Problem 1. Prove that for all $a \in(-1,1)$ and all $b \in[-1,1]$ we have

$$
\begin{equation*}
\frac{a+b}{1+a b} \in[-1,1] \tag{1}
\end{equation*}
$$

Solution. Assume that $a \in(-1,1)$ and $b \in[-1,1]$. Then $|a| \in[0,1)$ and $|b| \in[0,1]$. Consequently, $|a b| \in[0,1)$. That is $a b \in(-1,1)$. Therefore $1+a b>0$.

Since $a \in(-1,1)$, we have $1+a>0$ and $1-a>0$. Similarly, since $b \in[-1,1]$, we have $1+b \geq 0$ and $1-b \geq 0$.

Since $1+a>0$ and $1+b \geq 0$, we have $(1+a)(1+b) \geq 0$. Consequently, $1+a+b+a b \geq 0$ and hence

$$
-1-a b \leq a+b
$$

As $1+a b>0$, dividing both sides of the last inequality by $1+a b$ we get

$$
\begin{equation*}
-1 \leq \frac{a+b}{1+a b} \tag{2}
\end{equation*}
$$

Since $1-a>0$ and $1-b \geq 0$, we have $(1-a)(1-b) \geq 0$. Consequently, $1-a-b+a b \geq 0$ and hence

$$
a+b \leq 1+a b
$$

As $1+a b>0$, dividing both sides of the last inequality by $1+a b$ we get

$$
\begin{equation*}
\frac{a+b}{1+a b} \leq 1 \tag{3}
\end{equation*}
$$

Inequalities (2) and (3) prove inequality (1).

From calculus we know that for $m>0$
$\ln (u)=\int_{1}^{u} \frac{1}{t} d t$.
$\ln (u)=$ orange
Clearly

$$
\begin{aligned}
& \quad \ln u=\int_{1}^{u} 1 / t d t \ldots \text { orange area } \\
& \text { compare the orange area } \\
& \text { to the area of teal rectangle } \\
& \text { and to the ore of purple redargle } \\
& \text { you get }
\end{aligned}
$$

