcal{V}}\right\}$ imply

$$
\begin{equation*}
\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}=0_{\mathcal{V}} \tag{1.14}
\end{equation*}
$$

eq-li2-rnt
eq-li3-rnt
eq-li4-rnt
Since x_{1}, \ldots, x_{m} are linearly independent (1.14) yields $\alpha_{1}=\cdots=\alpha_{m}=0$. This completes a proof of the linear independence of $T x_{1}, \ldots, T x_{m}$.

Thus $\left\{T x_{1}, \ldots, T x_{m}\right\}$ is a basis for $\operatorname{ran} T$. Consequently $\operatorname{dim}(\operatorname{ran} T)=m$. Since $m=\operatorname{dim} \mathcal{X}$, (1.9) implies (1.8). This completes the proof.

A direct proof of the Nullity-Rank Theorem is as follows:
Proof. Since nul T is a subspace of \mathcal{V} it is finite dimensional. Set $k=$ $\operatorname{dim}(\operatorname{nul} T)$ and let $\mathcal{C}=\left\{u_{1}, \ldots, u_{k}\right\}$ be a basis for nul T.

Since \mathcal{V} is finite dimensional there exists a finite set $\mathcal{F} \subset \mathcal{V}$ such that $\operatorname{span}(\mathcal{F})=\mathcal{V}$. Then the set $T \mathcal{F}$ is a finite subset of \mathcal{W} and $\operatorname{ran} T=$
$\operatorname{span}(T \mathcal{F})$. Thus ran T is finite dimensional. Let $\operatorname{dim}(\operatorname{ran} T)=m$ and let $\mathcal{E}=\left\{w_{1}, \ldots, w_{m}\right\}$ be a basis of $\operatorname{ran} T$.

Since clearly for every $j \in\{1, \ldots, m\}, w_{j} \in \operatorname{ran} T$, we have that for every $j \in\{1, \ldots, m\}$ there exists $v_{j} \in \mathcal{V}$ such that $T v_{j}=w_{j}$. Set $\mathcal{D}=$ $\left\{v_{1}, \ldots, v_{m}\right\}$.

Further set $\mathcal{B}=\mathcal{C} \cup \mathcal{D}$.
We will prove the following three facts:
(I) $\mathcal{C} \cap \mathcal{D}=\emptyset$,
(II) $\operatorname{span} \mathcal{B}=\mathcal{V}$,
(III) \mathcal{B} is a linearly independent set.

To prove (I), notice that the vectors in \mathcal{E} are nonzero, since \mathcal{E} is linearly independent. Therefore, for every $v \in \mathcal{D}$ we have that $T v \neq 0_{\mathcal{W}}$. Since for every $u \in \mathcal{C}$ we have $T u=0_{\mathcal{W}}$ we conclude that $u \in \mathcal{C}$ implies $u \notin \mathcal{D}$. This proves (I).

To prove (II), first notice that by the definition of $\mathcal{B} \subset \mathcal{V}$. Since \mathcal{V} is a vector space, we have $\operatorname{span} \mathcal{B} \subseteq \mathcal{V}$.

To prove the converse inclusion, let $v \in \mathcal{V}$ be arbitrary. Then $T v \in \operatorname{ran} T$. Since \mathcal{E} spans ran T, there exist $\beta_{1}, \ldots, \beta_{m} \in \mathbb{F}$ such that

$$
T v=\sum_{j=1}^{m} \beta_{j} w_{j} .
$$

Set

$$
v^{\prime}=\sum_{j=1}^{m} \beta_{j} v_{j} .
$$

Then, by linearity of T we have

$$
T v^{\prime}=\sum_{j=1}^{m} \beta_{j} T v_{j}=\sum_{j=1}^{m} \beta_{j} w_{j}=T v .
$$

The last equality yields and the linearity of T yield $T\left(v-v^{\prime}\right)=0_{\mathcal{W}}$. Consequently, $v-v^{\prime} \in \operatorname{nul} T$. Since \mathcal{C} spans nul T, there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}$ such that

$$
v-v^{\prime}=\sum_{j=1}^{k} \alpha_{i} u_{i} .
$$

Consequently,

$$
v=v^{\prime}+\sum_{j=1}^{k} \alpha_{i} u_{i}=\sum_{j=1}^{k} \alpha_{i} u_{i}+\sum_{j=1}^{m} \beta_{j} v_{j} .
$$

This proves that for arbitrary $v \in \mathcal{V}$ we have $v \in \operatorname{span} \mathcal{B}$. Thus $\mathcal{V} \subseteq \operatorname{span} \mathcal{B}$ and (II) is proved.

To prove (III) let $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}$ and $\beta_{1}, \ldots, \beta_{m} \in \mathbb{F}$ be arbitrary and assume that

$$
\begin{equation*}
\sum_{j=1}^{k} \alpha_{i} u_{i}+\sum_{j=1}^{m} \beta_{j} v_{j}=0_{\mathcal{V}} \tag{1.15}
\end{equation*}
$$

eq-assu-4-l-i
Applying T to both sides of the last equality, and using the fact that $u_{i} \in$ $\operatorname{nul} T$ and the definition of v_{j} we get

$$
\sum_{j=1}^{m} \beta_{j} w_{j}=0_{\mathcal{W}} .
$$

Since \mathcal{E} is a linearly independent set the last equality implies that $\beta_{j}=0$ for all $j \in\{1, \ldots, m\}$. Now substitute these equalities in (1.15) to get

$$
\sum_{j=1}^{k} \alpha_{i} u_{i}=0 \mathcal{V}
$$

Since \mathcal{C} is a linearly independent set the last equality implies that $\alpha_{i}=0$ for all $i \in\{1, \ldots, k\}$. This proves the linear independence of \mathcal{B}.

It follows from (II) and (III) that \mathcal{B} is a basis for \mathcal{V}. By (I) we have that $|\mathcal{B}|=|\mathcal{C}|+|\mathcal{D}|=k+m$. This completes proof of the theorem.

The nonnegative integer $\operatorname{dim}(\operatorname{nul} T)$ is called the nullity of T; the nonnegative integer $\operatorname{dim}(\operatorname{ran} T)$ is called the rank of T.

The nullity-rank theorem in English reads: If a linear operator is defined on a finite dimensional vector space, then its nullity and its rank are finite and they add up to the dimension of the domain.

Proposition 1.12. Let \mathcal{V} and \mathcal{W} be vector spaces over \mathbb{F}. Assume that \mathcal{V} is finite dimensional. The following statements are equivalent
(a) There exists a surjection $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.
(b) \mathcal{W} is finite dimensional and $\operatorname{dim} \mathcal{V} \geq \operatorname{dim} \mathcal{W}$.

Proposition 1.13. Let \mathcal{V} and \mathcal{W} be vector spaces over \mathbb{F}. Assume that \mathcal{V} is finite dimensional. The following statements are equivalent
(a) There exists an injection $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.
(b) Either \mathcal{W} is infinite dimensional or $\operatorname{dim} \mathcal{V} \leq \operatorname{dim} \mathcal{W}$.

Proposition 1.14. Let \mathcal{V} and \mathcal{W} be vector spaces over \mathbb{F}. Assume that \mathcal{V} is finite dimensional. The following statements are equivalent
(a) There exists an isomorphism $T: \mathcal{V} \rightarrow \mathcal{W}$.
(b) \mathcal{W} is finite dimensional and $\operatorname{dim} \mathcal{W}=\operatorname{dim} \mathcal{V}$.
1.4. Isomorphism between $\mathcal{L}(\mathcal{V}, \mathcal{W})$ and $\mathbb{F}^{n \times m}$. Let \mathcal{V} and \mathcal{W} be finite dimensional vector spaces over $\mathbb{F}, m=\operatorname{dim} \mathcal{V}, n=\operatorname{dim} \mathcal{W}$, let $\mathcal{B}=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for \mathcal{V} and let $\mathcal{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ be a basis for \mathcal{W}. The mapping $C_{\mathcal{B}}$ provides an isomorphism between \mathcal{V} and \mathbb{F}^{m} and $C_{\mathcal{C}}$ provides an isomorphism between \mathcal{W} and \mathbb{F}^{n}.

Recall that the simplest way to define a linear operator from \mathbb{F}^{m} to \mathbb{F}^{n} is to use an $n \times m$ matrix B. It is convenient to consider an $n \times m$ matrix to be an m-tuple of its columns, which are vectors in \mathbb{F}^{n}. For example, let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m} \in \mathbb{F}^{n}$ be columns of an $n \times m$ matrix B. Then we write

$$
B=\left[\begin{array}{lll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{m}
\end{array}\right] .
$$

This notation is convenient since it allows us to write a multiplication of a vector $\mathbf{x} \in \mathbb{F}^{m}$ by a matrix B as

$$
B \mathbf{x}=\sum_{j=1}^{m} \xi_{j} \mathbf{b}_{j} \quad \text { where } \quad \mathbf{x}=\left[\begin{array}{c}
\xi_{1} \tag{1.16}\\
\vdots \\
\xi_{n}
\end{array}\right]
$$

eq-defBx

Notice the similarity of the definition in (1.16) to the definition (1.6) of the operator $L_{\mathcal{C}}^{\mathcal{B}}$ in Example 1.8. Taking \mathcal{B} to be the standard basis of \mathbb{F}^{m} and taking \mathcal{C} to me the m-tuple given by B, we have $L_{\mathcal{C}}^{\mathcal{B}}(\mathbf{x})=B \mathbf{x}$.

Let $T: \mathcal{V} \rightarrow \mathcal{W}$ be a linear operator. Our next goal is to connect T in a natural way to a certain $n \times m$ matrix B. That "natural way" is suggested by following diagram:

We seek an $n \times m$ matrix B such that the action of T between \mathcal{V} and \mathcal{W} is in some sense replicated by the action of B between \mathbb{F}^{m} and \mathbb{F}^{n}. Precisely, we seek B such that

$$
\begin{equation*}
C_{\mathcal{C}}(T v)=B\left(C_{\mathcal{B}}(v)\right) \quad \forall v \in \mathcal{V} . \tag{1.17}
\end{equation*}
$$

eq-cdB
In English: multiplying the vector of coordinates of v by B we get exactly the coordinates of $T v$.

Using the basis vectors $v_{1}, \ldots, v_{n} \in \mathcal{B}$ in (1.17) we see that the matrix

$$
B=\left[\begin{array}{llll}
C_{\mathcal{C}}\left(T v_{1}\right) & \cdots & C_{\mathcal{C}}\left(T v_{m}\right) \tag{1.18}
\end{array}\right]
$$

eq-defB
has the desired property (1.17).
For an arbitrary $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ the formula (1.18) associates the matrix $B \in \mathbb{F}^{n \times m}$ with T. In other words (1.18) defines a function from $\mathcal{L}(\mathcal{V}, \mathcal{W})$ to $\mathbb{F}^{n \times m}$.
th-MatR Theorem 1.15. Let \mathcal{V} and \mathcal{W} be finite dimensional vector spaces over \mathbb{F}, $m=\operatorname{dim} \mathcal{V}, n=\operatorname{dim} \mathcal{W}$, let $\mathcal{B}=\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis for \mathcal{V} and let $\mathcal{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ be a basis for \mathcal{W}. The function

$$
M_{\mathcal{C}}^{\mathcal{B}}: \mathcal{L}(\mathcal{V}, \mathcal{W}) \rightarrow \mathbb{F}^{n \times m}
$$

defined by

$$
\begin{equation*}
M_{\mathcal{C}}^{\mathcal{B}}(T)=\left[C_{\mathcal{C}}\left(T v_{1}\right) \cdots C_{\mathcal{C}}\left(T v_{m}\right)\right], \quad T \in \mathcal{L}(\mathcal{V}, \mathcal{W}) \tag{1.19}
\end{equation*}
$$

eq-defM
is an isomorphism.
Proof. It is easy to verify that $M_{\mathcal{C}}^{\mathcal{B}}$ is a linear operator.
Since the definition of $M_{\mathcal{C}}^{\mathcal{B}}(T)$ coincides with (1.18), equality (1.17) yields

$$
\begin{equation*}
C_{\mathcal{C}}(T v)=\left(M_{\mathcal{C}}^{\mathcal{B}}(T)\right) C_{\mathcal{B}}(v) . \tag{1.20}
\end{equation*}
$$

eq-cdMBC

The most direct way to prove that $M_{\mathcal{C}}^{\mathcal{B}}$ is an isomorphism is to construct its inverse. The inverse is suggested by the diagram (1.21).

Define

$$
N_{\mathcal{C}}^{\mathcal{B}}: \mathbb{F}^{n \times m} \rightarrow \mathcal{L}(\mathcal{V}, \mathcal{W})
$$

by

$$
\begin{equation*}
\left(N_{\mathcal{C}}^{\mathcal{B}}(B)\right)(v)=\left(C_{\mathcal{C}}\right)^{-1}\left(B\left(C_{\mathcal{B}}(v)\right)\right), \quad B \in \mathbb{F}^{n \times m} \tag{1.22}
\end{equation*}
$$

Next we prove that

$$
N_{\mathcal{C}}^{\mathcal{B}} \circ M_{\mathcal{C}}^{\mathcal{B}}=I_{\mathcal{L}(\mathcal{V}, \mathcal{W})} \quad \text { and } \quad M_{\mathcal{C}}^{\mathcal{B}} \circ N_{\mathcal{C}}^{\mathcal{B}}=I_{\mathbb{F}^{n \times m}}
$$

First for arbitrary $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ and arbitrary $v \in \mathcal{V}$ we calculate

$$
\begin{aligned}
\left(\left(N_{\mathcal{C}}^{\mathcal{B}} \circ M_{\mathcal{C}}^{\mathcal{B}}\right)(T)\right)(v) & =\left(C_{\mathcal{C}}\right)^{-1}\left(\left(M_{\mathcal{C}}^{\mathcal{B}}(T)\right)\left(C_{\mathcal{B}}(v)\right)\right) & & \text { by }(1.22) \\
& =\left(C_{\mathcal{C}}\right)^{-1}\left(C_{\mathcal{C}}(T v)\right) & & \text { by }(1.20) \\
& =T v . & &
\end{aligned}
$$

Thus $\left(N_{\mathcal{C}}^{\mathcal{B}} \circ M_{\mathcal{C}}^{\mathcal{B}}\right)(T)=T$ and thus, since $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ was arbitrary, $N_{\mathcal{C}}^{\mathcal{B}} \circ$ $M_{\mathcal{C}}^{\mathcal{B}}=I_{\mathcal{L}(\mathcal{V}, \mathcal{W})}$.

Let now $B \in \mathbb{F}^{n \times m}$ be arbitrary and calculate

$$
\begin{array}{rlrll}
\left(M_{\mathcal{C}}^{\mathcal{B}} \circ N_{\mathcal{C}}^{\mathcal{B}}\right)(B) & =M_{\mathcal{C}}^{\mathcal{B}}\left(N_{\mathcal{C}}^{\mathcal{B}}(B)\right) & & \\
& =\left[\begin{array}{llll}
C_{\mathcal{C}}\left(\left(N_{\mathcal{C}}^{\mathcal{B}}(B)\right)\left(v_{1}\right)\right) & \cdots & C_{\mathcal{C}}\left(\left(N_{\mathcal{C}}^{\mathcal{B}}(B)\right)\left(v_{m}\right)\right)
\end{array}\right] & & \text { by }(1.19) \\
& =\left[\begin{array}{llll}
B\left(C_{\mathcal{B}}\left(v_{1}\right)\right) & \cdots & B\left(C_{\mathcal{B}}\left(v_{m}\right)\right)
\end{array}\right] & & \text { by }(1.22) \tag{1.22}\\
& =B\left[\begin{array}{llll}
C_{\mathcal{B}}\left(v_{1}\right) & \cdots & C_{\mathcal{B}}\left(v_{m}\right)
\end{array}\right] & & \text { matrix mult. } \\
& =B I_{m} & & \text { def. of } C_{\mathcal{B}} \\
& =B . & &
\end{array}
$$

Thus $\left(M_{\mathcal{C}}^{\mathcal{B}} \circ N_{\mathcal{C}}^{\mathcal{B}}\right)(B)=B$ for all $B \in \mathbb{F}^{n \times m}$, proving that $M_{\mathcal{C}}^{\mathcal{B}} \circ N_{\mathcal{C}}^{\mathcal{B}}=I_{\mathbb{F}^{n \times m}}$.

This completes the proof that $M_{\mathcal{C}}^{\mathcal{B}}$ is a bijection. Since it is linear, $M_{\mathcal{C}}^{\mathcal{B}}$ is an isomorphism.
th-MTS Theorem 1.16. Let \mathcal{U}, \mathcal{V} and \mathcal{W} be finite dimensional vector spaces over $\mathbb{F}, k=\operatorname{dim} \mathcal{U}, m=\operatorname{dim} \mathcal{V}, n=\operatorname{dim} \mathcal{W}$, let \mathcal{A} be a basis for \mathcal{U}, let \mathcal{B} be a basis for \mathcal{V}, and let \mathcal{C} be a basis for \mathcal{W}. Let $S \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ and $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. Let $M_{\mathcal{B}}^{\mathcal{A}}(S) \in \mathbb{F}^{m \times k}, M_{\mathcal{C}}^{\mathcal{B}}(T) \in \mathbb{F}^{n \times m}$ and $M_{\mathcal{C}}^{\mathcal{A}}(T S) \in \mathbb{F}^{n \times k}$ be as defined in Theorem 1.15. Then

$$
M_{\mathcal{C}}^{\mathcal{A}}(T S)=M_{\mathcal{C}}^{\mathcal{B}}(T) M_{\mathcal{B}}^{\mathcal{A}}(S)
$$

Proof. Let $\mathcal{A}=\left\{u, \ldots, u_{k}\right\}$ and calculate

$$
\left.\begin{array}{rlrl}
M_{\mathcal{C}}^{\mathcal{A}}(T S) & =\left[\begin{array}{lll}
C_{\mathcal{C}}\left(T S u_{1}\right) & \cdots & C_{\mathcal{C}}\left(T S u_{k}\right)
\end{array}\right] & & \text { by }(1.19) \\
& =\left[\begin{array}{llll}
M_{\mathcal{C}}^{\mathcal{B}}(T)\left(C_{\mathcal{B}}\left(S u_{1}\right)\right) & \cdots & M_{\mathcal{C}}^{\mathcal{B}}(T)\left(C_{\mathcal{B}}\left(S u_{k}\right)\right)
\end{array}\right] & & \text { by }(1.20) \\
& =M_{\mathcal{C}}^{\mathcal{B}}(T)\left[C_{\mathcal{B}}\left(S u_{1}\right) \cdots C_{\mathcal{B}}\left(S u_{k}\right)\right.
\end{array}\right] \quad n \quad \text { matrix mult. }
$$

The following diagram illustrates the content of Theorem 1.16.

2. Problems

Problem 2.1. Let \mathcal{V} and \mathcal{W} be vector spaces over a scalar field \mathbb{F}. Let \mathcal{S} be a subspace of the direct product vector space $\mathcal{V} \times \mathcal{W}$, let \mathcal{G} be a subspace of \mathcal{V} and let \mathcal{H} be a subspace of \mathcal{W}. Then

$$
\mathcal{S}(\mathcal{G})=\{w \in \mathcal{W}: \exists v \in \mathcal{G} \text { such that }(v, w) \in \mathcal{S}\}
$$

is a subspace of \mathcal{W} and

$$
\mathcal{S}^{-1}(\mathcal{H})=\{v \in \mathcal{V}: \exists w \in \mathcal{H} \text { such that }(v, w) \in \mathcal{S}\}
$$

is a subspace of \mathcal{V}.

Problem 2.2. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces over a scalar field \mathbb{F}. Let \mathcal{S} be a subspace of the direct product vector space $\mathcal{V} \times \mathcal{W}$. The following four sets are subspaces

$$
\begin{aligned}
\operatorname{dom} \mathcal{S} & =\{v \in \mathcal{V}: \exists w \in \mathcal{W} \text { such that }(v, w) \in \mathcal{S}\} \\
\operatorname{ran} \mathcal{S} & =\{w \in \mathcal{W}: \exists v \in \mathcal{V} \text { such that }(v, w) \in \mathcal{S}\} \\
\operatorname{nul} \mathcal{S} & =\left\{v \in \mathcal{V}:\left(v, 0_{\mathcal{W}}\right) \in \mathcal{S}\right\} \\
\operatorname{mul} \mathcal{S} & =\left\{w \in \mathcal{W}:\left(0_{\mathcal{V}}, w\right) \in \mathcal{S}\right\}
\end{aligned}
$$

and the following equality holds:

$$
\operatorname{dim} \operatorname{dom} \mathcal{S}+\operatorname{dim} m u l \mathcal{S}=\operatorname{dim} \operatorname{ran} \mathcal{S}+\operatorname{dim} \operatorname{nul} \mathcal{S} .
$$

Hint: The following equivalence holds. For all $v \in \mathcal{V}$ and all $w \in \mathcal{W}$ we have:

$$
(v, w) \in \mathcal{S} \quad \Leftrightarrow \quad(v+x, w+y) \in \mathcal{S} \quad \forall x \in \operatorname{nul} \mathcal{S} \text { and } \forall y \in \operatorname{mul} \mathcal{S} \text {. }
$$

$\mathrm{pb}-\mathrm{rev}$ Problem 2.3. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces over a scalar field \mathbb{F} and recall that $\mathcal{V} \times \mathcal{W}$ and $\mathcal{W} \times \mathcal{V}$ are the direct product vector spaces. Prove that the function

$$
R: \mathcal{V} \times \mathcal{W} \rightarrow \mathcal{W} \times \mathcal{V}
$$

defined by

$$
R(v, w)=(w, v) \quad \text { for all } \quad(v, w) \in \mathcal{V} \times \mathcal{W}
$$

is an isomorphism.
Problem 2.4. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces over a scalar field \mathbb{F} and recall that $\mathcal{V} \times \mathcal{W}$ and $\mathcal{W} \times \mathcal{V}$ are the direct product vector spaces. Let \mathcal{T} be a subset of $\mathcal{V} \times \mathcal{W}$. Then \mathcal{T} is an isomorphism between \mathcal{V} and \mathcal{W} if and only if the set

$$
\{(w, v) \in \mathcal{W} \times \mathcal{V}:(v, w) \in \mathcal{T}\}=R \mathcal{T}
$$

is an isomorphism between \mathcal{W} and \mathcal{V}. (Use Problem 2.3 and Propositions 1.3 and 1.4 to prove this equivalence.)

[^0]: Date: February 9, 2024 at 11:49

